Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Authors = Ahmed Laamrani

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 16357 KiB  
Article
Evaluation of Heterogeneous Ensemble Learning Algorithms for Lithological Mapping Using EnMAP Hyperspectral Data: Implications for Mineral Exploration in Mountainous Region
by Soufiane Hajaj, Abderrazak El Harti, Amin Beiranvand Pour, Younes Khandouch, Abdelhafid El Alaoui El Fels, Ahmed Babeker Elhag, Nejib Ghazouani, Mustafa Ustuner and Ahmed Laamrani
Minerals 2025, 15(8), 833; https://doi.org/10.3390/min15080833 - 5 Aug 2025
Abstract
Hyperspectral remote sensing plays a crucial role in guiding and supporting various mineral prospecting activities. Combined with artificial intelligence, hyperspectral remote sensing technology becomes a powerful and versatile tool for a wide range of mineral exploration activities. This study investigates the effectiveness of [...] Read more.
Hyperspectral remote sensing plays a crucial role in guiding and supporting various mineral prospecting activities. Combined with artificial intelligence, hyperspectral remote sensing technology becomes a powerful and versatile tool for a wide range of mineral exploration activities. This study investigates the effectiveness of ensemble learning (EL) algorithms for lithological classification and mineral exploration using EnMAP hyperspectral imagery (HSI) in a semi-arid region. The Moroccan Anti-Atlas mountainous region is known for its complex geology, high mineral potential and rugged terrain, making it a challenging for mineral exploration. This research applies core and heterogeneous ensemble learning methods, i.e., boosting, stacking, voting, bagging, blending, and weighting to improve the accuracy and robustness of lithological classification and mapping in the Moroccan Anti-Atlas mountainous region. Several state-of-the-art models, including support vector machines (SVMs), random forests (RFs), k-nearest neighbors (k-NNs), multi-layer perceptrons (MLPs), extra trees (ETs) and extreme gradient boosting (XGBoost), were evaluated and used as individual and ensemble classifiers. The results show that the EL methods clearly outperform (single) base classifiers. The potential of EL methods to improve the accuracy of HSI-based classification is emphasized by an optimal blending model that achieves the highest overall accuracy (96.69%). The heterogeneous EL models exhibit better generalization ability than the baseline (single) ML models in lithological classification. The current study contributes to a more reliable assessment of resources in mountainous and semi-arid regions by providing accurate delineation of lithological units for mineral exploration objectives. Full article
(This article belongs to the Special Issue Feature Papers in Mineral Exploration Methods and Applications 2025)
Show Figures

Figure 1

47 pages, 3987 KiB  
Review
Estimating Soil Attributes for Yield Gap Reduction in Africa Using Hyperspectral Remote Sensing Data with Artificial Intelligence Methods: An Extensive Review and Synthesis
by Nadir El Bouanani, Ahmed Laamrani, Hicham Hajji, Mohamed Bourriz, Francois Bourzeix, Hamd Ait Abdelali, Ali El-Battay, Abdelhakim Amazirh and Abdelghani Chehbouni
Remote Sens. 2025, 17(9), 1597; https://doi.org/10.3390/rs17091597 - 30 Apr 2025
Cited by 1 | Viewed by 1457
Abstract
Africa’s rapidly growing population is driving unprecedented demands on agricultural production systems. However, agricultural yields in Africa are far below their potential. One of the challenges leading to low productivity is Africa‘s poor soil quality. Effective soil fertility management is an essential key [...] Read more.
Africa’s rapidly growing population is driving unprecedented demands on agricultural production systems. However, agricultural yields in Africa are far below their potential. One of the challenges leading to low productivity is Africa‘s poor soil quality. Effective soil fertility management is an essential key factor for optimizing agricultural productivity while ensuring environmental sustainability. Key soil fertility properties—such as soil organic carbon (SOC), nutrient levels (i.e., nitrogen (N), phosphorus (P), potassium (K), moisture retention (MR) or moisture content (MC), and soil texture (clay, sand, and loam fractions)—are critical factors influencing crop yield. In this context, this study conducts an extensive literature review on the use of hyperspectral remote sensing technologies, with a particular focus on freely accessible hyperspectral remote sensing data (e.g., PRISMA, EnMAP), as well as an evaluation of advanced Artificial Intelligence (AI) models for analyzing and processing spectral data to map soil attributes. More specifically, the study examined progress in applying hyperspectral remote sensing technologies for monitoring and mapping soil properties in Africa over the last 15 years (2008–2024). Our results demonstrated that (i) only very few studies have explored high-resolution remote sensing sensors (i.e., hyperspectral satellite sensors) for soil property mapping in Africa; (ii) there is a considerable value in AI approaches for estimating and mapping soil attributes, with a strong recommendation to further explore the potential of deep learning techniques; (iii) despite advancements in AI-based methodologies and the availability of hyperspectral sensors, their combined application remains underexplored in the African context. To our knowledge, no studies have yet integrated these technologies for soil property mapping in Africa. This review also highlights the potential of adopting hyperspectral data (i.e., encompassing both imaging and spectroscopy) integrated with advanced AI models to enhance the accurate mapping of soil fertility properties in Africa, thereby constituting a base for addressing the question of yield gap. Full article
Show Figures

