Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Authors = Dimitrios E. Alexakis ORCID = 0000-0002-4495-5330

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 22195 KiB  
Article
Investigating Attributes of Oil Source Rocks by Combining Geochemical Approaches and Basin Modelling (Central Gulf of Suez, Egypt)
by Moataz Barakat, Mohamed Reda, Dimitra E. Gamvroula, Robert Ondrak and Dimitrios E. Alexakis
Resources 2025, 14(7), 114; https://doi.org/10.3390/resources14070114 - 16 Jul 2025
Viewed by 650
Abstract
The present study focused on the Upper Cretaceous to Middle Miocene sequence in the Central Gulf of Suez, Egypt. The Upper Cretaceous to Middle Miocene sequence in the October field is thick and deeply buried, consisting mainly of brown limestone, chalk limestone, and [...] Read more.
The present study focused on the Upper Cretaceous to Middle Miocene sequence in the Central Gulf of Suez, Egypt. The Upper Cretaceous to Middle Miocene sequence in the October field is thick and deeply buried, consisting mainly of brown limestone, chalk limestone, and reefal limestone intercalated with clastic shale. This study integrated various datasets, including total organic carbon (TOC), Rock-Eval pyrolysis, visual kerogen examination, vitrinite reflectance (%Ro), and bottom-hole temperature measurements. The main objective of this study is to delineate the source rock characteristics of these strata regarding organic richness, thermal maturity, kerogen type, timing of hydrocarbon transformation and generation. The Upper Cretaceous Brown Limestone Formation is represented by 135 samples from four wells and is considered to be a fair to excellent source rock, primarily containing type I and II kerogen. It is immature to early mature, generating oil with a low to intermediate level of hydrocarbon conversion. The Eocene Thebes Formation is represented by 105 samples from six wells and is considered to be a good to fair oil source rock with some potential for gas, primarily containing type II and II/III kerogen. Most samples are immature with a low level of hydrocarbon conversion while few are mature having an intermediate degree of hydrocarbon conversion. The Middle Miocene Lower Rudeis Formation is represented by 8 samples from two wells and considered to be a fair but immature source rock, primarily containing type III kerogen with a low level of conversion representing a potential source for gas. The Middle Miocene Belayim Formation is represented by 29 samples from three wells and is considered to be a poor to good source rock, primarily containing kerogen type II and III. Most samples are immature with a low level of hydrocarbon conversion while few are mature having an intermediate degree of hydrocarbon conversion. 1D basin model A-5 well shows that the Upper Cretaceous Brown Limestone source rock entered the early oil window at 39 Ma, progressed to the main oil window by 13 Ma, and remains in this stage today. The Eocene Thebes source rock began generating hydrocarbons at 21.3 Ma, advanced to the main oil window at 11 Ma, and has been in the late oil window since 1.6 Ma. The Middle Miocene Lower Rudeis source rock entered the early oil window at 12.6 Ma, transitioned to the main oil window at 5.7 Ma, where it remains active. In contrast, the Middle Miocene Belayim source rock has not yet reached the early oil window and remains immature, with values ranging from 0.00 to 0.55 % Ro. The transformation ratio plot shows that the Brown Limestone Formation began transforming into the Upper Cretaceous (73 Ma), reaching 29.84% by the Miocene (14.3 Ma). The Thebes Formation initiated transformation in the Late Eocene (52.3 Ma) and reached 6.42% by 16.4 Ma. The Lower Rudeis Formation began in the Middle Miocene (18.7 Ma), reaching 3.59% by 9.2 Ma. The Belayim Formation started its transformation at 11.2 Ma, reaching 0.63% by 6.8 Ma. Full article
Show Figures

