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Abstract: Plants are sessile and mostly exposed to various environmental stresses which hamper
plant growth, development, and significantly decline its production. Drought stress is considered
to be one of the most significant limiting factors for crop plants, notably in arid and semi-arid
parts the world. Therefore, the present study aimed to evaluate the potential impact of different
concentrations (10, 100, and 200 µg/mL) of kinetin capped zinc oxide nanoparticles (Kn-ZnONPs)
on Vigna radiata (L.) R. Wilczek under varying levels (5%, 10%, 15%) of PEG-induced drought stress.
ZnONPs were synthesized by a co-precipitation method using Zinc acetate as a precursor at pH-12,
incinerated to 500 ◦C, and kinetin was used as a surface functionalizing agent. The resulting Kn-
ZnONPs were characterized by various contemporary analytical techniques, including SEM, SEM-
EDS, XRD, DLS, and Zeta potential and IR spectroscopy. Crystalline Kn-ZnONPs, with a zeta
potential of 27.8 mV and a size of 67.78 nm, of hexagonal wurtzite structure and vibrational stretches
associated with N-H, C-O, C-N, etc., were confirmed. PEG-induced drought stress significantly
reduced the growth of V. radiata by declining the chlorophyll and carotenoid contents. Moreover,
a significant decrease in the levels of superoxide dismutase (SOD), peroxidase (POD), catalase
(CAT), ascorbate peroxidase (APX), soluble sugar contents, proline, protein contents, phenol, and
tannin were observed compared to the control. However, the exogenous application of Kn-ZnONPs
ameliorated all photosynthetic parameters by up-regulating the antioxidant defense system through
the promotion of SOD, POD, CAT, and lipid peroxidation levels. The biochemical parameters, such as
proteins, soluble sugars, and proline, were observed to be maximum in plants treated with 200 µg/mL
Kn-ZnONPs under 5% drought stress. The application of Kn-ZnONPs also enhanced the total phenol
contents, flavonoid, and tannin contents. In conclusion, the findings of this study demonstrate that
the exogenous application of Kn-ZnONPs provides beneficial effects to V. radiata by attenuating the
damaging effects of drought stress through the up-regulation of the antioxidant defense system and
osmolytes. These results suggest that Kn-ZnONPs have potential as a novel approach to improve
crop productivity under drought stress conditions.
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1. Introduction

Drought is a major stress factor that significantly impacts agricultural productivity,
leading to severe economic losses and food insecurity worldwide. According to the Food
and Agriculture Organization (FAO), droughts are responsible for over 80% of crop losses
in developing countries, resulting in an estimated annual global economic loss of over
6 billion USD [1]. The available literature highlights the significant impact of drought on
agricultural productivity and the associated economic losses. Mishra et al. [2] showed that
drought has a significant negative impact on crop yields in several countries, including
Pakistan. Baloch et al. [3] highlighted the negative impact of drought on wheat produc-
tivity in Pakistan, with yield reductions of up to 50% reported during drought periods.
Pakistan, being an agrarian economy, is particularly vulnerable to the impact of drought
on agriculture. The country has experienced several droughts in the past, with the most
recent being the severe drought of 2018–2019, which led to a decline in crop yields and
agricultural productivity, affecting the livelihoods of millions of people [4]. Drought is
a significant challenge for Pakistan’s agriculture sector, which is already facing several
other challenges such as water scarcity, low productivity, and climate change impacts [5].
Agriculture contributes around 18.9% to Pakistan’s GDP and provides employment to
over 40% of its labor force [6]. Droughts in Pakistan result in lower crop yields and a
decrease in livestock productivity, affecting the country’s exports of agricultural products
and increasing food insecurity [7]. Estimates suggest that droughts cost Pakistan around
1.8 billion USD annually [8]. Environmental changes drastically affect the natural system,
human health, and agricultural productivity, especially in the developing world [9]. Biotic
and abiotic stresses caused by environmental variations have deleterious effects on the
agriculture of a region. Environmental changes affecting the lands and agriculture include
the rise in average temperature, changes in the pattern of annual rainfall, heat waves,
global variation in atmospheric carbon dioxide level, and fluctuation in sea level [10].
Drought stress poses a significant threat to the process of germination and the growth of
seedlings. It negatively impacts the levels of photosynthetic pigments, the functionality of
membranes, and the activity of enzymes, ultimately leading to a considerable decline in
crop yield. Specifically, the vegetative phase and the initial flowering stage of development
are particularly vulnerable to these adverse effects [11,12]. The accumulation of ROS in
plant parts leads to osmotic stress, negatively affecting the cellular transport system and
causing porosity in cell membrane structure due to lipid peroxidation. Drought stress
impairs plastid structure and negatively affects the photosynthetic system of plants [13].

