Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Authors = Asif Hussain Khan ORCID = 0000-0002-4337-2889

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 429 KiB  
Article
Corporate Social Responsibility’s Influence on Brand Image in the Automotive Sector: The Corporate Reputation and Product Quality Role
by Mohsen Brahmi, Zahid Hussain, Muhammad Ussama Majeed, Arman Khan, Muhammad Asif Qureshi and Rohit Bansal
Adm. Sci. 2025, 15(4), 121; https://doi.org/10.3390/admsci15040121 - 25 Mar 2025
Cited by 1 | Viewed by 2122
Abstract
This study investigates the impact of perceived corporate social responsibility (CSR) on brand image within the automotive industry. It also examines how company reputation (CR) and product quality (PQ) mediate the relationship between CSR and brand image (BI). Utilizing a sample of 243 [...] Read more.
This study investigates the impact of perceived corporate social responsibility (CSR) on brand image within the automotive industry. It also examines how company reputation (CR) and product quality (PQ) mediate the relationship between CSR and brand image (BI). Utilizing a sample of 243 clients from the Pakistani automotive sector, data were collected through a survey and analyzed using structural equation modeling (SEM) with AMOS version 24.0. The results indicate that perceived CSR positively influences brand image, with both company reputation and product quality acting as significant mediators. This underscores the importance of CSR initiatives for enhancing brand image. The findings have significant implications for auto manufacturers, highlighting the need to integrate CSR into their strategic brand management to improve company reputation, product quality, and, ultimately, brand image. This study expands the conventional understanding of CSR’s impact on consumer perceptions and addresses a critical gap in the literature. Full article
Show Figures

Figure 1

15 pages, 8817 KiB  
Article
Effects of Process Parameters on the Mechanical Properties and Microstructure of Additively Manufactured Carbon Black Particles-Reinforced Thermoplastic Polyurethane Composite Samples
by Fatima Hira, Muhammad Asif, Hammad Ullah, Imran Khan, Ghulam Hussain, Muhammad Amir and Mohammed Alkahtani
Polymers 2025, 17(3), 426; https://doi.org/10.3390/polym17030426 - 6 Feb 2025
Cited by 3 | Viewed by 1058
Abstract
Additive manufacturing (AM) techniques make fabricating complex designs, prototypes, and end-user products possible. Conductive polymer composites find applications in flexible electronics, sensor fabrication, and electrical circuits. In this study, thermoplastic polyurethane (TPU)-based conductive polymer composite samples were fabricated via fused filament fabrication (FFF). [...] Read more.
Additive manufacturing (AM) techniques make fabricating complex designs, prototypes, and end-user products possible. Conductive polymer composites find applications in flexible electronics, sensor fabrication, and electrical circuits. In this study, thermoplastic polyurethane (TPU)-based conductive polymer composite samples were fabricated via fused filament fabrication (FFF). The effects of three important process parameters, including infill density (ID), layer thickness (LT), and fan speed (FS), on various mechanical properties (tensile and compressive properties) were investigated. It was observed that all the considered process parameters affect the mechanical properties, and they are significant parameters, as per the analysis of variance (ANOVA). From scanning electron microscopy (SEM) and optical microscopy, various combinations of parameters such as low ID, high LT, and high FS resulted in the formation of defects such as voids, cracks, and warping, which resulted in low mechanical properties. Finally, process parameter optimization was performed, resulting in a conductive polymer composite with the best possible combination of mechanical properties at high ID, low LT, and medium FS. Full article
Show Figures

Figure 1

13 pages, 5049 KiB  
Article
Quantum Channel Extreme Bandgap AlGaN HEMT
by Michael Shur, Grigory Simin, Kamal Hussain, Abdullah Mamun, M. V. S. Chandrashekhar and Asif Khan
Micromachines 2024, 15(11), 1384; https://doi.org/10.3390/mi15111384 - 15 Nov 2024
Viewed by 1316
Abstract
An extreme bandgap Al0.64Ga0.36N quantum channel HEMT with Al0.87Ga0.13N top and back barriers, grown by MOCVD on a bulk AlN substrate, demonstrated a critical breakdown field of 11.37 MV/cm—higher than the 9.8 MV/cm expected for [...] Read more.
An extreme bandgap Al0.64Ga0.36N quantum channel HEMT with Al0.87Ga0.13N top and back barriers, grown by MOCVD on a bulk AlN substrate, demonstrated a critical breakdown field of 11.37 MV/cm—higher than the 9.8 MV/cm expected for the channel’s Al0.64Ga0.36N material. We show that the fraction of this increase is due to the quantization of the 2D electron gas. The polarization field maintains electron quantization in the quantum channel even at low sheet densities, in contrast to conventional HEMT designs. An additional increase in the breakdown field is due to quantum-enabled real space transfer of energetic electrons into high-Al barrier layers in high electric fields. These results show the advantages of the quantum channel design for achieving record-high breakdown voltages and allowing for superior power HEMT devices. Full article
(This article belongs to the Special Issue RF and Power Electronic Devices and Applications)
Show Figures