Figure 1

23 pages, 2956 KiB  
Article
Combining Hydro-Geochemistry and Environmental Isotope Methods to Evaluate Groundwater Quality and Health Risk (Middle Nile Delta, Egypt)
by Atef M. Abu Khatita, Robert van Geldern, Abdullah O. Bamousa, Dimitrios E. Alexakis, Esam Ismail, Wael R. Abdellah and Ibrahim A. A. Babikir
Hydrology 2025, 12(4), 72; https://doi.org/10.3390/hydrology12040072 - 27 Mar 2025
Cited by 4 | Viewed by 912
Abstract
This study aims to assess the vulnerability of groundwater in the Nile Delta to contamination and evaluate its suitability for drinking and irrigation. A total of 28 groundwater wells (ranging from 23 to 120 m in depth) and two Nile surface water samples [...] Read more.
This study aims to assess the vulnerability of groundwater in the Nile Delta to contamination and evaluate its suitability for drinking and irrigation. A total of 28 groundwater wells (ranging from 23 to 120 m in depth) and two Nile surface water samples were analyzed for total dissolved solids (TDS), heavy metals, groundwater quality index (GWQI), and hazard quotient (HQ). The findings reveal that deep groundwater (60–120 m) displays paleo-water characteristics, with low TDS, total hardness, and minimal heavy metal contamination. In contrast, shallow groundwater (<60 m) is categorized into three groups: paleo-water-like, recent Nile water with elevated TDS and heavy metals, and mixed water. Most groundwater samples (64%) are of the Ca-HCO3 type, while 28% are Na-HCO3, and 8% are Na-Cl, the latter associated with sewage infiltration. Most groundwater samples were deemed suitable for irrigation, but drinking water quality varied significantly—4% were classified as “excellent”, 64% as “good”, and 32% as “poor”. HQ analysis identified manganese as a significant health risk, with 56% of shallow groundwater samples exceeding safe levels. These findings highlight the varying groundwater quality in the Nile Delta, emphasizing concerns regarding health risks from heavy metals, particularly manganese, and the need for improved monitoring and management. Full article
(This article belongs to the Special Issue Novel Approaches in Contaminant Hydrology and Groundwater Remediation)
Show Figures

Figure 1

17 pages, 4130 KiB  
Review
The Potential Role of Africa in Green Hydrogen Production: A Short-Term Roadmap to Protect the World’s Future from Climate Crisis
by Moustafa Gamal Snousy, Ashraf R. Abouelmagd, Yasser M. Moustafa, Dimitra E. Gamvroula, Dimitrios E. Alexakis and Esam Ismail
Water 2025, 17(3), 416; https://doi.org/10.3390/w17030416 - 2 Feb 2025
Cited by 1 | Viewed by 3384
Abstract
The global need for energy has risen sharply recently. A global shift to clean energy is urgently needed to avoid catastrophic climate impacts. Hydrogen (H2) has emerged as a potential alternative energy source with near-net-zero emissions. In the African continent, for [...] Read more.
The global need for energy has risen sharply recently. A global shift to clean energy is urgently needed to avoid catastrophic climate impacts. Hydrogen (H2) has emerged as a potential alternative energy source with near-net-zero emissions. In the African continent, for sustainable access to clean energy and the transition away from fossil fuels, this paper presents a new approach through which waste energy can produce green hydrogen from biomass. Bio-based hydrogen employing organic waste and biomass is recommended using biological (anaerobic digestion and fermentation) processes for scalable, cheaper, and low-carbon hydrogen. By reviewing all methods for producing green hydrogen, dark fermentation can be applied in developed and developing countries without putting pressure on natural resources such as freshwater and rare metals, the primary feedstocks used in producing green hydrogen by electrolysis. It can be expanded to produce medium- and long-term green hydrogen without relying heavily on energy sources or building expensive infrastructure. Implementing the dark fermentation process can support poor communities in producing green hydrogen as an energy source regardless of political and tribal conflicts, unlike other methods that require political stability. In addition, this approach does not require the approval of new legislation. Such processes can ensure the minimization of waste and greenhouse gases. To achieve cost reduction in hydrogen production by 2030, governments should develop a strategy to expand the use of dark fermentation reactors and utilize hot water from various industrial processes (waste energy recovery from hot wastewater). Full article
Show Figures

