Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Authors = Chunyan Han

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2507 KiB  
Article
Formula Screening and Optimization of Physical and Chemical Properties for Cultivating Flammulina filiformis Using Soybean Straw as Substrate
by Ruixiang Sun, Jiandong Han, Peng Yang, Shude Yang, Hongyan Xie, Jin Li, Chunyan Huang, Qiang Yao, Qinghua Wang, He Li, Xuerong Han and Zhiyuan Gong
Horticulturae 2025, 11(8), 947; https://doi.org/10.3390/horticulturae11080947 - 11 Aug 2025
Abstract
Recently, there has been a growing interest in using agricultural and forestry residues to cultivate Flammulina filiformis. However, there is limited research on cultivating F. filiformis with soybean straw as a substrate. This study systematically optimized the cultivation formula for F. filiformis [...] Read more.
Recently, there has been a growing interest in using agricultural and forestry residues to cultivate Flammulina filiformis. However, there is limited research on cultivating F. filiformis with soybean straw as a substrate. This study systematically optimized the cultivation formula for F. filiformis using soybean straw as the raw substrate and explored the effects of the water content, carbon-to-nitrogen ratio (C/N ratio), substrate particle size, and substrate loading on its growth and development. By replacing corncob, wheat bran, and soybean hulls with soybean straw and increasing the proportion of rice bran, the cultivation formula for growing F. filiformis was optimized. We found that the maximum fruiting body yield of 405 g (330 g dry substrate per bottle) and a biological efficiency of 122.73% were achieved using a substrate mixture of 25% soybean straw, 20% corncob, 20% cottonseed hull, 25% rice bran, 8% wheat bran, 1% CaCO3, and 1% shellfish powder. The yield and biological efficiency of fruiting bodies cultivated on the substrate containing 25% soybean straw did not show significant differences compared to the control group. However, the cultivation formula containing 25% soybean straw yielded F. filiformis with significantly higher levels of amino acids, essential amino acids, and fat. These findings suggest that the 25% soybean straw substrate formulation can serve as a viable alternative to the control formulation for the cultivation of F. filiformis, although variations in the nutritional composition exist. Based on this optimized formula, an optimal biological efficiency can be achieved with a substrate-to-water ratio of 1:1.7, a wet substrate loading amount of 940 g (in a 1250 mL cultivation bottle), and a soybean straw particle size range of 6–8 mm. The optimal C/N ratio for cultivating F. filiformis using soybean straw ranges from 27:1 to 32:1. Additionally, orthogonal experiments revealed that the nitrogen content significantly affected the fruiting body yield, stipe length, and stipe diameter, while the water content mainly affected the pileus diameter, pileus thickness, and number of fruit bodies. Under defined conditions (dry substrate loading volume of 337 g (in a 1250 mL cultivation bottle), a substrate-to-water ratio of 1:1.6, and a C/N ratio of 26:1), the maximum yield and biological efficiency per bottle reached 395 g and 117.21%, respectively. Our findings indicate that the F. filiformis cultivation using soybean straw as the raw substrate exhibits a promising performance and extensive application potential. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

18 pages, 1171 KiB  
Article
The Evolution of Urban Environmental Governance Networks: Evidence from China
by Kai Wang, Huiqing Han and Chunyan Tan
Sustainability 2025, 17(14), 6345; https://doi.org/10.3390/su17146345 - 10 Jul 2025
Viewed by 347
Abstract
Urban environmental issues are fundamental to ecological civilization development, with key stakeholders such as governments, enterprises, social organizations, and community residents playing crucial roles in the governance process. From a network governance perspective, this study innovatively applied social network analysis (SNA) to policy [...] Read more.
Urban environmental issues are fundamental to ecological civilization development, with key stakeholders such as governments, enterprises, social organizations, and community residents playing crucial roles in the governance process. From a network governance perspective, this study innovatively applied social network analysis (SNA) to policy co-occurrence networks, analyzing over 2300 policy documents related to China’s urban environmental governance from 2017 to 2023 to investigate evolutionary trends. The key findings indicate the following. (1) The comparative analysis across two periods reveals that China’s urban environmental governance network structure has stabilized, with both network density and centralization indices showing an upward trend. (2) The degree of centrality and betweenness centrality shows that government agencies remain the core entities within the network, while the role and influence of business enterprises have steadily increased. (3) The participation of social organizations in governance continues to increase, but community public participation in governance is insufficient. Therefore, China’s ecological environment governance network has formed a network structure with the government as the leader, enterprises as the key role, and social organizations providing effective support. Full article
(This article belongs to the Section Social Ecology and Sustainability)
Show Figures