Nanotechnology has the potential to mitigate environmental changes’ deleterious
effect on crop production and play a crucial role in promoting the agricultural industry [14].
Nanoparticles, fabricated at a size of 1 to 100 nm, have unique and inspiring properties
due to their small size and large surface-to-volume ratios [15,16]. Nanoparticle-based plant
transformation technology offers a more efficient way to genetically modify plants com-
pared to traditional methods. Nanoparticles, due to their small size, effectively transport
foreign substances into plant cells while safeguarding them from degradation. Moreover,
nanoparticles provide a novel approach for crop protection against specific agricultural
issues [17,18]. Plants can uptake nanoparticles through various pathways, such as stomata,
root hairs, and leaf surface cracks. Once inside the plant, nanoparticles can move through
diffusion, bulk flow, and phloem loading. Several factors, including particle size, shape,
surface properties, solution pH, and the presence of other substances, influence the trans-
port of nanoparticles. Previous studies have employed different application methods, such
as leaf spraying, root application, branch injection, and seed treatment, confirming the
uptake of nanoparticles by plants [18,19]. Several types of nanoparticles, including silver,
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gold, platinum, titanium, cerium oxide, and zinc oxide nanoparticles, have numerous
applications in different fields, including agriculture [20,21]. Among these nanoparticles,
zinc oxide (ZnONPs) is of great interest due to its wide range of applications and has been
utilized in various fields of biological science and agriculture [22]. ZnONPs are reported
to be the most exploit metallic nanoparticles as they have numerous applications in the
semiconductor industry, agriculture, and the biomedical field [21]. The antibacterial po-
tential, antifungal efficacy, catalytic, UV-filtering properties, and role in pharmaceutical
and cosmetic industries of ZnONPs are also well documented [23–25]. However, the use
of kinetin-caped zinc oxide nanoparticles (Kn-ZnONPs) has not been reported previously.
Kinetin is considered the most important cytokines which has the potential to improve
germination, plant growth, and various physio-chemical process occurring in the plant
via a signal transduction system mitigate cell division and regulate the functions of those
enzymes which transport sugar and reduce nitrates [26,27]. Kinetin also promotes embryo-
genesis and improves the meristems of new growing roots and shoots, enhances nodule
formation, and increases the number of young roots [28].

The current study is aimed at the application of Kn-ZnONPs as a stress mitigation
agent and seeks to investigate the potential application of Kn-ZnONPs in ameliorating the
tolerance level of mung beans to PEG-based drought stress.

2. Results
2.1. Characterization of Kn-ZnONPs

To investigate the morphology, size and size distribution, surface charge, crystalline
structure, and functional groups involved in the synthesis of Kn-ZnONPs, a contemporary
technique was utilized. SEM and TEM analysis of Kn-ZnONPs showed polydispersion in
size, ranging from 30–92 nm with spherical morphology (Figure 1A–D). The EDX analysis
of Kn-ZnONPs elucidated the signals of elemental zinc at 2.1 keV due to the SPR band,
validating the existence of core zinc in Kn-ZnONPs (Figure 1E). DLS spectrogram revealed
a unimodel size distribution with a mean hydrodynamic size of 53.2 nm and a zeta potential
of 18.7 mV (Figure 2). The FT-IR spectra of Kn-ZnONPs showed the presence of functional
groups such as C=C stretching (α, β unsaturated ketone), N-H stretching (secondary
amine), C-H stretching (alkane, methyl group), strong O-H stretching, N-C bending (amine),
N=C stretching (oxime), C-H bending (aromatic), and C-O stretching (aromatic ester)
depicted characteristic bands at 1619.12 cm−1, 3252.96 cm−1, 3197.19 cm−1, 3020.21 cm−1,
1068.65 cm−1, 1640–16901cm−1, 1893.26 cm−1, and 1251.81 cm−1, respectively, confirming
the capping of kinetin on core zinc oxide nanoparticles (Figure 3). The crystalline structure
of Kn-ZnONPs was determined via X-ray diffraction (XRD) technique. The analysis of
Kn-ZnONPs showed characteristic peaks at 31.71◦, 36.24◦, 47.34◦, 56.52◦, 62.69◦, and 67.76◦,
correspond to Bragg’s planes of (100), (101), (102), (110), (103), and (200) (Figure 4), and
confirming hexagonal wurtzite lattice geometry. The Scherrer’s equation was applied to
calculate the average size (24.27 nm) of Kn-ZnONPs by determining the full width at half
maximum (FWHM) of the (101) Bragg’s reflection.

2.2. Effect of Kn-ZnONPs on Seed Germination and Agronomic Profile

The application of PEG-induced drought significantly decreased the germination per-
centage (94.5%), germination index (37.2), mean daily germination (19.3), and coefficient of
velocity germination (0.31) of mung beans, while the application of Kn-ZnONPs mitigated
the adverse effect of PEG-induced drought stress (Figures 5 and 6). The mean germination
duration decreased in seeds treated with different concentrations of Kn-ZnONPs. The
effect of different concentrations of Kn-ZnONPs on germination percentage and mean
daily germination (MDG) was the same (100% and 50%, respectively), while the mean
germination time (MGT), germination index (GI), and coefficient of velocity germination
(CVG) (1.16, 57.6, and 79, respectively) were dose-dependent, as the seeds treated with
the maximum concentration of Kn-ZnONPs (200 µg/mL) had the minimum MGT, while
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the GI and CVG values increased with increasing the concentration of Kn-ZnONPs under
different levels of PEG-based drought stress (Figures 5 and 6).
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Figure 6. Showing the impact of priming of various doses of Kn-ZnONPs on various germination
indices (MGT and Co-VG) of V. radiata grown under different levels of PEG-induced drought stress.