Figure 1

23 pages, 956 KiB  
Article
The Influence of Behavioral and ESG Drivers on Consumer Intentions for Online Fashion Renting: A Pathway Toward Sustainable Consumption in China’s Fashion Industry
by Bilal Ahmed, Hatem El-Gohary, Rukaiza Khan, Muhammad Asif Gul, Arif Hussain and Syed Mohsin Ali Shah
Sustainability 2024, 16(22), 9723; https://doi.org/10.3390/su16229723 - 7 Nov 2024
Cited by 1 | Viewed by 2768
Abstract
As the fashion industry faces increasing scrutiny over its environmental impact, collaborative consumption models such as online fashion renting offer potential solutions for fostering sustainability. This study examines the role of environmental, social, and governance (ESG) factors alongside behavioral drivers in shaping consumer [...] Read more.
As the fashion industry faces increasing scrutiny over its environmental impact, collaborative consumption models such as online fashion renting offer potential solutions for fostering sustainability. This study examines the role of environmental, social, and governance (ESG) factors alongside behavioral drivers in shaping consumer intentions toward online fashion renting in China, a model of collaborative consumption that contributes to sustainability by reducing new product demand and promoting the reuse of fashion items. The data was gathered from 403 Chinese customers using a standardized questionnaire. Structural equation modeling (SEM) was used to examine the given study hypotheses. The current study empirically demonstrates that customers’ attitudes, past sustainable behavior, and subjective norms are significant indicators of consumers’ intentions toward online fashion renting. The results further indicate that relative advantage, compatibility, perceived ownership, psychological risk, green self-identity, and experience value are the key drivers of consumers’ attitudes toward online fashion renting. Additionally, the ESG factors were found to have a significant positive impact on consumer attitudes toward online fashion renting, underscoring their importance in driving sustainable consumption patterns. By integrating behavioral and ESG perspectives, the study contributes to the growing discourse on how sustainable consumption patterns can be encouraged within the fashion industry, offering theoretical and managerial implications for fostering sustainable behavior. Directions for future research are also suggested. Full article
(This article belongs to the Special Issue ESG Investing for Sustainable Business: Exploring the Future)
Show Figures

Figure 1

22 pages, 24569 KiB  
Article
Investigation of Novel Transition Metal Loaded Hydrochar Catalyst Synthesized from Waste Biomass (Rice Husk) and Its Application in Biodiesel Production Using Waste Cooking Oil (WCO)
by Laraib Aamir Khan, Rabia Liaquat, Mohammed Aman, Mohammad Kanan, Muhammad Saleem, Asif Hussain khoja, Ali Bahadar and Waqar Ul Habib Khan
Sustainability 2024, 16(17), 7275; https://doi.org/10.3390/su16177275 - 23 Aug 2024
Cited by 2 | Viewed by 2381
Abstract
The decarbonization of transportation plays a crucial role in mitigating climate change, and biodiesel has emerged as a promising solution due to its renewable and eco-friendly nature. However, in order to maintain the momentum of the “green trend” and ensure energy security, an [...] Read more.
The decarbonization of transportation plays a crucial role in mitigating climate change, and biodiesel has emerged as a promising solution due to its renewable and eco-friendly nature. However, in order to maintain the momentum of the “green trend” and ensure energy security, an ecologically friendly pathway is important to produce efficient biodiesel. In this work, activated carbon (AC) obtained from rice husk (RH) is hydrothermally prepared and modified through cobalt transition metal for catalyst support for the transesterification process. The physicochemical characteristics of the synthesized catalysts are examined using XRD, FTIR, SEM and EDS, TGA, and BET, while the produced biodiesel is also characterized using Gas Chromatography and Mass Spectroscopy (GC-MS). To optimize the transesterification process, Fatty Acid Methyl Esters (FAME) are produced by the conversion of waste cooking oil. Response Surface Methodology (RSM) is used to validate temperature (75 °C), the methanol-to-oil molar ratio (1:9), catalyst weight percentage (2 wt.%), and retention time (52.5 min). The highest conversion rate of waste cooking oil (WCO) to biodiesel was recorded at 96.3% and tested as per American Society for Testing and Materials (ASTM) standards. Based on the results, it is clear that cobalt-loaded rice husk-based green catalyst (RHAC-Co) enhanced catalytic activity and yield for biodiesel production. Further research should focus on engine performance evaluation and scaling up of the catalyst by optimizing it for the industrial scale. Full article
Show Figures