Figure 1

18 pages, 3819 KiB  
Article
Melatonin Promotes Muscle Growth and Redirects Fat Deposition in Cashmere Goats via Gut Microbiota Modulation and Enhanced Antioxidant Capacity
by Di Han, Zibin Zheng, Zhenyu Su, Xianliu Wang, Shiwei Ding, Chunyan Wang, Liwen He and Wei Zhang
Antioxidants 2025, 14(6), 645; https://doi.org/10.3390/antiox14060645 - 27 May 2025
Viewed by 670
Abstract
Liaoning cashmere goats is a dual-purpose breed valued for premium cashmere fiber and meat yields, and there is currently a lack of optimized strategies for meat quality, including skeletal muscle development and lipid partitioning. This investigation systematically examines how melatonin administration modulates gastrointestinal [...] Read more.
Liaoning cashmere goats is a dual-purpose breed valued for premium cashmere fiber and meat yields, and there is currently a lack of optimized strategies for meat quality, including skeletal muscle development and lipid partitioning. This investigation systematically examines how melatonin administration modulates gastrointestinal microbiota and antioxidant capacity to concurrently enhance skeletal muscle hypertrophy and redirect lipid deposition patterns, ultimately improving meat quality and carcass traits in Liaoning cashmere goats. Thirty female half-sibling kids were randomized into control and melatonin-treated groups (2 mg/kg live weight with subcutaneous implants). Postmortem analyses at 8 months assessed carcass traits, meat quality, muscle histology, plasma metabolites, and gut microbiota (16S rRNA sequencing). Melatonin supplementation decreased visceral adiposity (perirenal, omental, and mesenteric fat depots with a p < 0.05) while inducing muscle fiber hypertrophy (longissimus thoracis et lumborum (LTL) and biceps femoris (BF) with p < 0.05). The melatonin-treated group demonstrated elevated postmortem pH24h values, attenuated muscle drip loss, enhanced intramuscular protein deposition, and improved systemic antioxidant status (characterized by increased catalase and glutathione levels with concomitant reduction in malondialdehyde with p < 0.05). Melatonin reshaped gut microbiota, increasing α-diversity (p < 0.05) and enriching beneficial genera (Prevotella, Romboutsia, and Akkermansia), while suppressing lipogenic Desulfovibrio populations, and concomitant with improved intestinal morphology as evidenced by elevated villus height-to-crypt depth ratios. These findings establish that melatonin-mediated gastrointestinal microbiota remodeling drives anabolic muscle protein synthesis while optimizing fat deposition, providing a scientifically grounded strategy to enhance meat quality. Full article
(This article belongs to the Special Issue Oxidative Stress in Livestock and Poultry—3rd Edition)
Show Figures