Figure 1

15 pages, 1193 KiB  
Article
Assessing Seismic Vulnerability and Pollution Risks of Wastewater Treatment Plants
by Spyridon K. Golfinopoulos, Ploutarchos N. Kerpelis and Dimitrios E. Alexakis
Appl. Sci. 2025, 15(1), 239; https://doi.org/10.3390/app15010239 - 30 Dec 2024
Viewed by 933
Abstract
Empirical studies are valuable for assessing soil and water pollution, as they can reduce costs and save time. The present study discusses previous research results using a questionnaire to gather experts’ judgments on technical issues and potential pollution related to the vulnerability of [...] Read more.
Empirical studies are valuable for assessing soil and water pollution, as they can reduce costs and save time. The present study discusses previous research results using a questionnaire to gather experts’ judgments on technical issues and potential pollution related to the vulnerability of Wastewater Treatment Plants (WWTPs) in Greece. The questionnaire included 44 closed-type questions based on the Likert Scale. It was distributed to a representative sample of 116 operators over seven (7) months (April–November 2021). Geographical Information Systems (GISs) were employed to visualize the spatial distribution of the seismic vulnerability of WWTPs. The study outputs include eight (8) maps depicting the spatial distribution of seismic vulnerability, both with and considering soil–water pollution, by calculating the existence of seismic hazards and identifying potentially affected regions. Additionally, eight (8) tables support this analysis. The survey findings highlight the most vulnerable regions and WWTPs in the country. The results suggest that after excluding Zone III, the WWTPs of Zone II of the national Seismic Hazard Map (SHM) are estimated to be the most vulnerable. This study spatially visualizes the indicator of seismic vulnerability (ISV) and the seismic vulnerability index concerning potential soil–water pollution (ISV-REF), according to the SHM and regions. Most WWTPs have low ISV-REF, while maps illustrate the exceedance of that parameter, identifying the safest units and indicating that Zone I has the safest units according to the exceedance percentages. Integrating data on regions, ISV, ISV-REF, and their exceedance in GIS could lead to authorities’ and technicians’ decisions to implement quick measures. Researchers should also focus their studies more precisely, mitigating the seismic vulnerability of critical infrastructure, such as WWTPs. Full article
(This article belongs to the Special Issue Simplified Seismic Analysis of Complex Civil Structures)
Show Figures

Figure 1

22 pages, 20125 KiB  
Article
Aeromagnetic Data Analysis for Sustainable Structural Mapping of the Missiakat Al Jukh Area in the Central Eastern Desert: Enhancing Resource Exploration with Minimal Environmental Impact
by Mahmoud Elhussein, Moataz Kh. Barakat, Dimitrios E. Alexakis, Nasir Alarifi, Elsayed Said Mohamed, Dmitry E. Kucher, Mohamed S. Shokr and Mohamed A. S. Youssef
Sustainability 2024, 16(20), 8764; https://doi.org/10.3390/su16208764 - 10 Oct 2024
Cited by 7 | Viewed by 1724
Abstract
This study integrates aeromagnetic data with geological information to develop a consistent interpretation of both shallow and deep structural frameworks at various depths in the Missiakat Al Jukh area, located in the Central Eastern Desert, Egypt. The research begins by processing reduced-to-the-north magnetic [...] Read more.
This study integrates aeromagnetic data with geological information to develop a consistent interpretation of both shallow and deep structural frameworks at various depths in the Missiakat Al Jukh area, located in the Central Eastern Desert, Egypt. The research begins by processing reduced-to-the-north magnetic pole (RTP) anomalies, using Fast Fourier Transformation (FFT) techniques to distinguish between local residual structures and broader regional features. This multi-scale approach enables a more detailed understanding of the geological complexity in the region, revealing its subsurface structures. Advanced geophysical methods such as upward continuation, Euler deconvolution, source parameter imaging (SPI), and global particle swarm optimization (GPSO) were applied to further refine the determination of structural depths, offering critical insights into the distribution and orientation of geological features at varying depths. The study reveals dominant structural orientations aligned in the NNW-SSE, ENE-WSW, north–south, and east–west directions, reflecting the region’s complex tectonic history. This research is of great importance in terms of sustainability. By delivering detailed subsurface maps and providing more accurate depth estimates of basement rocks (between 0.6 and 1.3 km), it contributes to sustainable resource exploration in the region. A better understanding of the geological structure helps minimize the environmental impact of exploration by reducing unnecessary drilling and concentrating efforts on areas with higher potential. Additionally, the use of non-invasive geophysical techniques supports the transition toward more environmentally conscious exploration practices. The integration of these advanced methods promotes a more sustainable approach to mineral and resource extraction, which is crucial for balancing economic growth with environmental preservation in geologically sensitive areas. Ultimately, this work provides a thorough geological interpretation that not only aids future exploration efforts but also aligns with the global push for sustainable and eco-friendly resource management. Full article
Show Figures