Figure 1

28 pages, 5922 KiB  
Article
Pharmacognostic Evaluation, Chemical Characterization, and Antibacterial Activity of Bassia indica (Wight) A.J. Scott
by Fayyaz Anjum, Saad Touqeer, Muhammad Younus Khan, QurratUlAin Jamil, Ayesha Rida, Jafir Hussain Shirazi, Syeda Abida Ejaz, Hafiz Muhammad Attaullah, Ghulam Sarwar, Zaeem Hayat Khan, Muhammad Asif Wazir, Barizah Malik, Mohammed Aufy and Shahid Muhammad Iqbal
Plants 2024, 13(13), 1753; https://doi.org/10.3390/plants13131753 - 25 Jun 2024
Cited by 3 | Viewed by 3477
Abstract
Bassia indica (Wight) A.J. Scott is an Indian origin plant with documented medicinal and nutritional value, but has not been fully characterized yet. The present study was designed to establish pharmacognostic standards for the proper identification of the B. indica plant and its [...] Read more.
Bassia indica (Wight) A.J. Scott is an Indian origin plant with documented medicinal and nutritional value, but has not been fully characterized yet. The present study was designed to establish pharmacognostic standards for the proper identification of the B. indica plant and its chemical characterization. The plant was standardized with World Health Organization (WHO) standardization tools and chemically characterized by Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GC-MS) analysis. Antibacterial potential was assessed by the zone of inhibition and minimum inhibitory concentration (MIC), and molecular docking studies were also performed. Pharmacognostic evaluation established the macroscopic and microscopic parameters for the identification of whole plant and its powder. Physicochemical parameters were also set forth while quantitative phytochemical analysis showed that the ethyl acetate fraction had the highest quantity of phenols, flavonoids, and tannins. FTIR analysis showed several functional groups such as phenols, alkanes, and alcohols while 55 phytochemicals were identified in the GC-MS analysis of the crude fraction. The crude extract and other fractions showed marked antibacterial activity, while the ethyl acetate fraction showed the least MIC (1.95–31.25 mg/mL). Phytochemicals identified in the GC-MS showed good molecular docking interactions against the DNA gyrase subunit B of bacteria with binding energies ranging from −4.2 to −9.4 kcal/mol. The current study describes the pharmacognostic characterization and phytochemical profiling of B. indica and provides scientific evidence to support its use in infections. Full article
(This article belongs to the Special Issue Phytochemistry and Pharmacological Properties of Medicinal Plants)
Show Figures

Graphical abstract

14 pages, 6487 KiB  
Article
A Novel Rotor Harmonic Winding Configuration for the Brushless Wound Rotor Synchronous Machine
by Farhan Arif, Arsalan Arif, Qasim Ali, Asif Hussain, Abid Imran, Mukhtar Ullah and Asif Khan
World Electr. Veh. J. 2024, 15(6), 226; https://doi.org/10.3390/wevj15060226 - 23 May 2024
Cited by 2 | Viewed by 1894
Abstract
In the last decade, permanent magnet (PM)-free or hybrid PM machines have been extensively researched to find an alternative for high cost rare-earth PM machines. Brushless wound rotor synchronous machines (BL-WRSMs) are one of the alternatives to these PM machines. BL-WRSMs have a [...] Read more.
In the last decade, permanent magnet (PM)-free or hybrid PM machines have been extensively researched to find an alternative for high cost rare-earth PM machines. Brushless wound rotor synchronous machines (BL-WRSMs) are one of the alternatives to these PM machines. BL-WRSMs have a lower torque density compared to PM machines. In this paper, a new topology is introduced to improve the torque producing capability of the existing BL-WRSM by utilizing the vacant spaces in the rotor slots. The new topology has two harmonic windings placed on the rotor which induce separate currents. A capacitor is used between the two harmonic windings to bring the currents in phase with each other. The harmonic winding currents are fed to the rectifier which is also placed on the rotor. Due to additional harmonic winding, the overall field current fed to the rotor field winding has been increased and hence the average torque has also increased. Finite element analysis (FEA)-based simulations are performed using ANSYS Maxwell to validate the proposed topology. The results show that the average torque of the machine has been significantly increased compared to the reference model. The detailed comparison results are provided in this paper. Full article
Show Figures