Figure 1

16 pages, 1874 KiB  
Article
Genome-Wide Association Study and RNA-Seq Elucidate the Genetic Mechanisms Behind Aphid (Rhopalosiphum maidis F.) Resistance in Maize
by Doudou Sun, Yijun Wei, Chunyan Han, Xiaopeng Li, Zhen Zhang, Shiwei Wang, Zijian Zhou, Jingyang Gao, Jiafa Chen and Jianyu Wu
Plants 2025, 14(11), 1614; https://doi.org/10.3390/plants14111614 - 25 May 2025
Viewed by 542
Abstract
Maize is a crucial food crop and industrial raw material, significantly contributing to national food security. Aphids are one of the most prevalent and destructive pests in maize production, necessitating the exploration of pest-resistant germplasm and the development of resistant varieties as the [...] Read more.
Maize is a crucial food crop and industrial raw material, significantly contributing to national food security. Aphids are one of the most prevalent and destructive pests in maize production, necessitating the exploration of pest-resistant germplasm and the development of resistant varieties as the most fundamental and effective strategy for mitigating aphid-induced damage. This study established an aphid resistance evaluation system and identified 17 elite resistant inbred lines through multi-year screening. A genome-wide association study (GWAS) revealed 22 significant single-nucleotide polymorphisms (SNPs) associated with aphid resistance, including genes involved in benzoxazinoid (Bx) biosynthesis (such as Bx2), insect resistance-related transcription factors (such as WRKY23), plant lectins, and other resistance pathways. RNA-seq analysis of the samples before and after aphid infestation detected 1037 differentially expressed genes (DEGs) in response to aphid infestation, with KEGG enrichment highlighting benzoxazinoid biosynthesis and starch/sucrose metabolism as primary response pathways. Integrating GWAS and RNA-seq results revealed the presence of several benzoxazinoid synthesis-related genes on the short arm of chromosome 4 (Chr4S). FMqRrm1, a Kompetitive Allele-Specific PCR (KASP) marker, was derived from the Chr4S region. We subsequently utilized this marker for marker-assisted selection (MAS) to introgress the Chr4S region from the aphid-resistant inbred line into two aphid-susceptible inbred lines. The results demonstrated that the Chr4S favorable allele significantly reduced aphid occurrence by 1.5 to 2.1 grades. This study provides a critical theoretical foundation and practical guidance for understanding the molecular mechanism of aphid resistance in maize and molecular breeding for aphid resistance. Full article
(This article belongs to the Special Issue Identification of Resistance of Maize Germplasm Resources to Disease)
Show Figures

Figure 1

15 pages, 6048 KiB  
Article
Mitogen-Activated Protein Kinases 3/6 Reduce Auxin Signaling via Stabilizing Indoleacetic Acid-Induced Proteins 8/9 in Plant Abiotic Stress Adaptation
by Chunyan Wang, Xiaoxuan Li, Han Zhao, Xiankui Cui, Wenhong Xu, Ke Li, Yang Xu, Zipeng Yu, Luyao Yu and Rui Guo
Int. J. Mol. Sci. 2025, 26(5), 1964; https://doi.org/10.3390/ijms26051964 - 24 Feb 2025
Viewed by 757
Abstract
The balance between plant growth and stress response is a key issue in the field of biology. In this process, mitogen-activated protein kinase 3 (MPK3) and MPK6 contribute to the construction of plants’ defense system during stress tolerance, while auxin, a growth-promoting hormone, [...] Read more.
The balance between plant growth and stress response is a key issue in the field of biology. In this process, mitogen-activated protein kinase 3 (MPK3) and MPK6 contribute to the construction of plants’ defense system during stress tolerance, while auxin, a growth-promoting hormone, is the key to maintaining plant growth. Nevertheless, the antagonistic or cooperative relationship between MPK3/6-mediated stress response and auxin-mediated plant growth remains unclear. Here, we demonstrate that stress-activated MPK3/6 interact with the auxin signaling repressors indoleacetic acid-induced protein 8 (IAA8) and IAA9, two key targets for regulating the auxin signaling output during stress responses. Protein phosphorylation mass spectrometry followed by a co-analysis with in vitro phosphorylation experiments revealed that MPK3/6 phosphorylated the S91, T94, and S152 residues of IAA8 and the S88 residue of IAA9. Phosphorylation significantly enhanced the protein stability of IAA8/9, thereby maintaining basal auxin signaling during plant stress adaptation. Collectively, MPK3/6-IAA8/9 are key modules that are turned on during plant stress adaptation to precisely reduce auxin signaling output, thereby preventing plants from improper vigorous growth under stress conditions. Full article
(This article belongs to the Special Issue New Insights into Environmental Stresses and Plants)
Show Figures