Figure 1

8 pages, 542 KiB  
Editorial
Groundwater Quality and Human Health Risk
by Dimitrios E. Alexakis
Water 2024, 16(19), 2762; https://doi.org/10.3390/w16192762 - 28 Sep 2024
Cited by 1 | Viewed by 2062
Abstract
Access to potable water is one of the most significant challenges that humanity will have to deal with in the years to come [...] Full article
(This article belongs to the Special Issue Groundwater Quality and Human Health Risk)
Show Figures

Figure 1

17 pages, 7407 KiB  
Article
Climate Warming and Mismanagement Drive the Shift of Fish Communities in the Wadi El-Rayan Arid Lakes
by Ahmed A. Abdelhady, Mohamed Samy-Kamal, Esam Ismail, Ali M. Hussain, Dimitra E. Gamvroula, Ahmed Ali, Mohamed S. Ahmed, Khalaf H. M. Abdel-Raheem, Hakim Saibi, Mabrouk Sami, Dimitrios E. Alexakis and Mahmoud M. Khalil
Water 2024, 16(18), 2685; https://doi.org/10.3390/w16182685 - 21 Sep 2024
Viewed by 1164
Abstract
The Wadi El-Rayan lakes are important aquatic environments located at the border of the great North African Sahara. Quantifying the temporal changes in these lakes due to natural and/or anthropogenic stressors is critical when assessing potential impacts on aquatic ecosystem health and the [...] Read more.
The Wadi El-Rayan lakes are important aquatic environments located at the border of the great North African Sahara. Quantifying the temporal changes in these lakes due to natural and/or anthropogenic stressors is critical when assessing potential impacts on aquatic ecosystem health and the sustainability of fisheries. To detect the changes in fish communities and their drivers, the landing composition of the Wadi El-Rayan lakes over the past 30 years was quantitatively analyzed. The areas of the lakes dramatically decreased from 110 km2 in 1991 to 73 km2 in 2019. The loss of the lake area was attributed to climate warming, where the evaporation rate exceeded the volume of recharge and the recharge decreased due to an increase in agriculture and aquaculture. The total landing significantly increased in the past three decades due to an increase in the fishing effort (number of licensed boats). Nile tilapia, mullet, and grass carp dominated the landings. The pelagic-to-demersal ratio indicated a shift in the fish community composition towards demersal species. This shift was attributed to an increase in the eutrophication level. The fish communities of the landing data were clustered into four distinct groups. These clusters were significantly differentiated (p < 0.001) in both a PERMANOVA test and a PCA plot. There was a gradual replacement of the dominant species among these clusters. The most recent cluster (2018–2019) was characterized by rare species dominating the community. This shift in species composition suggests that target taxa may have been overexploited. The total landing also decreased, which may have been a result of climate warming. Furthermore, the presence of alien and warm-water species significantly increased. The fish community structure and composition shift could be attributed to anthropogenic (mismanagement) and natural climatic changes (warming). Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