The effects of Kn-ZnONPs on vegetative performance of V. radiata under varying levels
of PEG-induced drought stress was analyzed by measuring shoot and root lengths and
shoot and root fresh/dry biomasses. The results showed that foliar application with higher
concentrations of Kn-ZnONPs generally resulted in better growth compared to the plants
without Kn-ZnONPs. Specifically, the treatment with Kn-ZnONPs at 10 µg/mL had the
highest shoot length (36 cm) under 15% PEG-based drought stress, while plants exposed
to 15% PEG stress alone had the lowest (28 cm) shoot length. Moreover, the maximum
mean shoot fresh biomass of 1.86 g was obtained from the plants treated with 100 µg/mL
of Kn-ZnONPs and 5% PEG, while the lowest (1.18 g) was recorded in plants under 15%
PEG-based stress. Foliar application of plants with 10µg/mL of Kn-ZnONPs at 15% PEG
stress had the highest shoot dry mass (0.22 g), while the lowest (0.1 g) occurred in plants
without Kn-ZnONPs under 15% PEG stress (Figure 7). For root length, the highest value
(8.93 cm) was obtained from plants under 15% PEG drought stress treated with 100 µg/mL
of foliar spray of Kn-ZnONPs, while the lowest (6.73 cm) was observed with 10 µg/mL
of Kn-ZnONPs and 10% PEG stress. Similarly, the lowest (0.39 g) root fresh biomass was
recorded in plants under 10% PEG stress treated with 10 µg/mL of Kn-ZnONPs, while
the maximum (0.96 g) root biomass was obtained from the treatment with Kn-ZnONPs
200 µg/mL at 10% PEG stress (Figure 8). Leaf area was drastically affected by drought stress
and the leaf area was calculated at a minimum (22.6 cm2) in plants facing 15% drought
stress, while the maximum leaf area (39.5 cm2) was observed in this case in plants having
treatments of 10 µg/mL Kn-ZnONPs and 5% drought stress (Figure 9). Taken together,
these results show that the application of Kn-ZnONPs shows a synergistic effect on mung
bean growth and extenuates the effect of drought stress.
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Figure 7. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs on 
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Figure 7. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs
on shoot length (cm) and fresh and dry biomasses (g) of V. radiata grown under different levels of
PEG-induced drought stress.
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Figure 8. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs on root
length (cm) and fresh and dry biomasses (g) of V. radiata grown under different levels of PEG-induced
drought stress.

Molecules 2023, 28, x FOR PEER REVIEW 8 of 20 
 

 

Figure 8. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs on 

root length (cm) and fresh and dry biomasses (g) of V. radiata grown under different levels of PEG-

induced drought stress. 

C+PEG5%

C+PEG10%

C+PEG15%

NPs10+PEG5%

NPs10+PEG10%

NPs10+PEG15%

NPs100+PEG5%

NP100+PEG10%

NPs100+PEG15%

NPs200+PEG5%

NPs200+PEG10%

NPs200+PEG15% --

15

20

25

30

35

40

45

50

 Leaf Area (cm2)

 No. of Leaves Plant-1

Treatments

Le
af

 A
re

a 
(c

m
2 ) 

6

8

10

12

14

16

18

20

22

24

26

28

30

 N
o.

 o
f L

ea
ve

s 
Pl

an
t-1

 

Figure 9. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs on 

number of leaves per plant and leaf area (cm2) of V. radiata grown under different levels of PEG-

induced drought stress. 

2.3. Effect of Kn-ZnONPs on Photosynthetic Pigments and Osmoprotectants Assimilates 

The impact of foliar application of Kn-ZnONPs on the photosynthetic pigments 

included chlorophyll ‘a’, chlorophyll ‘b’, and carotenoids contents; total chlorophyll and 

anthocyanin contents were assessed in plants grown under varying levels of PEG-based 

drought stress. The results revealed that the photosynthetic pigments were significantly 

elevated by the application of Kn-ZnONPs when used in 200 µg/mL concentration under 

stress as compared to plants without applied Kn-ZnONPs (Figures 10 and 11). The highest 

chlorophyll a content (0.28 mg/g) was observed in plants treated with Kn-ZnONPs 10 

µg/mL at 5% PEG drought stress. Plants treated with Kn-ZnONPs 10 µg/mL at 10% PEG 

stress exhibited a chlorophyll a content of 0.23 mg/g, while plants treated with Kn-

ZnONPs 10 µg/mL and PEG 15% exhibited a chlorophyll a content of 0.24 mg/g. 

Furthermore, plants at 5% PEG-based drought stress treated with 100 µg/mL Kn-ZnONPs 

and NPs 100 µg/mL and PEG 15%, exhibited a chlorophyll a content of 0.26 mg/g. 

However, plants treated with NPs 100 µg/mL and grown 10% PEG exhibited a chlorophyll 

a content of 0.21 mg/g. Similarly, the chlorophyll b content varied significantly among 

various treatments used (Figures 10 and 11). 

Among the different concentrations of Kn-ZnONPs tested, the highest chlorophyll b 

content (0.63 mg/g) was observed in plants treated with 10 µg/mL of Kn-ZnONPs under 

15% PEG-based stress followed by 0.59 mg/g at 10 µg/mL of Kn-ZnONPs at 15% PEG 

stress, while the lowest content (0.21 mg/g) was observed in plants treated with 100 µg/mL 

of Kn-ZnONPs grown under 5% PEG. Interestingly, the chlorophyll b content remained 

non-significant in control-treated plants grown under various levels of PEG-based stress. 

Moreover, the carotenoid content was also significantly different among various 

treatments (Kn-ZnONPs and PEG) applied to V. radiata. Similarly, when the plants were 

treated with Kn-ZnONPs at a concentration of 10 µg/mL grown under 10% PEG-induced 

drought stress, the carotenoid content was 0.09 mg/g. However, increasing the 

concentration of Kn-ZnONPs to 100 µg/mL resulted in a significant increase in carotenoid 

content to 0.14 mg/g, regardless of the concentration of PEG-induced drought stress. The 

highest carotenoid content was observed when the plants were treated with Kn-ZnONPs 

at a concentration of 200 µg/mL under 10% PEG-induced drought stress, with a carotenoid 

content of 0.17 mg/g (Figure 11). 

Figure 9. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs
on number of leaves per plant and leaf area (cm2) of V. radiata grown under different levels of
PEG-induced drought stress.