Graphical abstract

37 pages, 59030 KiB  
Review
Integration of Hyperspectral Imaging and AI Techniques for Crop Type Mapping: Present Status, Trends, and Challenges
by Mohamed Bourriz, Hicham Hajji, Ahmed Laamrani, Nadir Elbouanani, Hamd Ait Abdelali, François Bourzeix, Ali El-Battay, Abdelhakim Amazirh and Abdelghani Chehbouni
Remote Sens. 2025, 17(9), 1574; https://doi.org/10.3390/rs17091574 - 29 Apr 2025
Viewed by 2015
Abstract
Accurate and efficient crop maps are essential for decision-makers to improve agricultural monitoring and management, thereby ensuring food security. The integration of advanced artificial intelligence (AI) models with hyperspectral remote sensing data, which provide richer spectral information than multispectral imaging, has proven highly [...] Read more.
Accurate and efficient crop maps are essential for decision-makers to improve agricultural monitoring and management, thereby ensuring food security. The integration of advanced artificial intelligence (AI) models with hyperspectral remote sensing data, which provide richer spectral information than multispectral imaging, has proven highly effective in the precise discrimination of crop types. This systematic review examines the evolution of hyperspectral platforms, from Unmanned Aerial Vehicle (UAV)-mounted sensors to space-borne satellites (e.g., EnMAP, PRISMA), and explores recent scientific advances in AI methodologies for crop mapping. A review protocol was applied to identify 47 studies from databases of peer-reviewed scientific publications, focusing on hyperspectral sensors, input features, and classification architectures. The analysis highlights the significant contributions of Deep Learning (DL) models, particularly Vision Transformers (ViTs) and hybrid architectures, in improving classification accuracy. However, the review also identifies critical gaps, including the under-utilization of hyperspectral space-borne imaging, the limited integration of multi-sensor data, and the need for advanced modeling approaches such as Graph Neural Networks (GNNs)-based methods and geospatial foundation models (GFMs) for large-scale crop type mapping. Furthermore, the findings highlight the importance of developing scalable, interpretable, and transparent models to maximize the potential of hyperspectral imaging (HSI), particularly in underrepresented regions such as Africa, where research remains limited. This review provides valuable insights to guide future researchers in adopting HSI and advanced AI models for reliable large-scale crop mapping, contributing to sustainable agriculture and global food security. Full article
Show Figures

Figure 1

18 pages, 10159 KiB  
Article
Predicting Soil Salinity Based on Soil/Water Extracts in a Semi-Arid Region of Morocco
by Jamal-Eddine Ouzemou, Ahmed Laamrani, Ali El Battay and Joann K. Whalen
Soil Syst. 2025, 9(1), 3; https://doi.org/10.3390/soilsystems9010003 - 8 Jan 2025
Cited by 1 | Viewed by 2130
Abstract
Soil salinity is a major constraint to soil health and crop productivity, especially in arid and semi-arid regions. The most accurate measurement of soil salinity is considered to be the electrical conductivity of saturated soil extracts (ECe). Because this method is [...] Read more.
Soil salinity is a major constraint to soil health and crop productivity, especially in arid and semi-arid regions. The most accurate measurement of soil salinity is considered to be the electrical conductivity of saturated soil extracts (ECe). Because this method is labor-intensive, it is unsuitable for routine analysis in large soil sampling campaigns. This study aimed to identify the best models to estimate soil salinity based on ECe in relation to a rapid electrical conductivity (EC) measurement in soil/water (referred to as S:W henceforward) extracts. We evaluated the relationship between ECe and the ECS:W extract ratios (1:1, 1:2, and 1:5) in salt-affected soils from the semi-arid Sehb El Masjoune region of Morocco. The soil salinity in this region is 0.5 to 235 dS/m, as determined by the ECe method. A total of 125 soil samples, from topsoil (0–15 cm) and subsoil (15–30 cm) with mainly fine to medium textures, were analyzed using linear, logarithmic, and second-order polynomial regression models. The models included all samples or grouped samples according to soil texture (fine, medium) or specific textural classes. The mean ECe values were 2.6, 3.1, and 7.9 times greater than the EC of 1:1, 1:2, and 1:5 S:W extracts, respectively. Polynomial regression models had the best predictive accuracy, R2 = 0.98, and the lowest root mean square error of 10.6 to 10.7 dS/m for the ECS:W extract ratios of 1:5 and 1:2. The polynomial models could represent the non-linear relationships between ECe and salinity indicators, especially in the 80–170 dS/m salinity range, where other models typically underestimate the salinity. These results confirm that advanced regression techniques are suitable for predicting soil salinity in a salt-affected semi-arid region. The site-specific models outperformed previously published models, because they consider the spatial variability and heterogeneity of the salinity in the study area explicitly. This confirms the importance of calibrating soil salinity models according to the local soil and environmental conditions. Consequently, we can undertake soil salinity assessments in hundreds of samples by using the simple, rapid ECS:W extraction method as a direct indicator of EC and extrapolate to ECe with a polynomial regression model. Our approach enables the widespread soil salinity assessments that are needed for land-use planning, irrigation management, and crop selection in salt-affected landscapes. Full article
Show Figures