Figure 1

20 pages, 5933 KiB  
Article
Curcumin Co-Encapsulation Potentiates Anti-Arthritic Efficacy of Meloxicam Biodegradable Nanoparticles in Adjuvant-Induced Arthritis Animal Model
by Bilal Aslam, Asif Hussain, Muhammad Naeem Faisal, Zia-ud-Din Sindhu, Rifat Ullah Khan, Ibrahim A. Alhidary, Shabana Naz and Vincenzo Tufarelli
Biomedicines 2023, 11(10), 2662; https://doi.org/10.3390/biomedicines11102662 - 28 Sep 2023
Cited by 8 | Viewed by 2908
Abstract
This study aimed to evaluate the anti-arthritic activity of curcumin and meloxicam co-loaded PLGA nanoparticles in adjuvant-induced arthritic rats. PLGA nanoparticles encapsulating curcumin (nCur) and meloxicam (nMlx) alone and in combination (nCur/Mlx) were used to characterize zeta size and potential, polydispersity index, encapsulation [...] Read more.
This study aimed to evaluate the anti-arthritic activity of curcumin and meloxicam co-loaded PLGA nanoparticles in adjuvant-induced arthritic rats. PLGA nanoparticles encapsulating curcumin (nCur) and meloxicam (nMlx) alone and in combination (nCur/Mlx) were used to characterize zeta size and potential, polydispersity index, encapsulation efficiency (%), compound–polymer interactions (FT-IR analysis), and surface morphology (SEM imaging). In vivo, Complete Freund’s adjuvant-induced arthritic rats were intraperitoneally (i.p.) administered with curcumin, meloxicam, curcumin plus meloxicam, nCur, nMlx, and nCur/Mlx for 28 consecutive days. Results showed that nCur, nMlx, and nCur/Mlx significantly (p ≤ 0.05) reduced paw swelling and arthritic score, restored body weight and the immune organ index (thymus and spleen), as well as attenuated serum inflammatory markers (RF, CRP, and PGE2) and oxidative stress parameters (MDA, SOD, and CAT) in adjuvant-induced arthritic rats compared to free compounds. In addition, mono- and dual-compound-loaded nanoparticles significantly (p ≤ 0.05) down-regulated pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), up-regulated anti-inflammatory cytokines (IL-4, IL-10, and IFN-γ), and modulated OPG and RANKL expressions in paw tissue. The aforementioned results were further confirmed through radiological and histopathological examinations. Furthermore, the anti-arthritic effect of nCur/Mlx was notably (p ≤ 0.05) enhanced compared to nCur or nMlx alone. In conclusion, the co-nanoencapsulation of curcumin could potentiate the anti-arthritic activity of meloxicam and could provide a novel therapeutic approach for the formulation of nanocarrier pharmaceutical products for the management of arthritis. Full article
(This article belongs to the Special Issue Health-Related Applications of Natural Molecule Derived Structures)
Show Figures