Figure 1

14 pages, 5772 KiB  
Article
Exploring Aeromonas veronii in Migratory Mute Swans (Cygnus olor): A Debut Report and Genetic Characterization
by Zhifeng Peng, Chunyan Gao, Hongxing Qiao, Han Zhang, Huimin Huang, Yamin Sheng, Xiaojie Zhang, Baojun Li, Baoliang Chao, Jingjing Kang and Chuanzhou Bian
Vet. Sci. 2025, 12(2), 164; https://doi.org/10.3390/vetsci12020164 - 13 Feb 2025
Viewed by 1016
Abstract
Aeromonas veronii (A. veronii) is a ubiquitous bacterium in terrestrial and aquatic environments. It has a significant impact on animal and human health, with it becoming an emerging crucial pathogen worldwide. However, there have been no reports of mute swan infections. [...] Read more.
Aeromonas veronii (A. veronii) is a ubiquitous bacterium in terrestrial and aquatic environments. It has a significant impact on animal and human health, with it becoming an emerging crucial pathogen worldwide. However, there have been no reports of mute swan infections. In the present study, after an observation of pathological changes, one bacterial strain isolated from a dead migratory mute swan was identified as A. veronii HNZZ-1/2022 based on its morphology, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), and sequence analysis of the 16S rRNA and gyrB genes. To explore its pathogenicity, virulence gene detection and a gosling infection experiment were subsequently carried out, respectively. Six virulence genes for cytotonic enterotoxins (alt), lateral elastase (ela), lipase (lip), cytotoxic enterotoxin (act), aerolysin (aerA), and polar flagellin (fla) were present in the template DNA of A. veronii HNZZ-1/2022. Experimentally infected goslings exhibited hemorrhages of various different degrees in multiple organs. The half-maximal lethal dose (LD50) value of A. veronii strain HNZZ-1/2022 was estimated to be 3.48 × 108 colony forming units (CFUs) per mL for goslings. An antimicrobial susceptibility test showed that the A. veronii HNZZ-1/2022 strain was resistant to meropenem, ampicillin, and enrofloxacin. To date, this is the first report of A. veronii in migratory mute swans, thus expanding the currently known host spectrum. These results suggest that the migratory mute swan is a new host for A. veronii and demonstrate the need for extensive surveillance and research of A. veronii to minimize its transmission between animals, the environment, and humans. Full article
Show Figures

Figure 1

2 pages, 551 KiB  
Correction
Correction: Zhang et al. Hepatitis B Virus X Protein (HBx) Suppresses Transcription Factor EB (TFEB) Resulting in Stabilization of Integrin Beta 1 (ITGB1) in Hepatocellular Carcinoma Cells. Cancers 2021, 13, 1181
by Chunyan Zhang, Huan Yang, Liwei Pan, Guangfu Zhao, Ruofei Zhang, Tianci Zhang, Zhixiong Xiao, Ying Tong, Yi Zhang, Richard Hu, Stephen J. Pandol and Yuan-Ping Han
Cancers 2025, 17(1), 103; https://doi.org/10.3390/cancers17010103 - 31 Dec 2024
Viewed by 800
Abstract
In the original publication [...] Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

21 pages, 720 KiB  
Review
Rewriting Viral Fate: Epigenetic and Transcriptional Dynamics in KSHV Infection
by Chunyan Han, Danping Niu and Ke Lan
Viruses 2024, 16(12), 1870; https://doi.org/10.3390/v16121870 - 30 Nov 2024
Cited by 5 | Viewed by 1435
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), a γ-herpesvirus, is predominantly associated with Kaposi’s sarcoma (KS) as well as two lymphoproliferative disorders: primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Like other herpesviruses, KSHV employs two distinct life cycles: latency and lytic replication. To establish [...] Read more.
Kaposi’s sarcoma-associated herpesvirus (KSHV), a γ-herpesvirus, is predominantly associated with Kaposi’s sarcoma (KS) as well as two lymphoproliferative disorders: primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Like other herpesviruses, KSHV employs two distinct life cycles: latency and lytic replication. To establish a lifelong persistent infection, KSHV has evolved various strategies to manipulate the epigenetic machinery of the host. In latently infected cells, most viral genes are epigenetically silenced by components of cellular chromatin, DNA methylation and histone post-translational modifications. However, some specific latent genes are preserved and actively expressed to maintain the virus’s latent state within the host cell. Latency is not a dead end, but the virus has the ability to reactivate. This reactivation is a complex process that involves the removal of repressive chromatin modifications and increased accessibility for both viral and cellular factors, allowing the activation of the full transcriptional program necessary for the subsequent lytic replication. This review will introduce the roles of epigenetic modifications in KSHV latent and lytic life cycles, including DNA methylation, histone methylation and acetylation modifications, chromatin remodeling, genome conformation, and non-coding RNA expression. Additionally, we will also review the transcriptional regulation of viral genes and host factors in KSHV infection. This review aims to enhance our understanding of the molecular mechanisms of epigenetic modifications and transcriptional regulation in the KSHV life cycle, providing insights for future research. Full article
(This article belongs to the Special Issue Epigenetic and Transcriptional Regulation of DNA Virus Infections)
Show Figures