Figure 1

14 pages, 2248 KiB  
Article
Design and Use of a Stratum-Based Yield Predictions to Address Challenges Associated with Spatial Heterogeneity and Sample Clustering in Agricultural Fields Using Remote Sensing Data
by Keltoum Khechba, Ahmed Laamrani, Mariana Belgiu, Alfred Stein, Qi Dong and Abdelghani Chehbouni
Sustainability 2024, 16(21), 9196; https://doi.org/10.3390/su16219196 - 23 Oct 2024
Cited by 2 | Viewed by 1537
Abstract
Machine learning (ML) models trained with remote sensing data have the potential to improve cereal yield estimation across various geographic scales. However, the complexity and heterogeneity of agricultural landscapes present significant challenges to the robustness of ML-based field-level yield estimation over large areas. [...] Read more.
Machine learning (ML) models trained with remote sensing data have the potential to improve cereal yield estimation across various geographic scales. However, the complexity and heterogeneity of agricultural landscapes present significant challenges to the robustness of ML-based field-level yield estimation over large areas. In our study, we propose decomposing the landscape complexity into homogeneous zones using existing landform, agroecological, and climate classification datasets, and subsequently applying stratum-based ML to estimate cereal yield. This approach was tested in a heterogeneous region in northern Morocco, where wheat is the dominant crop. We compared the results of the stratum-based ML with those applied to the entire study area. Sentinel-1 and Sentinel-2 satellite imagery were used as input variables to train three ML models: Random Forest, Extreme Gradient Boosting (XGBoost), and Multiple Linear Regression. The results showed that the XGBoost model outperformed the other assessed models. Furthermore, the stratum-based ML approach significantly improved the yield estimation accuracy, particularly when using landform classifications as homogeneous strata. For example, the accuracy of XGBoost model improved from R2 = 0.58 and RMSE = 840 kg ha−1 when the ML models were trained on data from the entire study area to R2 = 0.72 and RMSE = 809 kg ha−1 when trained in the plain area. These findings highlight that developing stratum-based ML models using landform classification as strata leads to more accurate predictions by allowing the models to better capture local environmental conditions and agricultural practices that affect crop growth. Full article
Show Figures

Figure 1

16 pages, 3209 KiB  
Article
Ensemble Band Selection for Quantification of Soil Total Nitrogen Levels from Hyperspectral Imagery
by Khalil Misbah, Ahmed Laamrani, Paul Voroney, Keltoum Khechba, Raffaele Casa and Abdelghani Chehbouni
Remote Sens. 2024, 16(14), 2549; https://doi.org/10.3390/rs16142549 - 11 Jul 2024
Cited by 6 | Viewed by 1668
Abstract
Total nitrogen (TN) is a critical nutrient for plant growth, and its monitoring in agricultural soil is vital for farm managers. Traditional methods of estimating soil TN levels involve laborious and costly chemical analyses, especially when applied to large areas with multiple sampling [...] Read more.
Total nitrogen (TN) is a critical nutrient for plant growth, and its monitoring in agricultural soil is vital for farm managers. Traditional methods of estimating soil TN levels involve laborious and costly chemical analyses, especially when applied to large areas with multiple sampling points. Remote sensing offers a promising alternative for identifying, tracking, and mapping soil TN levels at various scales, including the field, landscape, and regional levels. Spaceborne hyperspectral sensing has shown effectiveness in reflecting soil TN levels. This study evaluates the efficiency of spectral reflectance at visible near-infrared (VNIR) and shortwave near-infrared (SWIR) regions to identify the most informative hyperspectral bands responding to the TN content in agricultural soil. In this context, we used PRISMA (PRecursore IperSpettrale della Missione Applicativa) hyperspectral imagery with ensemble learning modeling to identify N-specific absorption features. This ensemble consisted of three multivariate regression techniques, partial least square (PLSR), support vector regression (SVR), and Gaussian process regression (GPR) learners. The soil TN data (n = 803) were analyzed against a hyperspectral PRISMA imagery to perform spectral band selection. The 803 sampled data points were derived from open-access soil property and nutrient maps for Africa at a 30 m resolution over a bare agricultural field in southern Morocco. The ensemble learning strategy identified several bands in the SWIR in the regions of 900–1300 nm and 1900–2200 nm. The models achieved coefficient-of-determination values ranging from 0.63 to 0.73 and root-mean-square error values of 0.14 g/kg for PLSR, 0.11 g/kg for SVR, and 0.12 g/kg for GPR, which had been boosted to an R2 of 0.84, an RMSE of 0.08 g/kg, and an RPD of 2.53 by the ensemble, demonstrating the model’s accuracy in predicting the soil TN content. These results underscore the potential for using spaceborne hyperspectral imagery for soil TN estimation, enabling the development of decision-support tools for variable-rate fertilization and advancing our understanding of soil spectral responses for improved soil management. Full article
Show Figures