16 pages, 18129 KiB  
Article
Hydraulic and Hydrogeochemical Characterization of Carbonate Aquifers in Arid Regions: A Case from the Western Desert, Egypt
by Mahmoud M. Khalil, Mostafa Mahmoud, Dimitrios E. Alexakis, Dimitra E. Gamvroula, Emad Youssef, Esam El-Sayed, Mohamed H. Farag, Mohamed Ahmed, Peiyue Li, Ahmed Ali and Esam Ismail
Water 2024, 16(18), 2610; https://doi.org/10.3390/w16182610 - 14 Sep 2024
Cited by 2 | Viewed by 1638
Abstract
Using geochemical and pumping test data from 80 groundwater wells, the chemical, hydrologic, and hydraulic properties of the fractured Eocene carbonate aquifer located west of the Al-Minya district, the Western Desert, Egypt, have been characterized and determined to guarantee sustainable management of groundwater [...] Read more.
Using geochemical and pumping test data from 80 groundwater wells, the chemical, hydrologic, and hydraulic properties of the fractured Eocene carbonate aquifer located west of the Al-Minya district, the Western Desert, Egypt, have been characterized and determined to guarantee sustainable management of groundwater resources under large-scale desert reclamation projects. The hydrochemical data show that groundwater from the fractured Eocene carbonate aquifer has a high concentration of Na+ and Cl and varies in salinity from 2176 to 2912 mg/L (brackish water). Water–rock interaction and ion exchange processes are the most dominant processes controlling groundwater composition. The carbonate aquifer exists under confined to semi-confined conditions, and the depth to groundwater increases eastward. From the potentiometric head data, deep-seated faults are the suggested pathways for gas-rich water ascending from the deep Nubian aquifer system into the overlying shallow carbonate aquifer. This mechanism enhances the dissolution and karstification of carbonate rocks, especially in the vicinity of faulted sites, and is supported by the significant loss of mud circulation during well drilling operations. The average estimated hydraulic parameters, based on the analysis of step-drawdown, long-duration pumping and recovery tests, indicate that the Eocene carbonate aquifer has a wide range of transmissivity (T) that is between 336.39 and 389,309.28 m2/d (average: 18,405.21 m2/d), hydraulic conductivity (K) between 1.31 and 1420.84 m/d (average: 70.29 m/d), and specific capacity (Sc) between 44.4 and 17,376.24 m2/d (average: 45.24 m2/d). On the other hand, the performance characteristics of drilled wells show that well efficiency ranges between 0.47 and 97.08%, and well losses range between 2.92 and 99.53%. In addition to variations in carbonate aquifer thickness and clay/shale content, the existence of strong karstification features, i.e., fissures, fractures or caverns, and solution cavities, in the Eocene carbonate aquifer are responsible for variability in the K and T values. The observed high well losses might be related to turbulent flow within and adjacent to the wells drilled in conductive fracture zones. The current approach can be further used to enhance local aquifer models and improve strategies for identifying the most productive zones in similar aquifer systems. Full article
Show Figures