Figure 1

17 pages, 5269 KiB  
Article
Anti-Pyretic, Analgesic, and Anti-Inflammatory Activities of Meloxicam and Curcumin Co-Encapsulated PLGA Nanoparticles in Acute Experimental Models
by Bilal Aslam, Asif Hussain, Muhammad Usman Bari, Muhammad Naeem Faisal, Zia ud Din Sindhu, Rasha Alonaizan, Rasha K. Al-Akeel, Shabana Naz and Rifat Ullah Khan
Metabolites 2023, 13(8), 935; https://doi.org/10.3390/metabo13080935 - 10 Aug 2023
Cited by 11 | Viewed by 2263
Abstract
Herein, we evaluated the in vivo effects of meloxicam and curcumin co-encapsulated PLGA nanoparticles in experimental acute models of pyrexia, nociception, and inflammation. Seven groups (n = 6) were designed for each investigation and pretreated intraperitoneally (i.p.): the control group, meloxicam (4 [...] Read more.
Herein, we evaluated the in vivo effects of meloxicam and curcumin co-encapsulated PLGA nanoparticles in experimental acute models of pyrexia, nociception, and inflammation. Seven groups (n = 6) were designed for each investigation and pretreated intraperitoneally (i.p.): the control group, meloxicam (4 mg/kg b.w.), curcumin (15 mg/kg b.w.), and equivalent content containing PLGA capped nanoparticles of meloxicam (Mlx-NP) and curcumin (Cur-NP) alone and in combination (Mlx-Cur-NP; at two doses). The results showed that PLGA encapsulation significantly (p ≤ 0.05) improved the in vivo activities of each compound. Furthermore, co-encapsulation of meloxicam and curcumin potentiated the anti-pyretic effect on yeast-induced pyretic rats, anti-nociceptive effect on nociception induced in rats by formalin and heat, and anti-edematogenic activity in xylene-induced ear edema in rats in a dose-dependent manner. In carrageenan-induced paw inflammation in rats, meloxicam and curcumin co-loading (Mlx-Cur-NP) resulted in significant (p ≤ 0.05) inhibition of paw inflammation, reduction in TNF-α and PGE2 levels, downregulation of expressions of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), as well as a decrease in histopathological changes and TNF-α immunoexpression in paw tissues. Moreover, Mlx-Cur-NP demonstrated noteworthy potentiation in pharmacological effects compared to free compounds and mono-compound-loaded nanoparticles. Thus, the association of meloxicam with curcumin in a biodegradable nanocarrier system could provide a promising anti-pyretic, anti-nociceptive, and anti-inflammatory therapeutic approach for acute conditions. Full article
Show Figures

Figure 1

13 pages, 3816 KiB  
Article
Antibacterial and Antibiofilm Activity of Ficus carica-Mediated Calcium Oxide (CaONPs) Phyto-Nanoparticles
by Asif Ullah Khan, Tahir Hussain, Abdullah, Mubarak Ali Khan, Mervt M. Almostafa, Nancy S. Younis and Galal Yahya
Molecules 2023, 28(14), 5553; https://doi.org/10.3390/molecules28145553 - 20 Jul 2023
Cited by 25 | Viewed by 4135
Abstract
The significance of nanomaterials in biomedicines served as the inspiration for the design of this study. In this particular investigation, we carried out the biosynthesis of calcium oxide nanoparticles (CaONPs) by employing a green-chemistry strategy and making use of an extract of Ficus [...] Read more.
The significance of nanomaterials in biomedicines served as the inspiration for the design of this study. In this particular investigation, we carried out the biosynthesis of calcium oxide nanoparticles (CaONPs) by employing a green-chemistry strategy and making use of an extract of Ficus carica (an edible fruit) as a capping and reducing agent. There is a dire need for new antimicrobial agents due to the alarming rise in antibiotic resistance. Nanoparticles’ diverse antibacterial properties suggest that they might be standard alternatives to antimicrobial drugs in the future. We describe herein the use of a Ficus carica extract as a capping and reducing agent in the phyto-mediated synthesis of CaONPs for the evaluation of their antimicrobial properties. The phyto-mediated synthesis of NPs is considered a reliable approach due to its high yield, stability, non-toxicity, cost-effectiveness and eco-friendliness. The CaONPs were physiochemically characterized by UV-visible spectroscopy, energy-dispersive X-ray (EDX), scanning-electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The biological synthesis of the calcium oxide nanoparticles revealed a characteristic surface plasmon resonance peak (SPR) at 360 nm in UV-Vis spectroscopy, which clearly revealed the successful reduction of the Ca2+ ions to Ca0 nanoparticles. The characteristic FTIR peak seen at 767 cm−1 corresponded to Ca-O bond stretching and, thus, confirmed the biosynthesis of the CaONPs, while the scanning-electron micrographs revealed near-CaO aggregates with an average diameter of 84.87 ± 2.0 nm. The antibacterial and anti-biofilm analysis of the CaONPs showed inhibition of bacteria in the following order: P. aeruginosa (28 ± 1.0) > S. aureus (23 ± 0.3) > K. pneumoniae (18 ± 0.9) > P. vulgaris (13 ± 1.6) > E. coli (11 ± 0.5) mm. The CaONPs were shown to considerably inhibit biofilm formation, providing strong evidence for their major antibacterial activity. It is concluded that this straightforward environmentally friendly method is capable of synthesizing stable and effective CaONPs. The therapeutic value of CaONPs is indicated by their potential as a antibacterial and antibiofilm agents in future medications. Full article
(This article belongs to the Special Issue Advances in Potential Bioapplications of Functional Nanomaterials)
Show Figures