2.3. Effect of Kn-ZnONPs on Photosynthetic Pigments and Osmoprotectants Assimilates

The impact of foliar application of Kn-ZnONPs on the photosynthetic pigments in-
cluded chlorophyll ‘a’, chlorophyll ‘b’, and carotenoids contents; total chlorophyll and
anthocyanin contents were assessed in plants grown under varying levels of PEG-based
drought stress. The results revealed that the photosynthetic pigments were significantly
elevated by the application of Kn-ZnONPs when used in 200 µg/mL concentration under
stress as compared to plants without applied Kn-ZnONPs (Figures 10 and 11). The high-
est chlorophyll a content (0.28 mg/g) was observed in plants treated with Kn-ZnONPs
10 µg/mL at 5% PEG drought stress. Plants treated with Kn-ZnONPs 10 µg/mL at 10% PEG
stress exhibited a chlorophyll a content of 0.23 mg/g, while plants treated with Kn-ZnONPs
10 µg/mL and PEG 15% exhibited a chlorophyll a content of 0.24 mg/g. Furthermore,
plants at 5% PEG-based drought stress treated with 100 µg/mL Kn-ZnONPs and NPs
100 µg/mL and PEG 15%, exhibited a chlorophyll a content of 0.26 mg/g. However,
plants treated with NPs 100 µg/mL and grown 10% PEG exhibited a chlorophyll a content
of 0.21 mg/g. Similarly, the chlorophyll b content varied significantly among various
treatments used (Figures 10 and 11).
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Figure 11. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs on 

carotenoids and anthocyanin contents (mg/g FW) of V. radiata grown under different levels of PEG-

induced drought stress. 
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Figure 10. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs on
total chlorophyll and chlorophyll a and b (mg/g FW) of V. radiata grown under different levels of
PEG-induced drought stress.
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Figure 11. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs
on carotenoids and anthocyanin contents (mg/g FW) of V. radiata grown under different levels of
PEG-induced drought stress.

Among the different concentrations of Kn-ZnONPs tested, the highest chlorophyll b
content (0.63 mg/g) was observed in plants treated with 10 µg/mL of Kn-ZnONPs under
15% PEG-based stress followed by 0.59 mg/g at 10 µg/mL of Kn-ZnONPs at 15% PEG
stress, while the lowest content (0.21 mg/g) was observed in plants treated with 100 µg/mL
of Kn-ZnONPs grown under 5% PEG. Interestingly, the chlorophyll b content remained
non-significant in control-treated plants grown under various levels of PEG-based stress.
Moreover, the carotenoid content was also significantly different among various treatments
(Kn-ZnONPs and PEG) applied to V. radiata. Similarly, when the plants were treated with
Kn-ZnONPs at a concentration of 10 µg/mL grown under 10% PEG-induced drought
stress, the carotenoid content was 0.09 mg/g. However, increasing the concentration of Kn-
ZnONPs to 100 µg/mL resulted in a significant increase in carotenoid content to 0.14 mg/g,
regardless of the concentration of PEG-induced drought stress. The highest carotenoid
content was observed when the plants were treated with Kn-ZnONPs at a concentration of
200 µg/mL under 10% PEG-induced drought stress, with a carotenoid content of 0.17 mg/g
(Figure 11).

Similarly, the results indicated that both Kn-ZnONPs and PEG-induced drought stress
had a significant effect on the total chlorophyll content of V. radiata. The highest total
chlorophyll content was observed at an intermediate level of both treatments, and the
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content decreased as the concentration of Kn-ZnONPs and PEG-induced drought stress
increased. The lowest total chlorophyll content (mg/g) was observed in plants without
treatments of Kn-ZnONPs exposed to the highest level (15%) of PEG-induced drought
stress, with a value of 0.48 mg/g. The highest value (0.78 mg/g) was observed in treated
plants under the same level of PEG-based drought stress with a foliar application of
10 µg/mL of Kn-ZnONPs. Interestingly, the total chlorophyll content of the plants was not
significantly affected by the concentration of Kn-ZnONPs when the level of PEG-induced
drought stress was either 5% or 15%. Moreover, when the concentration of Kn-ZnONPs
was increased to 100 or 200 micrograms/mL, the total chlorophyll content of the plants
decreased irrespective of the level of PEG-induced drought stress (Figure 10). The least
anthocyanin content of 0.89 mg/g was observed in plants under 5% PEG drought stress
without applied Kn-ZnONPs. The highest anthocyanin content was observed in plants
treated with 10 µg/mL of Kn-ZnONPs and 15% PEG-induced drought stress, with a value
of 2.09 mg/g. When the concentration of Kn-ZnONPs was increased from 10 to 200 µg/mL,
the anthocyanin content of the plants showed a slight increase, except in plants subjected to
10% PEG-induced drought stress. These results suggest that the application of Kn-ZnONPs
significantly restored the plant photosynthetic pigments that had significantly declined
under PEG-based drought stress (Figure 11).

ANOVA results revealed a significant variation in soluble sugar content, proline, and
protein contents of plants treated by various concentrations of Kn-ZnONPs via the foliar
route and grown under PEG-based drought stress. An increase in soluble content (up to
521 mg/g) in leaves was observed at 5% PEG-induced drought stress, whereas a decline
in sugar content (up to 204 mg/g) was reported in plants treated with 100 µg/mL Kn-
ZnONPs under 15% PEG-based drought stress. ANOVA revealed maximal protein content
in plants exposed to 5% PEG-based stress and treated with 200 µg/mL, while minimal
protein content was recorded in 10 µg/mL of NPs-treated plants under 10% PEG drought
stress. High drought stress (15% PEG) inhibited proline content, whereas maximum proline
contents were recorded (0.35 mg/g) in plants treated with10 µg/mL of Kn-ZnONPs under
5% PEG drought (Figure 12).
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Figure 12. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs on 
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Figure 12. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs on
various osmolytes (Sugar, protein, and proline in mg/g FW) of V. radiata grown under different levels
of PEG-induced drought stress.

