Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Anne Maria Mullen ORCID = 0000-0003-1769-0768

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1580 KiB  
Review
Biodegradable Packaging Materials from Animal Processing Co-Products and Wastes: An Overview
by Diako Khodaei, Carlos Álvarez and Anne Maria Mullen
Polymers 2021, 13(15), 2561; https://doi.org/10.3390/polym13152561 - 31 Jul 2021
Cited by 66 | Viewed by 14865
Abstract
Biodegradable polymers are non-toxic, environmentally friendly biopolymers with considerable mechanical and barrier properties that can be degraded in industrial or home composting conditions. These biopolymers can be generated from sustainable natural sources or from the agricultural and animal processing co-products and wastes. Animals [...] Read more.
Biodegradable polymers are non-toxic, environmentally friendly biopolymers with considerable mechanical and barrier properties that can be degraded in industrial or home composting conditions. These biopolymers can be generated from sustainable natural sources or from the agricultural and animal processing co-products and wastes. Animals processing co-products are low value, underutilized, non-meat components that are generally generated from meat processing or slaughterhouse such as hide, blood, some offal etc. These are often converted into low-value products such as animal feed or in some cases disposed of as waste. Collagen, gelatin, keratin, myofibrillar proteins, and chitosan are the major value-added biopolymers obtained from the processing of animal’s products. While these have many applications in food and pharmaceutical industries, a significant amount is underutilized and therefore hold potential for use in the generation of bioplastics. This review summarizes the research progress on the utilization of meat processing co-products to fabricate biodegradable polymers with the main focus on food industry applications. In addition, the factors affecting the application of biodegradable polymers in the packaging sector, their current industrial status, and regulations are also discussed. Full article
(This article belongs to the Special Issue Biopolymers for Food Packaging Films and Coatings)
Show Figures

Figure 1

14 pages, 1639 KiB  
Article
The Influence of Bloom Index, Endotoxin Levels and Polyethylene Glycol Succinimidyl Glutarate Crosslinking on the Physicochemical and Biological Properties of Gelatin Biomaterials
by Zhuning Wu, Stefanie H. Korntner, Jos Olijve, Anne Maria Mullen and Dimitios I. Zeugolis
Biomolecules 2021, 11(7), 1003; https://doi.org/10.3390/biom11071003 - 9 Jul 2021
Cited by 8 | Viewed by 3374
Abstract
In the medical device sector, bloom index and residual endotoxins should be controlled, as they are crucial regulators of the device’s physicochemical and biological properties. It is also imperative to identify a suitable crosslinking method to increase mechanical integrity, without jeopardising cellular functions [...] Read more.
In the medical device sector, bloom index and residual endotoxins should be controlled, as they are crucial regulators of the device’s physicochemical and biological properties. It is also imperative to identify a suitable crosslinking method to increase mechanical integrity, without jeopardising cellular functions of gelatin-based devices. Herein, gelatin preparations with variable bloom index and endotoxin levels were used to fabricate non-crosslinked and polyethylene glycol succinimidyl glutarate crosslinked gelatin scaffolds, the physicochemical and biological properties of which were subsequently assessed. Gelatin preparations with low bloom index resulted in hydrogels with significantly (p < 0.05) lower compression stress, elastic modulus and resistance to enzymatic degradation, and significantly higher (p < 0.05) free amine content than gelatin preparations with high bloom index. Gelatin preparations with high endotoxin levels resulted in films that induced significantly (p < 0.05) higher macrophage clusters than gelatin preparations with low endotoxin level. Our data suggest that the bloom index modulates the physicochemical properties, and the endotoxin content regulates the biological response of gelatin biomaterials. Although polyethylene glycol succinimidyl glutarate crosslinking significantly (p < 0.05) increased compression stress, elastic modulus and resistance to enzymatic degradation, and significantly (p < 0.05) decreased free amine content, at the concentration used, it did not provide sufficient structural integrity to support cell culture. Therefore, the quest for the optimal gelatin crosslinker continues. Full article
(This article belongs to the Special Issue Biological Biomaterials for Regenerative Medicine)
Show Figures