Figure 1

14 pages, 4672 KiB  
Article
Heat Transfer Enhancement in Cooling Jacket of Liquid Cooled Spark Ignition Engine
by Faisal Mehmood, Hussain Ahmed Tariq, Muhammad Anwar, Hassan Elahi, Muhammad Raheel Bhutta, Talha Irfan Khan, Asif Israr, Muhammad Umer, Usama Waleed Qazi and Usman Ghafoor
Energies 2023, 16(13), 5126; https://doi.org/10.3390/en16135126 - 3 Jul 2023
Viewed by 2291
Abstract
Thermal stresses due to long running of spark ignition engine often results in wear and tear of cylinder near the top dead center (TDC). These high thermal stresses at TDC arise due to the high temperature gradient during spark ignition. This situation eventually [...] Read more.
Thermal stresses due to long running of spark ignition engine often results in wear and tear of cylinder near the top dead center (TDC). These high thermal stresses at TDC arise due to the high temperature gradient during spark ignition. This situation eventually decreases the life and efficiency of an engine. In this study, the numerical and analytical analysis was carried out on 1298 cc in line four stroke spark ignition (SI) engine having a power output of 63 kW to drop the peak temperature at TDC. to reduce the peak value of temperature, square pin fins were used on the surface of engine cylinder wall near TDC. A parametric study is performed to get an optimal solution for removal of the peak temperature load at TDC. The results showed that the fins with dimension of 4 × 4 × 4 mm3 along with uniform spacing of 2 mm provide the optimum solution. It has been observed that the peak temperature at TDC dropped down considerably from 160 °C to 133 °C (a percentage reduction of 16.87%) for the pin fins case as compared to without the fin case. Furthermore, the heat transfer effectiveness for the optimum case was calculated as 3.32, whereas for numerical and analytical study it was calculated as 3.43. The error recorded between both the values was limited to 3.2%. Full article
(This article belongs to the Topic Advanced Engines Technologies)
Show Figures

Figure 1

19 pages, 6573 KiB  
Article
Kinetin Capped Zinc Oxide Nanoparticles Improve Plant Growth and Ameliorate Resistivity to Polyethylene Glycol (PEG)-Induced Drought Stress in Vigna radiata (L.) R. Wilczek (Mung Bean)
by Maham Ajmal, Rehman Ullah, Zahir Muhammad, Muhammad Nauman Khan, Hussain Ahmad Kakar, Alevcan Kaplan, Mohammad K. Okla, Ibrahim A. Saleh, Asif Kamal, Abdullah Abdullah and Sarah Abdul Razak
Molecules 2023, 28(13), 5059; https://doi.org/10.3390/molecules28135059 - 28 Jun 2023
Cited by 23 | Viewed by 2918
Abstract
Plants are sessile and mostly exposed to various environmental stresses which hamper plant growth, development, and significantly decline its production. Drought stress is considered to be one of the most significant limiting factors for crop plants, notably in arid and semi-arid parts the [...] Read more.
Plants are sessile and mostly exposed to various environmental stresses which hamper plant growth, development, and significantly decline its production. Drought stress is considered to be one of the most significant limiting factors for crop plants, notably in arid and semi-arid parts the world. Therefore, the present study aimed to evaluate the potential impact of different concentrations (10, 100, and 200 µg/mL) of kinetin capped zinc oxide nanoparticles (Kn-ZnONPs) on Vigna radiata (L.) R. Wilczek under varying levels (5%, 10%, 15%) of PEG-induced drought stress. ZnONPs were synthesized by a co-precipitation method using Zinc acetate as a precursor at pH-12, incinerated to 500 °C, and kinetin was used as a surface functionalizing agent. The resulting Kn-ZnONPs were characterized by various contemporary analytical techniques, including SEM, SEM-EDS, XRD, DLS, and Zeta potential and IR spectroscopy. Crystalline Kn-ZnONPs, with a zeta potential of 27.8 mV and a size of 67.78 nm, of hexagonal wurtzite structure and vibrational stretches associated with N-H, C-O, C-N, etc., were confirmed. PEG-induced drought stress significantly reduced the growth of V. radiata by declining the chlorophyll and carotenoid contents. Moreover, a significant decrease in the levels of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), soluble sugar contents, proline, protein contents, phenol, and tannin were observed compared to the control. However, the exogenous application of Kn-ZnONPs ameliorated all photosynthetic parameters by up-regulating the antioxidant defense system through the promotion of SOD, POD, CAT, and lipid peroxidation levels. The biochemical parameters, such as proteins, soluble sugars, and proline, were observed to be maximum in plants treated with 200 µg/mL Kn-ZnONPs under 5% drought stress. The application of Kn-ZnONPs also enhanced the total phenol contents, flavonoid, and tannin contents. In conclusion, the findings of this study demonstrate that the exogenous application of Kn-ZnONPs provides beneficial effects to V. radiata by attenuating the damaging effects of drought stress through the up-regulation of the antioxidant defense system and osmolytes. These results suggest that Kn-ZnONPs have potential as a novel approach to improve crop productivity under drought stress conditions. Full article
(This article belongs to the Special Issue Molecular Effects of Metal Nanoparticles on Plant Growth)
Show Figures