2.4. Effect of Kn-ZnONPs on Antioxidant Biosystem

The impact of Kn-ZnONPs on the antioxidant enzymes superoxide dismutase (SOD),
catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD) of V. radiata grown
under PEG-induced drought stress was also evaluated. PEG-based drought stress signifi-
cantly affected the SOD activity and showed minimal activity (0.32 IU/min/g FW) at 10%
PEG stress level followed by (0.47 IU/min/g FW) at 15% PEG stress level in plants that
remained untreated by Kn-ZnONPs, whereas maximal SOD activity (0.61 IU/min/g FW)
was recorded in plants treated with 100 µg/mL of Kn-ZnONPs grown under 5% PEG-based
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drought stress (Figure 13). Interestingly, POD activity was enhanced by increasing the level
of drought stress, where minimal activity was recorded at 5% PEG drought stress and its
highest activity was observed in plants treated with 200 µg/mL of Kn-ZnONPs through
foliar spray and grown under 15% PEG drought stress. Likely, the maximal CAT activity
was observed (0.02 IU/min/g FW) in plants synergistically treated with 10 µg/mL and
10% of Kn-ZnONPs and PEG, respectively (Figure 13). Plants that received Kn-ZnONPs at
a dose of 10 µg/mL and were grown under 15% PEG-based drought stress showed highest
APX activity (0.14 IU/min/g FW), whereas its lowest activity (0.02 mg/g) was observed in
plants grown under 5% PEG drought stress and treated with 200 µg/mL of Kn-ZnONPs.
The results also revealed that hydrogen peroxide scavenging potential was high in plants
grown under 10% PEG drought stress without foliar application of Kn-ZnONPs (0 µg/mL),
while the lowest value was recorded for plants treated at 200 µg/mL of Kn-ZnONPs under
15% PEG drought stress (Figure 14). Further, MDA (malondialdehyde) concentration or
lipid peroxidation activity was observed at a maximum at 100 µg/mL applied NPs under
10% PEG drought stress, while the least lipid peroxidation rate was recorded under 5% PEG
and 10% PEG drought stress without NPs treatment. However, high drought stress levels
(15% PEG) showed elevated MDA concentrations (0.27 µMol g−1 and 0.31 µMol g−1) at dif-
ferent NPs concentrations, whereas a maximum decline in MDA concentration was shown
by the synergistic effect of NPs at a dose of 200 µg/mL and 15% PEG stress (Figure 14). The
antioxidant potential exhibited by the extraction of scavenging DPPH radicals was highest
in plants grown under 10% PEG drought stress. The maximal DPPH radical scavenging
potential (53.7%) was exhibited by plants under stress, without applied NPs, followed by
(50.6%) of plants grown under 15% PEG with a foliar spray of 100 µg/mL of Kn-ZnONPs.
Minimum DPPH scavenging activity was observed in plants treated with 100 µg/mL under
drought 10% PEG (Figure 15). The increase in PPO activity due to drought stress was
declined by the combined impact of Kn-ZnONPs (10 µg/mL, 100 µg/mL, and 200 µg/mL)
and PEG drought stress. Findings revealed an increase in total phenolic content (TPC)
with increasing drought stress, and this response was also observed for some treatments
in tannin content. Plants treated with 10 µg/mL of Kn-ZnONPs under 15% PEG drought
stress accumulated maximum phenolic content (61.7 mg/g), and the least TPC (34.0 mg/g)
was observed in plants treated with 100 µg/mL and under 5% PEG drought stress. The
data for tannin content indicates low tannin content in plants under drought stress, and
minimum tannin content (0.02 mg/g) was recorded under 5% PEG without NPs (control)
application, whereas NPs treatments enhanced tannin content in the plants (Figure 16). The
synergistic effect of Kn-ZnONPs at a dose of 200 µg/mL with 10% PEG increased tannin
content (1.11 mg/g) in the plants.
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Figure 13. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs on 

the activity of antioxidant enzymes (SOD, POD, and CAT in IU min−1 g−1) of V. radiata grown under 

different levels of PEG-induced drought stress. 

Figure 13. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs on
the activity of antioxidant enzymes (SOD, POD, and CAT in IU min−1 g−1) of V. radiata grown under
different levels of PEG-induced drought stress.
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Figure 15. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs on 

free radical scavenging (H2O2 and DPPH) potential of V. radiata grown under different levels of PEG-

induced drought stress. 
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Figure 16. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs on 

total phenolic and tannin content of V. radiata grown under different levels of PEG-induced drought 

stress. 

Figure 14. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs on
the activity of antioxidant enzymes (APX, PPO IU min−1 g−1 and MDA in µmol g−1) of V. radiata
grown under different levels of PEG-induced drought stress.
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Figure 16. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs on 
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stress. 

Figure 15. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs on
free radical scavenging (H2O2 and DPPH) potential of V. radiata grown under different levels of
PEG-induced drought stress.
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Figure 16. Showing the effect of priming and foliar application of various doses of Kn-ZnONPs
on total phenolic and tannin content of V. radiata grown under different levels of PEG-induced
drought stress.
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3. Discussion

The present study involved the synthesis and characterization of Kn-ZnONPs and
their effect on mung bean growth under various levels of PEG-induced drought stress.
PEG-induced drought stress significantly decreased all growth parameters, such as morpho-
logical traits, physiological traits, and biochemical characteristics, and drastically affected
the quality and quantity of their yield [29]. Moreover, we report that the application of
various NPs used as nano-fertilizers depicts the most significant effect on plant growth,
crop quality, and quantity of yield, and it also attenuates the drastic effect of different
abiotic stresses [30].