Figure 1

12 pages, 2470 KiB  
Article
Comparative Metabolomic Analysis Reveals the Impact of the Photoperiod on the Hepatopancreas of Chinese Grass Shrimp (Palaemonetes sinensis)
by Duojia Qu, Chunyan Fu, Muyu Han and Yingdong Li
Fishes 2024, 9(11), 444; https://doi.org/10.3390/fishes9110444 - 31 Oct 2024
Cited by 2 | Viewed by 1090
Abstract
The photoperiod is a key environmental factor that in crustaceans influences development, feeding, and metabolism. In this study, liquid chromatography-tandem mass spectrometry was used to examine metabolic changes in Palaemonetes sinensis under different photoperiods. Our results showed that key metabolic pathways, such as [...] Read more.
The photoperiod is a key environmental factor that in crustaceans influences development, feeding, and metabolism. In this study, liquid chromatography-tandem mass spectrometry was used to examine metabolic changes in Palaemonetes sinensis under different photoperiods. Our results showed that key metabolic pathways, such as linoleic acid metabolism, axon regeneration, pyrimidine metabolism, and cortisol synthesis, were significantly altered under both constant light (24L:0D) and constant darkness (0L:24D) compared with natural light conditions. The photoperiod notably affected the digestive and metabolic functions of P. sinensis. Most metabolic pathways were downregulated under full darkness and full light conditions, suggesting that inhibition of metabolism is a potential adaptive response. Furthermore, enzyme assays revealed significant variations in trypsin, lipase, and amylase activity across different photoperiods, highlighting the profound impact of light conditions on digestive functions. These findings suggest that extreme light conditions may negatively impact the metabolic and digestive functions of P. sinensis. This study provides new insights into the adaptive mechanisms of P. sinensis in response to photoperiod changes and offers valuable information for optimizing aquaculture practices to enhance the health and growth performance of this crustacean. Full article
(This article belongs to the Special Issue Environmental Physiology of Aquatic Animals)
Show Figures

Figure 1

17 pages, 14480 KiB  
Article
A Small-Scale Object Detection Algorithm in Intelligent Transportation Scenarios
by Junzi Song, Chunyan Han and Chenni Wu
Entropy 2024, 26(11), 920; https://doi.org/10.3390/e26110920 - 29 Oct 2024
Cited by 1 | Viewed by 1070
Abstract
In response to the problem of poor detection ability of object detection models for small-scale targets in intelligent transportation scenarios, a fusion method is proposed to enhance the features of small-scale targets, starting from feature utilization and fusion methods. The algorithm is based [...] Read more.
In response to the problem of poor detection ability of object detection models for small-scale targets in intelligent transportation scenarios, a fusion method is proposed to enhance the features of small-scale targets, starting from feature utilization and fusion methods. The algorithm is based on the YOLOv4 tiny framework and enhances the utilization of shallow and mid-level features on the basis of Feature Pyramid Network (FPN), improving the detection accuracy of small and medium-sized targets. In view of the problem that the background of the intelligent traffic scene image is cluttered, and there is more redundant information, the Convolutional Block Attention Module (CBAM) is used to improve the attention of the model to the traffic target. To address the problem of data imbalance and prior bounding box adaptation in custom traffic data sets that expand traffic images in COCO and VOC, we propose a Copy-Paste method with an improved generation method and a K-means algorithm with improved distance measurement to enhance the model’s detection ability for corresponding categories. Comparative experiments were conducted on a customized 260-thousand traffic data set containing public traffic images, and the results showed that compared to YOLOv4 tiny, the proposed algorithm improved mAP by 4.9% while still ensuring the real-time performance of the model. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