Figure 1

17 pages, 4805 KiB  
Article
Hot Water Treatment Improves Date Drying and Maintains Phytochemicals and Fruit Quality Characteristics of Date Palm (Phoenix dactylifera)
by Jianhui Li, Imtiaz Hussain, Muhammad Azam, Muhammad Arslan Khan, Muhammad Tahir Akram, Khalid Naveed, Muhammad Asif, Naveeda Anjum, Jiaoke Zeng, Jiukai Zhang and Hongru Liu
Foods 2023, 12(12), 2405; https://doi.org/10.3390/foods12122405 - 18 Jun 2023
Cited by 10 | Viewed by 2983
Abstract
Fresh date fruits (cvs. Hillawi and Khadrawi) were harvested at the khalal stage and treated with hot water treatment (HWT) for different time durations (control, HWT-1 min, HWT-3 min, HWT-5 min, and HWT-7 min) to investigate the physicochemical characteristics, phytochemical properties, and sensory [...] Read more.
Fresh date fruits (cvs. Hillawi and Khadrawi) were harvested at the khalal stage and treated with hot water treatment (HWT) for different time durations (control, HWT-1 min, HWT-3 min, HWT-5 min, and HWT-7 min) to investigate the physicochemical characteristics, phytochemical properties, and sensory attributes. The results revealed that both date cultivars took less time to reach the tamar stage in response to HWT-7 min compared to control. However, Hillawi date fruit showed a higher fruit ripening index (75%) at HWT-3 min, while Khadrawi fruit had a higher ripening index (80%) at HWT-5 min than untreated fruit (10%). Higher weight loss and lower moisture contents were observed in Hillawi (25%) and Khadrawi (20%) date fruit as the immersion period increased in both cultivars. Moreover, soluble solid content was higher in Hillawi (11.77° Brix) in response to HWT-3 min and Khadrawi (10.02° Brix) date fruit immersed in HWT-5 min in contrast with the control group, whereas significantly lower levels of titratable acidity and ascorbic acid content were observed in Hillawi (0.162%, 0.67 mg/100 g) and Khadrawi (0.206%, 0.73 mg/100 g) date fruit in response to HWT (HWT-1 min, HWT-3 min, HWT-5 min, and HWT-7 min) than untreated fruit. Furthermore, noticeably higher levels of reducing sugar (69.83%, 57.01%), total sugar (34.47%, 31.14%), glucose (36.84%, 29.42%), fructose (33.99%, 27.61%), and sucrose (3.16%, 1.33%) were found in hot water-treated Hillawi (immersed for 3-min) and Khadrawi (immersed for 5-min) date fruit, respectively. In addition, total phenolic content, total flavonoids, total antioxidants, and total tannins were substantially superior in date fruits subjected to HWT-3 min (in Hillawi, 128 mg GAE/100 g, 61.78%, 20.18 mg CEQ/100 g) and HWT-5 min (in Khadrawi, 139.43 mg GAE/100 g, 72.84%, and 18.48 mg CEQ/100 g) compared to control. Overall, sensory attributes were recorded to be higher in Hillawi and Khadrawi date fruit after treatment for 3 min and 5 min, respectively. Our findings suggest that HWT is a promising technique that can be adopted commercially to improve fruit ripening and preserved nutritional quality of dates after harvest. Full article
(This article belongs to the Special Issue Post-harvest Quality Control of Fruits and Vegetables)
Show Figures