Figure 1

19 pages, 321 KiB  
Review
Use of Optical and Radar Imagery for Crop Type Classification in Africa: A Review
by Maryam Choukri, Ahmed Laamrani and Abdelghani Chehbouni
Sensors 2024, 24(11), 3618; https://doi.org/10.3390/s24113618 - 3 Jun 2024
Cited by 4 | Viewed by 1888
Abstract
Multi-source remote sensing-derived information on crops contributes significantly to agricultural monitoring, assessment, and management. In Africa, some challenges (i.e., small-scale farming practices associated with diverse crop types and agricultural system complexity, and cloud coverage during the growing season) can imped agricultural monitoring using [...] Read more.
Multi-source remote sensing-derived information on crops contributes significantly to agricultural monitoring, assessment, and management. In Africa, some challenges (i.e., small-scale farming practices associated with diverse crop types and agricultural system complexity, and cloud coverage during the growing season) can imped agricultural monitoring using multi-source remote sensing. The combination of optical remote sensing and synthetic aperture radar (SAR) data has emerged as an opportune strategy for improving the precision and reliability of crop type mapping and monitoring. This work aims to conduct an extensive review of the challenges of agricultural monitoring and mapping in Africa in great detail as well as the current research progress of agricultural monitoring based on optical and Radar satellites. In this context optical data may provide high spatial resolution and detailed spectral information, which allows for the differentiation of different crop types based on their spectral signatures. However, synthetic aperture radar (SAR) satellites can provide important contributions given the ability of this technology to penetrate cloud cover, particularly in African tropical regions, as opposed to optical data. This review explores various combination techniques employed to integrate optical and SAR data for crop type classification and their applicability and limitations in the context of African countries. Furthermore, challenges are discussed in this review as well as and the limitations associated with optical and SAR data combination, such as the data availability, sensor compatibility, and the need for accurate ground truth data for model training and validation. This study also highlights the potential of advanced modelling (i.e., machine learning algorithms, such as support vector machines, random forests, and convolutional neural networks) in improving the accuracy and automation of crop type classification using combined data. Finally, this review concludes with future research directions and recommendations for utilizing optical and SAR data combination techniques in crop type classification for African agricultural systems. Furthermore, it emphasizes the importance of developing robust and scalable classification models that can accommodate the diversity of crop types, farming practices, and environmental conditions prevalent in Africa. Through the utilization of combined remote sensing technologies, informed decisions can be made to support sustainable agricultural practices, strengthen nutritional security, and contribute to the socioeconomic development of the continent. Full article
(This article belongs to the Special Issue Soil Sensing and Mapping in Precision Agriculture)
8 pages, 889 KiB  
Communication
An Extensive Field-Scale Dataset of Topsoil Organic Carbon Content Aimed to Assess Remote Sensed Datasets and Data-Derived Products from Modeling Approaches
by Ahmed Laamrani, Paul R. Voroney, Daniel D. Saurette, Aaron A. Berg, Line Blackburn, Adam W. Gillespie and Ralph C. Martin
Remote Sens. 2022, 14(21), 5519; https://doi.org/10.3390/rs14215519 - 2 Nov 2022
Cited by 4 | Viewed by 2570
Abstract
The geosciences suffer from a lack of large georeferenced datasets that can be used to assess and monitor the role of soil organic carbon (SOC) in plant growth, soil fertility, and CO2 sequestration. Publicly available, large field-scale georeferenced datasets are often limited [...] Read more.
The geosciences suffer from a lack of large georeferenced datasets that can be used to assess and monitor the role of soil organic carbon (SOC) in plant growth, soil fertility, and CO2 sequestration. Publicly available, large field-scale georeferenced datasets are often limited in number and design to serve these purposes. This study provides the first publicly accessible dataset of georeferenced topsoil SOC measurements (n = 840) over a 26-hectare (ha) agricultural field located in southern Ontario, Canada, with a sampling density of ~32 points per ha. As SOC is usually influenced by site topography (i.e., slope and landscape position), each point of the database is associated with a wide range of remote sensing topographic derivatives; as well as with normalized difference vegetation index (NDVI) based value. The NDVI data were extracted from remote sensing Sentinel-2 imagery from over a five-year period (2017–2021). In this paper, the methodology for topsoil sampling, SOC measurement in the lab, as well as producing the suite of topographic derivatives is described. We discuss the opportunities that the database offers in terms of spatially explicit and continuous soil information to support international efforts in digital soil mapping (i.e., SoilGrids250m) as well as other potential applications detailed in the discussion section. We believe that the database with very dense point location measurements can help in conducting carbon stocks and sequestration studies. Such information can be used to help bridge the gap between ground data and remotely sensed datasets or data-derived products from modeling approaches intended to evaluate field-scale rates of agricultural carbon accumulation. The generated topsoil database in this study is archived and publicly available on the Zenodo open-access repository. Full article
(This article belongs to the Special Issue Topsoil Characterization by Means of Remote Sensing)
Show Figures