All growth parameters, such as seed germination, shoot length, root length, shoot,
root and leaf fresh and dry weight, number of leaves, and leaf area, were monitored in
the present research work. It has been concluded, based on the current study, that all the
above growth parameters declined in those plants exposed to various concentrations of
PEG-induced drought stress, while on other hand, all these growth attributes increase sig-
nificantly in mung beans with the application of Kn-ZnONPs. These results are congruent
with the results of Ul- Haq et al. [31] who recently reported the significant effect of Glutamic
acid capped iron nanoparticles (Glu-FeNPs) on mung bean plants under various concen-
trations of salinity stress. Mazhar et al. [32] also determined the beneficial effects of iron
nanoparticles on the growth parameters of flax plants under water stress conditions. The
analysis of the results has revealed that all growth parameters were effectively enhanced.
This increase in all growth parameters may be due to the pivotal role of Kn-ZnONPs be-
cause the application of Kn-ZnONPs regulates the concentration of kinetin in plants, which
enhances cell proliferation, cell elongation, promotes the apical meristems, embryogenesis,
triggers callus differentiation [33], and consequently improves plant height, leaf area, root
length, number of leaves, and number of pods. Furthermore, it improves the quantity and
quality of yield [34] by regulating the work of different enzymes that transport soluble
carbohydrates and reduce the contents of nitrates [27]. A lot of the literature data show that
ZnONPs play the most potent role in plant growth and development. Additionally, in the
present study, we determined that kinetin zinc oxide nanoparticles may also be responsible
in the improvement of mung bean growth under various levels of drought stress. As the
research data depicted, ZnONPs significantly affect leaf chlorophyll contents, improve
sugar and protein contents, and, consequently, improve plant growth and development [35].
Various pathways have been suggested by researchers for nanoparticle association and
absorption. It is reported that NPs are mostly absorbed by the stomatal openings of leaves
after foliar spray; however, this uptake of NPs is greatly influenced by the NPs size. After
entering the stomatal opening, it is transported via the xylem and finally accumulates in
the central vacuole.

The survival of life depends upon photosynthesis. The photosynthetic pigment is a
very essential factor in the process of photosynthesis and is very important for plant de-
velopment and growth. To comprehend the status of photosynthesis, the total chlorophyll
content was analyzed. In the present study, it was found that chlorophyll contents, such
as ch. A, ch. B, carotene contents, and anthocyanin are also badly affected by drought
stress. On the other hand, the plants treated with different doses of Kn-ZnONPs showed a
significant improvement in chlorophyll contents, indicating that Kn-ZnONPs play synergis-
tic roles in the growth of mung bean plants under various PEG-induced drought stresses.
These results show a close resemblance to the research data of [36], studying the response
of Cyamopsis tetragonoloba L. toward Zinc oxide nanoparticles (ZnONPs), and also with
the results of Pandey et al. [37] and Sun et al. [38], who use ZnONPs in 100 µg/mL to
study the response of a tomato plant. The beneficial effects of Kn-ZnONPs might be due
to the presence of kinetin, which maintains the level of kinetin in a suitable range as the
overdose of kinetin shows a drastic effect on plant growth and development [39]. Under
drought stress, the degradation of chlorophyll contents acceded due to the amelioration
of derogative enzymes, such as chlorophyllase, and consequently impaired biosynthetic
pathways [40], while Kinetin had the potential to attenuate the chlorophyllase activity [41].
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The application of kinetin improved the uptake of nitrogen, which enhanced the production
of rubisco and also regulated the function of the stomata, which maintain the concentration
of carbon dioxide and water and thus increase the process of photosynthesis [42]. The
zinc provided by the NPs played an effective role in the synthesis of carbonic anhydrase
enzymes which aid in the transportation of carbon dioxide in the process of photosynthesis.
In corroboration to our results, recently, Ahenger et al. [43] and Nahar et al. [44] demon-
strated that the application of kinetin and polyamine enhanced the chlorophyll contents
under various stress in different plants, but the combined effect of kinetin and zinc oxide
nanoparticles on chlorophyll and photosynthesis has not been reported.

A lot of research data affirm that high levels of proline are better and protect the
plants from damages caused by growing under different abiotic stress environments. In
this protein, soluble sugar and proline contents were analyzed to ascertain the response of
V. radiata toward Kn-ZnONPs exposed to different levels of drought stress. Throughout
the analysis, it was recorded that all of the above parameters were negatively affected
by PEG-induced drought stress and the quantity declined in the plant leaves that were
exposed to only drought stress. While these contents were recorded at maximum during the
analysis of the research data in plants treated with Kn-ZnONPs, the proline was reported
as the most common, important, and common osmolyte which protected cell proteins from
denaturation and from the deleterious effects of reactive oxygen species (ROS). The proline
also acted as a signaling agent, triggering the expressions of specific genes which contribute
to ROS elimination [45]. The increase in the concentration of osmolyte was due to the
application of Kn-ZnONPs. It is obvious from the literature that zinc promotes the function
of the stomata, and the kinetin provided by Kn-ZnONPs also helps in the elimination of
ROS, thus, impeding photo-inhibition and membrane damage. Consequently, biosynthetic
pathways are improved, which results in an increased level of sugar and proteins. In
corroboration with our results, Ahanger et al. [46] reported that the application of kinetin
and spermidine promotes the concentration of osmolytes.