Figure 1

29 pages, 2161 KiB  
Review
Innovative Approaches for Minimizing Disinfection Byproducts (DBPs) in Water Treatment: Challenges and Trends
by Spyridon K. Golfinopoulos, Anastasia D. Nikolaou and Dimitrios E. Alexakis
Appl. Sci. 2024, 14(18), 8153; https://doi.org/10.3390/app14188153 - 11 Sep 2024
Cited by 12 | Viewed by 6086
Abstract
Growing concerns over public health and environmental safety have intensified the focus on minimizing harmful disinfection byproducts (DBPs) in water treatment. Traditional methods like chlorination, while effective against pathogens, often lead to the formation of DBPs, which pose significant risks. This paper explores [...] Read more.
Growing concerns over public health and environmental safety have intensified the focus on minimizing harmful disinfection byproducts (DBPs) in water treatment. Traditional methods like chlorination, while effective against pathogens, often lead to the formation of DBPs, which pose significant risks. This paper explores alternative strategies to reducing DBP formation while ensuring effective disinfection. The methodology involved a bibliographic study conducted through the Scopus platform, using appropriate keywords. The initial search yielded 9576 articles from the period 2020 to 2024. The key approaches identified include advanced oxidation processes (AOPs) such as UV/H2O2 and ozone, which mineralize natural organic matter (NOM) and minimize chemical use and sludge production; membrane-based filtration systems, like reverse osmosis, effectively removing contaminants without chemical disinfectants, reducing DBP risks. Furthermore, conventional processes, such as coagulation and filtration, serve as crucial pretreatment steps to lower NOM levels before disinfection. Additionally, optimizing chlorine dosing, using non-chlorine disinfectants, and employing post-disinfection methods like adsorption and biological filtration further mitigate DBP formation. Finally, the integration of artificial intelligence in process optimization is emerging as a promising tool for enhancing treatment efficiency and safety. This research contributes to the development of safer, more sustainable water treatment solutions, addressing regulatory demands and public health objectives. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends)
Show Figures

Figure 1

22 pages, 23613 KiB  
Article
An Integrated Approach for Saturation Modeling Using Hydraulic Flow Units: Examples from the Upper Messinian Reservoir
by Nader H. El-Gendy, Walid M. Mabrouk, Mohamed A. Waziry, Thomas J. Dodd, Fathy A. Abdalla, Dimitrios E. Alexakis and Moataz Khairy Barakat
Water 2023, 15(24), 4204; https://doi.org/10.3390/w15244204 - 5 Dec 2023
Cited by 9 | Viewed by 2610
Abstract
The Upper Messinian reservoirs located in the Salma Field of the Nile Delta area contain variable facies. The key reservoir interval of the Abu Madi Formation was deposited in fluvial to deltaic environments. These fine-grained facies form significant reservoir heterogeneity within the reservoir [...] Read more.
The Upper Messinian reservoirs located in the Salma Field of the Nile Delta area contain variable facies. The key reservoir interval of the Abu Madi Formation was deposited in fluvial to deltaic environments. These fine-grained facies form significant reservoir heterogeneity within the reservoir intervals. The main challenges in this study are reservoir characterizing and predicting the change in reservoir water saturation (SW) with time, while reservoir production life based on the change in reservoir capillary pressure (Pc). This work applies petrophysical analysis to enable the definition and calculation of the hydrocarbon reserves within the key reservoir units. Mapping of SW away from the wellbores within geo-models represents a significant challenge. The rock types and flow unit analysis indicate that the reservoir is dominated by four hydraulic flow units. HFU#1 represents the highest flow zone indicator (FZI) value. Core analysis has been completed to better understand the relationship between SW and the reservoir capillary pressure above the fluid contact and free water level (FWL), which is used to perform saturation height function (SHF) analysis. The calculated SW values that are obtained from logs are affected by formation water resistivity (Rw) and log true resistivity (RT), which are influenced by the volume of clay content and mud salinity. This study introduces an integrated approach, including evaluation of core measurements, well log analysis covering cored and non-cored intervals, neural analysis techniques (K-mode algorithm), and permeability prediction in non-cored intervals. The empirical formula was predicted for direct calculation of dynamic SW profiles and predicted within the reservoir above the FWL based on the change in reservoir pressure. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology)
Show Figures