Figure 1

17 pages, 922 KiB  
Review
Multi-Sensors Remote Sensing Applications for Assessing, Monitoring, and Mapping NPK Content in Soil and Crops in African Agricultural Land
by Khalil Misbah, Ahmed Laamrani, Keltoum Khechba, Driss Dhiba and Abdelghani Chehbouni
Remote Sens. 2022, 14(1), 81; https://doi.org/10.3390/rs14010081 - 24 Dec 2021
Cited by 37 | Viewed by 9141
Abstract
Demand for agricultural products is increasing as population continues to grow in Africa. To attain a higher crop yield while preserving the environment, appropriate management of macronutrients (i.e., nitrogen (N), phosphorus (P) and potassium (K)) and crops are of critical prominence. This paper [...] Read more.
Demand for agricultural products is increasing as population continues to grow in Africa. To attain a higher crop yield while preserving the environment, appropriate management of macronutrients (i.e., nitrogen (N), phosphorus (P) and potassium (K)) and crops are of critical prominence. This paper aims to review the state of art of the use of remote sensing in soil agricultural applications, especially in monitoring NPK availability for widely grown crops in Africa. In this study, we conducted a substantial literature review of the use of airborne imaging technology (e.g., different platforms and sensors), methods available for processing and analyzing spectral information, and advances of these applications in farming practices by the African scientific community. Here we aimed to identify knowledge gaps in this field and challenges related to the acquisition, processing, and analysis of hyperspectral imagery for soil agriculture investigations. To do so, publications over the past 10 years (i.e., 2008–2021) in hyperspectral imaging technology and applications in monitoring macronutrients status for crops were reviewed. In this study, the imaging platforms and sensors, as well as the different methods of processing encountered across the literature, were investigated and their benefit for NPK assessment were highlighted. Furthermore, we identified and selected particular spectral regions, bands, or features that are most sensitive to describe NPK content (both in crop and soil) that allowed to characterize NPK. In this review, we proposed a hyperspectral data-based research protocol to quantify variability of NPK in soil and crop at the field scale for the sake of optimizing fertilizers application. We believe that this review will contribute promoting the adoption of hyperspectral technology (i.e., imaging and spectroscopy) for the optimization of soil NPK investigation, mapping, and monitoring in many African countries. Full article
(This article belongs to the Special Issue Precision Agriculture Using Hyperspectral Images)
Show Figures

Figure 1

19 pages, 3674 KiB  
Review
Monitoring and Analyzing Yield Gap in Africa through Soil Attribute Best Management Using Remote Sensing Approaches: A Review
by Keltoum Khechba, Ahmed Laamrani, Driss Dhiba, Khalil Misbah and Abdelghani Chehbouni
Remote Sens. 2021, 13(22), 4602; https://doi.org/10.3390/rs13224602 - 16 Nov 2021
Cited by 21 | Viewed by 6626
Abstract
Africa has the largest population growth rate in the world and an agricultural system characterized by the predominance of smallholder farmers. Improving food security in Africa will require a good understanding of farming systems yields as well as reducing yield gaps (i.e., the [...] Read more.
Africa has the largest population growth rate in the world and an agricultural system characterized by the predominance of smallholder farmers. Improving food security in Africa will require a good understanding of farming systems yields as well as reducing yield gaps (i.e., the difference between potential yield and actual farmer yield). To this end, crop yield gap practices in African countries need to be understood to fill this gap while decreasing the environmental impacts of agricultural systems. For instance, the variability of yields has been demonstrated to be strongly controlled by soil fertilizer use, irrigation management, soil attribute, and the climate. Consequently, the quantitative assessment and mapping information of soil attributes such as nitrogen (N), phosphorus (P), potassium (K), soil organic carbon (SOC), moisture content (MC), and soil texture (i.e., clay, sand and silt contents) on the ground are essential to potentially reducing the yield gap. However, to assess, measure, and monitor these soil yield-related parameters in the field, there is a need for rapid, accurate, and inexpensive methods. Recent advances in remote sensing technologies and high computational performances offer a unique opportunity to implement cost-effective spatiotemporal methods for estimating crop yield with important levels of scalability. However, researchers and scientists in Africa are not taking advantage of the opportunity of increasingly available geospatial remote sensing technologies and data for yield studies. The objectives of this report are to (i) conduct a review of scientific literature on the current status of African yield gap analysis research and their variation in regard to soil properties management by using remote sensing techniques; (ii) review and describe optimal yield practices in Africa; and (iii) identify gaps and limitations to higher yields in African smallholder farms and propose possible improvements. Our literature reviewed 80 publications and covered a period of 22 years (1998-2020) over many selected African countries with a potential yield improvement. Our results found that (i) the number of agriculture yield-focused remote sensing studies has gradually increased, with the largest proportion of studies published during the last 15 years; (ii) most studies were conducted exclusively using multispectral Landsat and Sentinel sensors; and (iii) over the past decade, hyperspectral imagery has contributed to a better understanding of yield gap analysis compared to multispectral imagery; (iv) soil nutrients (i.e., NPK) are not the main factor influencing the studied crop productivity in Africa, whereas clay, SOC, and soil pH were the most examined soil properties in prior papers. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Crop Monitoring and Yield Estimation)
Show Figures