Figure 1

20 pages, 1748 KiB  
Article
A Proteomic Study for the Discovery of Beef Tenderness Biomarkers and Prediction of Warner–Bratzler Shear Force Measured on Longissimus thoracis Muscles of Young Limousin-Sired Bulls
by Yao Zhu, Mohammed Gagaoua, Anne Maria Mullen, Alan L. Kelly, Torres Sweeney, Jamie Cafferky, Didier Viala and Ruth M. Hamill
Foods 2021, 10(5), 952; https://doi.org/10.3390/foods10050952 - 27 Apr 2021
Cited by 31 | Viewed by 4697
Abstract
Beef tenderness is of central importance in determining consumers’ overall liking. To better understand the underlying mechanisms of tenderness and be able to predict it, this study aimed to apply a proteomics approach on the Longissimus thoracis (LT) muscle of young Limousin-sired bulls [...] Read more.
Beef tenderness is of central importance in determining consumers’ overall liking. To better understand the underlying mechanisms of tenderness and be able to predict it, this study aimed to apply a proteomics approach on the Longissimus thoracis (LT) muscle of young Limousin-sired bulls to identify candidate protein biomarkers. A total of 34 proteins showed differential abundance between the tender and tough groups. These proteins belong to biological pathways related to muscle structure, energy metabolism, heat shock proteins, response to oxidative stress, and apoptosis. Twenty-three putative protein biomarkers or their isoforms had previously been identified as beef tenderness biomarkers, while eleven were novel. Using regression analysis to predict shear force values, MYOZ3 (Myozenin 3), BIN1 (Bridging Integrator-1), and OGN (Mimecan) were the major proteins retained in the regression model, together explaining 79% of the variability. The results of this study confirmed the existing knowledge but also offered new insights enriching the previous biomarkers of tenderness proposed for Longissimus muscle. Full article
Show Figures

Figure 1

6 pages, 539 KiB  
Communication
Assessment of RNAlater® as a Potential Method to Preserve Bovine Muscle Proteins Compared with Dry Ice in a Proteomic Study
by Yao Zhu, Anne Maria Mullen, Dilip K. Rai, Alan L. Kelly, David Sheehan, Jamie Cafferky and Ruth M. Hamill
Foods 2019, 8(2), 60; https://doi.org/10.3390/foods8020060 - 5 Feb 2019
Cited by 13 | Viewed by 5473
Abstract
RNAlater® is regarded as a potential preservation method for proteins, while its effect on bovine muscle proteins has rarely been evaluated. Bovine muscle protein samples (n = 12) collected from three tender (Warner–Bratzler shear force: 30.02–31.74 N) and three tough (Warner–Bratzler [...] Read more.
RNAlater® is regarded as a potential preservation method for proteins, while its effect on bovine muscle proteins has rarely been evaluated. Bovine muscle protein samples (n = 12) collected from three tender (Warner–Bratzler shear force: 30.02–31.74 N) and three tough (Warner–Bratzler shear force: 54.12–66.25 N) Longissimus thoracis et lumborum (LTL) samples, preserved using two different sampling preservation methods (RNAlater® and dry ice), at two post mortem time points (day 0 and day 14), were characterized using one-dimensional electrophoresis. Fourteen bands with molecular weights ranging from 15 to 250 kDa were verified, both in the dry ice and RNAlater® storage groups, at each time point, using image analysis. A shift from high to low molecular weight fragments, between day 0 and day 14, indicated proteolysis of the muscle proteins during post mortem storage. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses and database searching resulted in the identification of 10 proteins in four bands. Protein profiles of muscle preserved in RNAlater® were similar to those of muscle frozen on dry ice storage, both at day 0 and day 14. The results demonstrate that RNAlater® could be a simple and efficient way to preserve bovine muscle proteins for bovine muscle proteomic studies. Full article
Show Figures

Figure 1

21 pages, 446 KiB  
Review
Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium
by Maeve Henchion, Maria Hayes, Anne Maria Mullen, Mark Fenelon and Brijesh Tiwari
Foods 2017, 6(7), 53; https://doi.org/10.3390/foods6070053 - 20 Jul 2017
Cited by 1099 | Viewed by 67844
Abstract
A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative [...] Read more.
A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure food security. Full article
(This article belongs to the Special Issue Food Proteins and Bioactive Peptides)
Show Figures

Figure 1

Back to TopTop