Figure 1

18 pages, 8039 KiB  
Article
Morphological Variation between Life and Death Gastropod Populations in the Nile Delta: A Pollution-Induced Evolution
by Ahmed Awad Abdelhady, Ali M. Husain, Mohamed Samy-Kamal, Mohamed S. Ahmed, Dimitrios E. Alexakis and Ahmed Ali
Water 2023, 15(23), 4078; https://doi.org/10.3390/w15234078 - 24 Nov 2023
Cited by 5 | Viewed by 2007
Abstract
Wetland ecosystems of the Nile Delta face severe threats due to natural climatic changes and anthropogenic activities. Life and death assemblage comparisons can be implemented as a historical record to detect anthropogenic-induced environmental changes in the past few decades. A geometric morphometric approach [...] Read more.
Wetland ecosystems of the Nile Delta face severe threats due to natural climatic changes and anthropogenic activities. Life and death assemblage comparisons can be implemented as a historical record to detect anthropogenic-induced environmental changes in the past few decades. A geometric morphometric approach was applied to quantify the pollution-induced morphological variation between life and death populations of the gastropod Melanoides tuberculata. The results indicated that life populations differ significantly from the death ones, where the first tend to be much smaller, more globular, and with a depressed aperture and whorl section. In addition, the phenetic diversity of the life populations was also decreased, and the allometric growth was shifted. These morphological changes in the life populations are well-known adaptations for reducing the cost of shell maintenance in polluted water. No distinct morphospace was found between life populations from different habitats, suggesting that habitats have no significant role in the current pollution-induced evolution. Full article
Show Figures

Figure 1

18 pages, 13584 KiB  
Article
Applying Geophysical and Hydrogeochemical Methods to Evaluate Groundwater Potential and Quality in Middle Egypt
by Esam Ismail, Dimitrios E. Alexakis, Mohamed Abou Heleika, Mohamed Hashem, Mohamed S. Ahmed, Doha Hamdy and Ahmed Ali
Hydrology 2023, 10(8), 173; https://doi.org/10.3390/hydrology10080173 - 18 Aug 2023
Cited by 9 | Viewed by 2409
Abstract
The El-Minia district is a location of interest for future urban development. Using hydrochemistry and electrical resistivity studies, this work aimed to evaluate the groundwater potentiality and it’s suitable for various uses. The groundwater potential in the study area was evaluated based on [...] Read more.
The El-Minia district is a location of interest for future urban development. Using hydrochemistry and electrical resistivity studies, this work aimed to evaluate the groundwater potentiality and it’s suitable for various uses. The groundwater potential in the study area was evaluated based on 24 VESs (vertical electrical soundings), and its quality was determined based on the analyses of 57 groundwater samples. EC (salinity index), Na% (salt hazard), SAR (ratio of sodium adsorption), chloride risks, SSP (soluble sodium percentage), MH (magnesium hazard), and other indicators were used to determine whether the collected water samples were suitable for irrigation. Four layers in the study area are mentioned in the geoelectrical cross-sections that have been constructed. The first is made up of silt and clay from the Nile River, while the second is made up of sandy clay, which has a resistivity range of 15 to 32 Ohm.m and a range thickness of 2 to 68 m. Dry limestone makes up the third layer; its resistivity ranges from 1222 to 3000 Ohm.m and its thickness varies between 75 and 95 m. The Eocene aquifer in the research area is represented by the final layer, which has a thickness of more than 250 m and resistivity values that range from 602 to 860 Ohm.m. Most groundwater samples that were collected are safe for drinking; however, none of them are fit for home usage because of their extreme hardness. According to the SAR and US diagram, RSC, KR, and PI, most groundwater samples from the Pleistocene and Eocene aquifers are fit for irrigation. Full article
(This article belongs to the Special Issue Groundwater Pollution: Sources, Mechanisms, and Prevention)
Show Figures