Figure 1

17 pages, 4984 KiB  
Article
Within-Field Yield Prediction in Cereal Crops Using LiDAR-Derived Topographic Attributes with Geographically Weighted Regression Models
by Riley Eyre, John Lindsay, Ahmed Laamrani and Aaron Berg
Remote Sens. 2021, 13(20), 4152; https://doi.org/10.3390/rs13204152 - 16 Oct 2021
Cited by 19 | Viewed by 4546
Abstract
Accurate yield estimation and optimized agricultural management is a key goal in precision agriculture, while depending on many different production attributes, such as soil properties, fertilizer and irrigation management, the weather, and topography.The need for timely and accurate sensing of these inputs at [...] Read more.
Accurate yield estimation and optimized agricultural management is a key goal in precision agriculture, while depending on many different production attributes, such as soil properties, fertilizer and irrigation management, the weather, and topography.The need for timely and accurate sensing of these inputs at the within field-scale has led to increased adoption of very high-resolution remote and proximal sensing technologies. With regard to topography attributes, greater attention is currently being devoted to LiDAR datasets (Light Detection and Ranging), mainly because numerous topographic variables can be derived at very high spatial resolution from these datasets. The current study uses LiDAR elevation data from agricultural land in southern Ontario, Canada to derive several topographic attributes such as slope, and topographic wetness index, which were then correlated to seven years of crop yield data. The effectiveness of each topographic derivative was independently tested using a moving-window correlation technique. Finally, the correlated derivatives were selected as explanatory variables for geographically weighted regression (GWR) models. The global coefficient of determination values (determined from an average of all the local relationships) were found to be R2 = 0.80 for corn, R2 = 0.73 for wheat, R2 = 0.71 for soybeans and R2 = 0.75 for the average of all crops. These results indicate that GWR models using topographic variables derived from LiDAR can effectively explain yield variation of several crop types on an entire-field scale. Full article
(This article belongs to the Special Issue Remote Sensing of Agro-Ecosystems)
Show Figures

Figure 1

20 pages, 1161 KiB  
Review
Development of a Land Use Carbon Inventory for Agricultural Soils in the Canadian Province of Ontario
by Ahmed Laamrani, Paul R. Voroney, Adam W. Gillespie and Abdelghani Chehbouni
Land 2021, 10(7), 765; https://doi.org/10.3390/land10070765 - 20 Jul 2021
Cited by 8 | Viewed by 4520
Abstract
Globally, agricultural soils are being evaluated for their role in climate change regulation as a potential sink for atmospheric carbon dioxide (CO2) through sequestration of organic carbon as soil organic matter. Scientists and policy analysts increasingly seek to develop programs and [...] Read more.
Globally, agricultural soils are being evaluated for their role in climate change regulation as a potential sink for atmospheric carbon dioxide (CO2) through sequestration of organic carbon as soil organic matter. Scientists and policy analysts increasingly seek to develop programs and policies which recognize the importance of mitigation of climate change and insurance of ecological sustainability when managing agricultural soils. In response, many countries are exploring options to develop local land-use carbon inventories to better understand the flow of carbon in agriculture to estimate its contribution to greenhouse gas (GHG) reporting. For instance, the Canadian province of Ontario does not currently have its own GHG inventory and relies on the Canada’s National Inventory Report (NIR). To address this, the province explored options to develop its own land-use carbon inventory to better understand the carbon resource in agricultural soils. As part of this undertaking, a gap analysis was conducted to identify the critical information gaps and limitations in estimating soil organic carbon (SOC) monitoring to develop a land-use carbon inventory (LUCI) for the cropland sector in Ontario. We conducted a review of analytical and modeling methods used to quantify GHG emissions and reporting for the cropland sectors in Canada, and compared them with the methods used in seven other countries (i.e., France, United Kingdom; Germany; United States of America, Australia, New Zealand, and Japan). From this comparison, four target areas of research were identified to consider in the development of a cropland sector LUCI in Ontario. First, there needs to be a refinement of the modelling approach used for SOC accounting. The Century model, which is used for Ontario’s cropland sector, can benefit from updates to the crop growth model and from the inclusion of manure management and other amendments. Secondly, a raster-based spatially explicit modelling approach is recommended as an alternative to using polygon-based inputs for soil data and census information for land management. This approach can leverage readily available Earth Observation (EO) data (e.g., remote sensing maps, digital soil maps). Thirdly, the contributions from soil erosion need to be included in inventory estimates of SOC emissions and removals from cropland. Fourth, establishment of an extensive network of long-term experimental sites to calibrate and validate the SOC models (i.e., CENTURY) is required. This can be done by putting in place a ground-truth program, through farmer-led research initiatives and collaboration, to deal with uncertainties due to spatial variability and regional climates. This approach would provide opportunities for farmers to collaborate on data collection by keeping detailed records of their cropping and soil management practices, and crop yields. Full article
(This article belongs to the Special Issue Cropland Carbon)
Show Figures