10 pages, 223 KiB  
Article
Nash’s Existence Theorem for Non-Compact Strategy Sets
by Xinyu Zhang, Chunyan Yang, Renjie Han and Shiqing Zhang
Mathematics 2024, 12(13), 2017; https://doi.org/10.3390/math12132017 - 28 Jun 2024
Viewed by 888
Abstract
In this paper, we apply the classical FKKM lemma to obtain the Ky Fan minimax inequality defined on nonempty non-compact convex subsets in reflexive Banach spaces, and then we apply it to game theory and obtain Nash’s existence theorem for non-compact strategy sets, [...] Read more.
In this paper, we apply the classical FKKM lemma to obtain the Ky Fan minimax inequality defined on nonempty non-compact convex subsets in reflexive Banach spaces, and then we apply it to game theory and obtain Nash’s existence theorem for non-compact strategy sets, which can be regarded as a new, simple but interesting application of the FKKM lemma and the Ky Fan minimax inequality, and we can also present another proof about the famous John von Neumann’s existence theorem in two-player zero-sum games. Due to the results of Li, Shi and Chang, the coerciveness in the conclusion can be replaced with the P.S. or G.P.S. conditions. Full article
(This article belongs to the Special Issue Nonlinear Functional Analysis: Theory, Methods, and Applications)
15 pages, 4506 KiB  
Article
Transcriptome Analysis Reveals the Molecular Mechanism of the Leaf Yellowing in Allotriploid Cucumber
by Han Wang, Lei Xia, Jinfeng Chen and Chunyan Cheng
Genes 2024, 15(7), 825; https://doi.org/10.3390/genes15070825 - 21 Jun 2024
Cited by 1 | Viewed by 1718
Abstract
Yellowing leaves are ideal materials for studying the metabolic pathways of photosynthetic pigment chloroplast development, and the mechanism of photosynthetic systems. Here, we obtained a triploid material HCC (2n = 3x = 26), which was derived from hybridization between the artificial tetraploid Cucumis [...] Read more.
Yellowing leaves are ideal materials for studying the metabolic pathways of photosynthetic pigment chloroplast development, and the mechanism of photosynthetic systems. Here, we obtained a triploid material HCC (2n = 3x = 26), which was derived from hybridization between the artificial tetraploid Cucumis × hytivus (2n = 4x = 38, HHCC) and the cultivated cucumber Cucumis sativus (2n = 2x = 14, CC), and this triploid HCC showed obvious leaf yellowing characteristics. Phenotypic observation results showed that chloroplast development was impaired, the chlorophyll content decreased, and photosynthesis decreased in yellowing HCC leaves. The transcriptome results indicated that HCC-GLK is significantly downregulated in HCC and participates in the regulation of leaf yellowing. GO enrichment analysis revealed that differential genes were enriched in the heme binding and tetrapyrrole binding pathways related to leaf color. KEGG enrichment analysis revealed that differential genes were predominantly enriched in photosynthesis-related pathways. The experimental results of VIGS and yeast hybridization showed that silencing the GLK gene can induce leaf yellowing in cucumber plants, and the GLK protein can affect plant chloroplast development by interacting with the CAB3C protein (light-harvesting chlorophyll a/b binding) in the plant chlorophyll synthesis pathway. The current findings have not only enhanced our understanding of the regulatory mechanism of the GLK transcription factor in cucumber but also introduced novel insights and directions for investigating the molecular mechanism underlying polyploid leaf yellowing. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3393 KiB  
Article
Investigation of Sample Size Estimation for Measuring Quantitative Characteristics in DUS Testing of Shiitake Mushrooms
by Shan Deng, Meiyan Zhang, Aiai Li, Li Ren, Yiying Zhang, Hong Zhao, Yu Zhang, Chunyan Song, Ruixi Han, Qi Tan, Yunxia Chu and Hairong Chen
Agronomy 2024, 14(6), 1130; https://doi.org/10.3390/agronomy14061130 - 25 May 2024
Cited by 2 | Viewed by 1673
Abstract
The sampling technique is commonly used in research investigations to more accurately estimate data with greater precision, at a lower cost and in less time. In plant DUS (distinctness, uniformity, and stability) testing, many quantitative characteristic data usually need to be obtained through [...] Read more.
The sampling technique is commonly used in research investigations to more accurately estimate data with greater precision, at a lower cost and in less time. In plant DUS (distinctness, uniformity, and stability) testing, many quantitative characteristic data usually need to be obtained through individual measurements. However, there is currently no scientific method for determining the appropriate sampling size. The minimum number of testing samples for DUS testing was calculated based on the theory of sample size in descriptive studies and was validated through simple random sampling. The results show that the quantitative characteristics for the edible mushroom Shiitake (Lentinula edodes) in DUS testing were uniform. The calculated results show that 10 fruiting bodies for a single measurement were sufficient. Furthermore, the outcomes of the random sampling revealed that the mean of 10 samples did not significantly differ from the mean of all data. When the sample size exceeded 10, Cohen’s kappa statistic suggested that the conclusion of distinctness was very close to the near-perfect agreement. Reducing the number of samples did not affect the uniform assessment. This study suggests that the theory of sample size in descriptive studies could be applied to calculate the minimum sample size in DUS testing, and for Shiitake DUS testing, measuring 10 fruiting bodies was sufficient. Full article
Show Figures