Antioxidant enzymes, such as peroxidase (POD), superoxide dismutase (SOD), and
catalase (CAT), are the most active and important components of a plant’s defense system.
SOD converted the O2- to H2O2 and this resulted in H2O2 being catalyzed by POD [47].
Oxidative damage was recorded at a minimum in plants treated with Kn-ZnONPs under
PEG-induced drought stress. The results of our research work are in accordance with
the results of de Moura et al. [48] who demonstrated that the foliar application of kinetin
enhances the antioxidant potential of anthurium and consequently promotes the photo-
synthesis process. Li et al. [41] and Mehri et al. [49] also reported the ameliorating effect of
putrescin, spermidine, and kinetin under cadmium-induced stress, but research discussion
on the combined effects of kinetin and zinc NPs are not reported yet. The literature has re-
vealed that the exogenous application of kinetin improves the accumulation of tocopherol,
which is an important antioxidant molecule that exists in the chloroplast of plant cells
and neutralizes OH- and superoxide. It is also reported that tocopherol enhances stress
tolerance ability by improving proline contents [50].

Phenol and tannin are considered the most important secondary metabolites which
have an effective role in plant growth and development under various stress environments.
In the present work, we found that Kn-ZnONPs show a significant effect on the phenol and
tannin content present in the test plants under drought stress (Figure 16). The results of
Ahanger et al. [46] show a close resemblance with our results. Phenolic contents, polyamine,
ferulic acids, and caffic acid combined and enhanced their stability, while also promoting
translocation [51]. The increased accumulation of total phenolic and other secondary
metabolites significantly promotes various enzymatic activities which are involved in
their biosynthesis. The increased number of secondary metabolites also up-regulate the
activities of antioxidant enzymes which protect the cellular machinery and also promote
their function [52].
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4. Materials and Methods
4.1. Synthesis of Kn-ZnONPs and Characterization

Kn-ZnONPs were synthesized via co-precipitation method following the protocol of
Gnanasangeetha et al. [53]. Aqueous Zn (CH3COO)2·2H2O (0.02 M) and 2.0 M NaOH
were mixed, and pH was adjusted to 12.0 using a NaOH solution. Mixture was kept for
2 h stirring. After completion of precipitation, supernatant was decanted, and precipitates
were washed several times with deionized water, centrifuged at 4000 rpm for 10 min, kept
for drying in an oven at 100 ◦C, and then incinerated to 500 ◦C, resulting in ZnONPs.
Aqueous kinetin was mixed in the ZnONPs suspension by vigorous stirring for 48 h, using
a magnetic stirrer. The precipitates were washed with deionized water and centrifuged.
Supernatant was separated and precipitates were completely dried in a warm air oven
at 100 ◦C. Various complementary analytical techniques (FTIR, XRD, SEM, SEM-EDS,
Zeta Potential, and DLS) were employed to characterize the resulting Kn-ZnONPs for its
morphology, size, size distribution, crystallinity, and functional groups associated with
Kn-ZnONPs at the Department of Pharmacy, CRL (Centralized Resource Laboratory) and
MRL (Materials Research Laboratory), University of Peshawar, Pakistan.

4.2. Laboratory Experimental Detail

A laboratory experiment was conducted at the Plant Ecology Laboratory, Department
of Botany, University of Peshawar, Pakistan. The seeds of Vigna radiata were primed with
various concentrations of Kn-ZnONPs (hydro-primed, 10 µg/mL, 100 µg/mL, 200 µg/mL)
of Kn-ZnONPs and sown in Petri plates under PEG-induced drought stress (5%, 10%, 15%)
in a growth chamber at 30 ± 3 ◦C. Percentage germination (PG), mean germination time
(MGT), germination index (GI), mean daily germination (MDG), and coefficient of velocity
germination (CVG) were determined using the following equations:

PG =
Gt
N

× 100

MGT =
Σ(nd)

n

GI = (7 × G1) + (6 × G2) + (5 × G3) + . . . (1 × Gn)

MDG =
FGP

d

CVG =
G1 + G2 + G3 + . . . + Gn

(1 × G1) + (2 × G2) + . . . + (n × Gn)

where:
Gt is the total number of seeds germinated, d is the number of seeds germinated in a

day, N is the total number of seeds, while n . . . 1 represents the days of germination, FGP is
the final germination percentage and G1–Gn represents the number of seeds germinated
from day 1 to the last day.

4.3. Field Experiment Detail

A field experiment was carried out at the Department of Botany, University of Pe-
shawar, Pakistan (34.0086◦ N, 71.4878◦ E) under natural temperature (26–37 ◦C), light, and
humidity conditions (mean 32%). The study employed a completely randomized block
design (CRBD) with three replications and ensured the random assignment of all treatments
to each experimental unit. Seeds of V. radiata were obtained from the National Agriculture
Research Center (NARC) in Nowshera, Pakistan and sterilized with 70% ethanol. Sand
loamy soil was filled in pots, and seeds were sown, followed by growth of seedlings
under normal day–night conditions. Young plants were treated with different doses of
Kn-ZnONPs (10 µg/mL, 100 µg/mL, 200 µg/mL) through foliar spray at 4-day intervals,
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while various levels of drought stress were induced through foliar spray of different con-
centrations of PEG (5%, 10%, 15%). Vegetative growth parameters, including root and shoot
length, leaf fresh and dry weight, root fresh and dry weight, number of leaves, and leaf
area, were measured for fresh plants. The harvested plants were packed in zipper bags and
stored at −20 ◦C for determining physiological and biochemical parameters.

4.4. Measurement of Biochemical Parameters
4.4.1. Measurement of Proline Protein and Soluble Sugar Contents

To determine the proline content, leaves weighing 0.5 g were homogenized in sulfos-
alicylic acid and then centrifuged for 10 min at 4000 rpm. Then, 0.1 mL of the resulting
supernatant was mixed with 2 mL of acidic ninhydrin in a test tube and incubated in a
water bath at 100 ◦C for one hour, followed by cooling in an ice bath. After that, 4 mL of
toluene was added to the test tube, and the optical density of the resulting mixture was
measured at 520 nm using toluene as a blank.