Figure 1

21 pages, 12379 KiB  
Article
Mapping and Characterization of Phenological Changes over Various Farming Systems in an Arid and Semi-Arid Region Using Multitemporal Moderate Spatial Resolution Data
by Youssef Lebrini, Abdelghani Boudhar, Ahmed Laamrani, Abdelaziz Htitiou, Hayat Lionboui, Adil Salhi, Abdelghani Chehbouni and Tarik Benabdelouahab
Remote Sens. 2021, 13(4), 578; https://doi.org/10.3390/rs13040578 - 6 Feb 2021
Cited by 20 | Viewed by 5086
Abstract
Changing land use patterns is of great importance in environmental studies and critical for land use management decision making over farming systems in arid and semi-arid regions. Unfortunately, ground data scarcity or inadequacy in many regions can cause large uncertainties in the characterization [...] Read more.
Changing land use patterns is of great importance in environmental studies and critical for land use management decision making over farming systems in arid and semi-arid regions. Unfortunately, ground data scarcity or inadequacy in many regions can cause large uncertainties in the characterization of phenological changes in arid and semi-arid regions, which can hamper tailored decision making towards best agricultural management practices. Alternatively, state-of-the-art methods for phenological metrics’ extraction and long time-series analysis techniques of multispectral remote sensing imagery provide a viable solution. In this context, this study aims to characterize the changes over farming systems through trend analysis. To this end, four farming systems (fallow, rainfed, irrigated annual, and irrigated perennial) in arid areas of Morocco were studied based on four phenological metrics (PhM) (i.e., great integral, start, end, and length of the season). These were derived from large Moderate resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) time-series using both a machine learning algorithm and a pixel-based change analysis method. Results showed that during the last twenty-year period (i.e., 2000–2019), a significant dynamism of the plant cover was linked to the behavior of farmers who tend to cultivate intensively and to invest in high-income crops. More specifically, a relevant variability in fallow and rainfed areas, closely linked to the weather conditions, was found. In addition, significant lag trends of the start (−6 days) and end (+3 days) were found, which indicate that the length of the season was related to the spatiotemporal variability of rainfall. This study has also highlighted the potential of multitemporal moderate spatial resolution data to accurately monitor agriculture and better manage land resources. In the meantime, for operationally implementing the use of such work in the field, we believe that it is essential consider the perceptions, opinions, and mutual benefits of farmers and stakeholders to improve strategies and synergies whilst ensuring food, welfare, and sustainability. Full article
Show Figures