Figure 1

16 pages, 3998 KiB  
Article
Lightweight Implicit Blur Kernel Estimation Network for Blind Image Super-Resolution
by Asif Hussain Khan, Christian Micheloni and Niki Martinel
Information 2023, 14(5), 296; https://doi.org/10.3390/info14050296 - 18 May 2023
Cited by 1 | Viewed by 4023
Abstract
Blind image super-resolution (Blind-SR) is the process of leveraging a low-resolution (LR) image, with unknown degradation, to generate its high-resolution (HR) version. Most of the existing blind SR techniques use a degradation estimator network to explicitly estimate the blur kernel to guide the [...] Read more.
Blind image super-resolution (Blind-SR) is the process of leveraging a low-resolution (LR) image, with unknown degradation, to generate its high-resolution (HR) version. Most of the existing blind SR techniques use a degradation estimator network to explicitly estimate the blur kernel to guide the SR network with the supervision of ground truth (GT) kernels. To solve this issue, it is necessary to design an implicit estimator network that can extract discriminative blur kernel representation without relying on the supervision of ground-truth blur kernels. We design a lightweight approach for blind super-resolution (Blind-SR) that estimates the blur kernel and restores the HR image based on a deep convolutional neural network (CNN) and a deep super-resolution residual convolutional generative adversarial network. Since the blur kernel for blind image SR is unknown, following the image formation model of blind super-resolution problem, we firstly introduce a neural network-based model to estimate the blur kernel. This is achieved by (i) a Super Resolver that, from a low-resolution input, generates the corresponding SR image; and (ii) an Estimator Network generating the blur kernel from the input datum. The output of both models is used in a novel loss formulation. The proposed network is end-to-end trainable. The methodology proposed is substantiated by both quantitative and qualitative experiments. Results on benchmarks demonstrate that our computationally efficient approach (12x fewer parameters than the state-of-the-art models) performs favorably with respect to existing approaches and can be used on devices with limited computational capabilities. Full article
(This article belongs to the Special Issue Computer Vision, Pattern Recognition and Machine Learning in Italy)
Show Figures

Figure 1

15 pages, 1543 KiB  
Article
EDTA and IAA Ameliorates Phytoextraction Potential and Growth of Sunflower by Mitigating Cu-Induced Morphological and Biochemical Injuries
by Naila Shah, Muhammad Irshad, Anwar Hussain, Muhammad Qadir, Waheed Murad, Asif Khan, Muhammad Awais, Abdulwahed Fahad Alrefaei and Sajid Ali
Life 2023, 13(3), 759; https://doi.org/10.3390/life13030759 - 10 Mar 2023
Cited by 14 | Viewed by 2397
Abstract
As an essential micronutrient, copper is vital for normal growth and development of plants, however, its accumulation in soil exerts a severe negative impact on the agronomic characteristics and yield of the crop plants. Phytoextraction is a low-cost method for restoring soil fertility [...] Read more.
As an essential micronutrient, copper is vital for normal growth and development of plants, however, its accumulation in soil exerts a severe negative impact on the agronomic characteristics and yield of the crop plants. Phytoextraction is a low-cost method for restoring soil fertility and avoiding losses due to heavy metal contamination. We found that using EDTA and IAA together improved sunflower hyperaccumulation capacity. Sunflowers were cultivated under various levels of Cu (0 (control), 25, 50, and 75 mg/kg of soil) and treated with EDTA alone or combined with IAA. The results revealed that the amended treatment significantly enhanced the absorption and accumulation of Cu in the sunflowers. Furthermore, the various doses of Cu significantly reduced the root and shoot growth of sunflowers in a concentration-dependent manner by impairing the chlorophyll content, hormones (indole 3-acetic acid, salicylic acid, and gibberellic acid), flavonoids, phenolics, and antioxidant response. The injurious effect of Cu was reduced by the addition of EDTA alone, and the supplementation of IAA led to a significant restoration of shoot growth (~70%) and root growth (~13%) as compared to the plant treated with Cu alone. Moreover, significantly higher levels of chlorophyll content, GA3, endogenous IAA, and flavonoids were recorded, indicating the effectiveness of the treatment in ameliorating plant health. The results also showed considerable restoration of the catalase and ascorbate peroxidase activities in plants treated with EDTA and IAA. These results are suggestive that application of EDTA and IAA enhances the Cu absorption potential of sunflower and increases its tolerance to copper, which may not only serve as a better technique for phytoextraction of Cu, but also to bring Cu contaminated soil under cultivation. Full article
(This article belongs to the Special Issue Plant Biotic and Abiotic Stresses)
Show Figures

Figure 1

Back to TopTop