The protein content was determined using 0.5 g of fresh leaves, homogenized in 1 mL
of phosphate buffer (pH 7.5), and the total protein content was determined using the
method described by Rostami and Ehsanpour [54].

For the determination of soluble sugar content, 0.5 g of fresh and healthy mung bean
leaves were homogenized in 10 mL of distilled water and then centrifuged for 15 min. Next,
0.1 mL of the supernatant was mixed with 5 mL of concentrated H2SO4 and 80% phenol,
and the optical density (OD) of the resulting reaction mixture was measured at 420 nm
using a UV-Vis spectrophotometer according to the method described by Dubois et al. [55].

4.4.2. Measurement of Photosynthetic Pigments

To quantify the photosynthetic contents, 0.5 g of leaves were homogenized in 4 mL of
80% acetone. The resulting mixture was then kept in the dark for two hours, followed by
centrifugation. The optical density (OD) was recorded at wavelengths of 645 nm, 663 nm,
and 470 nm. The values obtained were then used to calculate the photosynthetic pigments
as described by Gholami et al. [56] using the appropriate equations as

Chl a(mg/g) =
(12.25 × OD at 663 − 2.79 × OD at 645)× V

1000 × LW

Chl b(mg/g) =
(21.5 × OD at 645 − 5.1 × OD at 663)× V

1000 × LW

Carotenoid(mg/g) =
(1000 × OD at 663 − 2.79 × OD at 645)× V

1000 × LW

4.4.3. Measurement of Antioxidant Enzymes (SOD, POD, APX, and CAT)

The quantification of antioxidant enzymes involved homogenizing 0.5 g of fresh leaves
in 0.05N PBS (pH 7.0) containing PVPP and 0.1 M EDTA. For evaluating the potential of
peroxidase (POD, EC 1.11.1.7), 0.1 mL of enzyme extract supernatant was mixed with
0.1 mL of phenylene diamine, 100 mM of MES buffer, and 0.05% H2O2. The change in OD
was recorded at 485 nm for 3 min, and the potential of POD was presented as delta OD
485 nm/min mg protein. To determine the potential of superoxide dismutase (SOD, EC
1.15.1.1), 0.1 mL of enzyme extract in 50 mM PBS (pH 7.8) was added to 0.1 mM EDTA,
0.075 mM NBT, 13 mM methionine, and 0.002 M riboflavin and placed below the light
chamber for 10 min, and the OD was recorded at 560 nm [57]. The activity of catalase
(CAT, EC 1.11.1.6) enzyme was determined according to the protocol of Aebi et al. [58].
Fresh leaves of 1.5 g were homogenized in Tris-HCL of 100 mM containing Dithiothreitol
of 5 mM, MgCl2 10 mM, EDTA 1 mM, magnesium acetate 5 mM, PVP-40 of 1.6%, aphenyl-
methanesulfonyl fluoride of 1 mM, and aproptinin 1 µg mL−1, mixed and centrifuged for
10 min at 8000 rpm, and the supernatant OD was recorded at 470 nm. APX potential was
recorded following the protocol of Saxena et al. [59].
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4.4.4. Measurement of Lipid Peroxidation and PPO

To determine the rate of lipid peroxidation, 600 mg fresh leaves of the sample were
grounded in 0.1% TCA and centrifuged for 10 min at 8000 rpm. Then the supernatant
was added to thiobarbituric acid of 0.5% and TCA, heated for 35 min at 92 ◦C, cooled and
centrifuged again at 8000 rpm. The OD of the reaction mixture was recorded at 532 nm.
PPO potential was recorded following the protocol Alhakmani et al. [60].

4.4.5. Measurement of Total Phenolic and Tannin Contents

Total phenolic contents (TPC) were determined by following the procedure of Ul-
Haq et al. [15], with slight modification. About 20 µL extract of leaves, 90 µL of folin-
ciocalteu reagent, and 90 µL of Na2CO3 were mixed and the OD of the reaction mixture
was recorded at 630 nm. The tannin content in the leaves of the test plant was evaluated
following the method of Chen and Zhang [61].

4.4.6. Measurement of Hydrogen Peroxide (H2O2) and DPPH Scavenging Activity

To determine the antioxidant potential of plant specimens under applied Kn-ZnONPs,
20 µL of fresh leaves sample and 180 µL of DPPH solution in methanol were combined in a
96-well microplate. The reaction mixture was placed for one h in the dark and the OD was
determined at 517 nm following the protocol of Singleton and Rossi [62]. The hydrogen
peroxide (H2O2) scavenging potential was evaluated using the method of Velikova et al. [63],
followed by [64–66]. For this purpose, 0.1 g of fresh mung bean leaves were homogenized
in 0.1% TCA and centrifuged for 15 min at 8000 rpm. A test sample of 0.5 mL was mixed
with H2O2 in a phosphate buffer in a test tube to which 1.0 M of KI was added and the OD
was measured at 390 nm with the help of a spectrophotometer.

5. Conclusions

V. radiata showed distinctive responses for germination, growth parameters, assimila-
tory products, and antioxidant enzyme activities when evaluated in light of the applied
Kn-ZnONPs treatments and PEG-induced drought stress. Furthermore, the application
of Kn-ZnONPs to the plant under drought stress showed a positive effect in terms of
its growth, photosynthetic pigments, sugar content, protein content, and proline content.
Moreover, drought stress at various levels enhanced the activity of antioxidant enzymes,
including SOD, POD, APX, and CAT, whereas the reduced activity of PPO and DPPH was
observed. Thus, the application of Kn-ZnONPs has been shown to minimize the negative
effects of PEG-induced drought stress by ameliorating drought stress resistance in the plant.
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