Graphical abstract

15 pages, 1128 KiB  
Review
Analysis of the Effect of Climate Warming on Paludification Processes: Will Soil Conditions Limit the Adaptation of Northern Boreal Forests to Climate Change? A Synthesis
by Ahmed Laamrani, Osvaldo Valeria, Abdelghani Chehbouni and Yves Bergeron
Forests 2020, 11(11), 1176; https://doi.org/10.3390/f11111176 - 7 Nov 2020
Cited by 12 | Viewed by 4750
Abstract
Northern boreal forests are characterized by accumulation of accumulation of peat (e.g., known as paludification). The functioning of northern boreal forest species and their capacity to adapt to environmental changes appear to depend on soil conditions. Climate warming is expected to have particularly [...] Read more.
Northern boreal forests are characterized by accumulation of accumulation of peat (e.g., known as paludification). The functioning of northern boreal forest species and their capacity to adapt to environmental changes appear to depend on soil conditions. Climate warming is expected to have particularly pronounced effects on paludified boreal ecosystems and can alter current forest species composition and adaptation by changing soil conditions such as moisture, temperature regimes, and soil respiration. In this paper, we review and synthesize results from various reported studies (i.e., 88 research articles cited hereafter) to assess the effects of climatic warming on soil conditions of paludified forests in North America. Predictions that global warming may increase the decomposition rate must be considered in combination with its impact on soil moisture, which appears to be a limiting factor. Local adaptation or acclimation to current climatic conditions is occurring in boreal forests, which is likely to be important for continued ecosystem stability in the context of climate change. The most commonly cited response of boreal forest species to global warming is a northward migration that tracks the climate and soil conditions (e.g., temperature and moisture) to which they are adapted. Yet, some constraints may influence this kind of adaptation, such as water availability, changes in fire regimes, decomposer adaptations, and the dynamic of peat accumulation. In this paper, as a study case, we examined an example of potential effects of climatic warming on future paludification changes in the eastern lowland region of Canada through three different combined hypothetical scenarios based on temperature and precipitation (e.g., unchanged, increase, or decrease). An increase scenario in precipitation will likely favor peat accumulation in boreal forest stands prone to paludification and facilitate forested peatland expansion into upland forest, while decreased or unchanged precipitation combined with an increase in temperature will probably favor succession of forested peatlands to upland boreal forests. Each of the three scenarios were discussed in this study, and consequent silvicultural treatment options were suggested for each scenario to cope with anticipated soil and species changes in the boreal forests. We concluded that, despite the fact boreal soils will not constrain adaptation of boreal forests, some consequences of climatic warming may reduce the ability of certain species to respond to natural disturbances such as pest and disease outbreaks, and extreme weather events. Full article
(This article belongs to the Special Issue Forest Soil Carbon and Climate Changes)
Show Figures

Figure 1

13 pages, 1138 KiB  
Article
Temporal Change of Soil Carbon on a Long-Term Experimental Site with Variable Crop Rotations and Tillage Systems
by Ahmed Laamrani, Paul R. Voroney, Aaron A. Berg, Adam W. Gillespie, Michael March, Bill Deen and Ralph C. Martin
Agronomy 2020, 10(6), 840; https://doi.org/10.3390/agronomy10060840 - 12 Jun 2020
Cited by 24 | Viewed by 4587
Abstract
The impacts of tillage practices and crop rotations are fundamental factors influencing changes in the soil carbon, and thus the sustainability of agricultural systems. The objective of this study was to compare soil carbon status and temporal changes in topsoil from different 4 [...] Read more.
The impacts of tillage practices and crop rotations are fundamental factors influencing changes in the soil carbon, and thus the sustainability of agricultural systems. The objective of this study was to compare soil carbon status and temporal changes in topsoil from different 4 year rotations and tillage treatments (i.e., no-till and conventional tillage). Rotation systems were primarily corn and soy-based and included cereal and alfalfa phases along with red clover cover crops. In 2018, soil samples were collected from a silty-loam topsoil (0–15 cm) from the 36 year long-term experiment site in southern Ontario, Canada. Total carbon (TC) contents of each sample were determined in the laboratory using combustion methods and comparisons were made between treatments using current and archived samples (i.e., 20 year and 9 year change, respectively) for selected crop rotations. Overall, TC concentrations were significantly higher for no-till compared with conventional tillage practices, regardless of the crop rotations employed. With regard to crop rotation, the highest TC concentrations were recorded in corn–corn–oats–barley (CCOB) rotations with red clover cover crop in both cereal phases. TC contents were, in descending order, found in corn–corn–alfalfa–alfalfa (CCAA), corn–corn–soybean–winter wheat (CCSW) with 1 year of seeded red clover, and corn–corn–corn–corn (CCCC). The lowest TC concentrations were observed in the corn–corn–soybean–soybean (CCSS) and corn–corn–oats–barley (CCOB) rotations without use of cover crops, and corn–corn–soybean–winter wheat (CCSW). We found that (i) crop rotation varieties that include two consecutive years of soybean had consistently lower TC concentrations compared with the remaining rotations; (ii) TC for all the investigated plots (no-till and/or tilled) increased over the 9 year and 20 year period; (iii) the no-tilled CCOB rotation with 2 years of cover crop showed the highest increase of TC content over the 20 year change period time; and (iv) interestingly, the no-till continuous corn (CCCC) rotation had higher TC than the soybean–soybean–corn–corn (SSCC) and corn–corn–soybean–winter wheat (CCSW). We concluded that conservation tillage (i.e., no-till) and incorporation of a cover crop into crop rotations had a positive effect in the accumulation of TC topsoil concentrations and could be suitable management practices to promote soil fertility and sustainability in our agricultural soils. Full article
(This article belongs to the Special Issue Effects of Agricultural Management on Soil Properties and Health)
Show Figures

Figure 1

Back to TopTop