Figure 1

19 pages, 5733 KiB  
Article
Multi-Omics Analysis of a Chromosome Segment Substitution Line Reveals a New Regulation Network for Soybean Seed Storage Profile
by Cholnam Jong, Zhenhai Yu, Yu Zhang, Kyongho Choe, Songrok Uh, Kibong Kim, Chol Jong, Jinmyong Cha, Myongguk Kim, Yunchol Kim, Xue Han, Mingliang Yang, Chang Xu, Limin Hu, Qingshan Chen, Chunyan Liu and Zhaoming Qi
Int. J. Mol. Sci. 2024, 25(11), 5614; https://doi.org/10.3390/ijms25115614 - 21 May 2024
Cited by 3 | Viewed by 1945
Abstract
Soybean, a major source of oil and protein, has seen an annual increase in consumption when used in soybean-derived products and the broadening of its cultivation range. The demand for soybean necessitates a better understanding of the regulatory networks driving storage protein accumulation [...] Read more.
Soybean, a major source of oil and protein, has seen an annual increase in consumption when used in soybean-derived products and the broadening of its cultivation range. The demand for soybean necessitates a better understanding of the regulatory networks driving storage protein accumulation and oil biosynthesis to broaden its positive impact on human health. In this study, we selected a chromosome segment substitution line (CSSL) with high protein and low oil contents to investigate the underlying effect of donor introgression on seed storage through multi-omics analysis. In total, 1479 differentially expressed genes (DEGs), 82 differentially expressed proteins (DEPs), and 34 differentially expressed metabolites (DEMs) were identified in the CSSL compared to the recurrent parent. Based on Gene Ontology (GO) term analysis and the Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG), integrated analysis indicated that 31 DEGs, 24 DEPs, and 13 DEMs were related to seed storage functionality. Integrated analysis further showed a significant decrease in the contents of the seed storage lipids LysoPG 16:0 and LysoPC 18:4 as well as an increase in the contents of organic acids such as L-malic acid. Taken together, these results offer new insights into the molecular mechanisms of seed storage and provide guidance for the molecular breeding of new favorable soybean varieties. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
Show Figures

Figure 1

17 pages, 1319 KiB  
Review
The Interplay between KSHV Infection and DNA-Sensing Pathways
by Chunyan Han, Chenwu Gui, Shuhong Dong and Ke Lan
Viruses 2024, 16(5), 749; https://doi.org/10.3390/v16050749 - 8 May 2024
Cited by 1 | Viewed by 3661
Abstract
During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi’s sarcoma-associated herpesvirus (KSHV) is an [...] Read more.
During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

Back to TopTop