Figure 1

23 pages, 7744 KiB  
Article
Multivariate Statistical Analysis and Geospatial Mapping for Assessing Groundwater Quality in West El Minia District, Egypt
by Esam Ismail, Moustafa Gamal Snousy, Dimitrios E. Alexakis, Dimitra E. Gamvroula, Guy Howard, Esam El Sayed, Mohamed S. Ahmed, Ahmed Ali and Ahmed Abdelhalim
Water 2023, 15(16), 2909; https://doi.org/10.3390/w15162909 - 12 Aug 2023
Cited by 14 | Viewed by 3298
Abstract
The primary goal of this study is to analyze the hydrogeochemical properties and assess the groundwater quality for drinking, domestic, and irrigation purposes in West El Minia, Egypt. Major components were determined in 49 groundwater samples to evaluate water quality in the study [...] Read more.
The primary goal of this study is to analyze the hydrogeochemical properties and assess the groundwater quality for drinking, domestic, and irrigation purposes in West El Minia, Egypt. Major components were determined in 49 groundwater samples to evaluate water quality in the study area. Principal component analysis (PCA), hierarchical cluster analysis (HCA), geostatistics, and spatial mapping were used to identify the chemical components and processes that influence groundwater quality and highlight areas of health risks. According to the TDS values, about 22% of the groundwater samples are suitable for drinking. Due to the elevated values of hardness in the examined water, none of the water samples are suitable for use in a household. The majority of groundwater samples are acceptable for irrigation based on the sodium adsorption ratio (SAR), residual sodium carbonate (RSC), Kelley ratio (KR), magnesium hazard (MH), and permeability index, and some can be adequately treated. The study indicated that different groundwater characteristics (such as TDS, Na+, K+, HCO3, Cl, and SO42−) do not comply with WHO requirements in some regions, which may pose a threat to human health. Full article
Show Figures

Figure 1

22 pages, 5939 KiB  
Article
Diagnosis of Groundwater Quality in North Assiut Province, Egypt, for Drinking and Irrigation Uses by Applying Multivariate Statistics and Hydrochemical Methods
by Esam Ismail, Moustafa Gamal Snousy, Dimitrios E. Alexakis, Ahmed Abdelhalim, Mohamed S. Ahmed and Esam Elsayed
Water 2023, 15(15), 2812; https://doi.org/10.3390/w15152812 - 3 Aug 2023
Cited by 17 | Viewed by 2929
Abstract
Globally, groundwater is a valuable natural resource that may be relied upon for irrigation and drinking needs. The main purpose of this study is to investigate the groundwater geochemistry in the West of El Qusiya, Assuit, Egypt. Groundwater suitability for irrigation has been [...] Read more.
Globally, groundwater is a valuable natural resource that may be relied upon for irrigation and drinking needs. The main purpose of this study is to investigate the groundwater geochemistry in the West of El Qusiya, Assuit, Egypt. Groundwater suitability for irrigation has been estimated with some methods, for instance, electrical conductivity (EC), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), Killey ratio (KR), magnesium hazard (MH), permeability index (PI), Piper trilinear diagram, and USSL diagram. The Piper diagram shows that the sodium and potassium (Na+K) kind dominates the water chemistry, followed by the mixed type. The principal coordinate analysis (PCoA), cluster analysis (CA), principal component analysis (PCA), and Pearson correlation matrix analysis (PCMA) statistical methods reveal that the physicochemical parameters of water collected from the Eocene and Pleistocene aquifers are produced from mixed origins. The geogenic origin reflects the lithologic impact of aquifers matrix and water interactions, in addition to anthropogenic sources caused by infiltration of secondary salts initiated due to fertilizers and agriculture water. These factors are the controller for groundwater’s ionic (Na+, Ca2+, Mg2+, K+, Cl, SO42−, and HCO3) variation in the area studied. Based on SAR, KR, and PI results, groundwater is acceptable for irrigation. Consistent with RSC, MH, and Na% results, approximately 50% of the groundwater samples are unsuitable for irrigation use. Full article
Show Figures

Figure 1

3 pages, 178 KiB  
Editorial
Anthropogenic and Geo-Environmental Impacts on the Hydrosphere: Diagnosis, Monitoring, Assessment, and Sustainable Management
by Dimitrios E. Alexakis
Water 2023, 15(7), 1390; https://doi.org/10.3390/w15071390 - 4 Apr 2023
Cited by 1 | Viewed by 2026
Abstract
A worldwide issue directly affecting human health, resources, and ecosystems concerns the harmful consequences of anthropogenic and geo-environmental influences on the hydrosphere [...] Full article
Back to TopTop