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Abstract: Accurate yield estimation and optimized agricultural management is a key goal in preci-
sion agriculture, while depending on many different production attributes, such as soil properties,
fertilizer and irrigation management, the weather, and topography.The need for timely and accurate
sensing of these inputs at the within field-scale has led to increased adoption of very high-resolution
remote and proximal sensing technologies. With regard to topography attributes, greater attention
is currently being devoted to LiDAR datasets (Light Detection and Ranging), mainly because nu-
merous topographic variables can be derived at very high spatial resolution from these datasets.
The current study uses LiDAR elevation data from agricultural land in southern Ontario, Canada
to derive several topographic attributes such as slope, and topographic wetness index, which were
then correlated to seven years of crop yield data. The effectiveness of each topographic derivative
was independently tested using a moving-window correlation technique. Finally, the correlated
derivatives were selected as explanatory variables for geographically weighted regression (GWR)
models. The global coefficient of determination values (determined from an average of all the local
relationships) were found to be R2 = 0.80 for corn, R2 = 0.73 for wheat, R2 = 0.71 for soybeans and
R2 = 0.75 for the average of all crops. These results indicate that GWR models using topographic
variables derived from LiDAR can effectively explain yield variation of several crop types on an
entire-field scale.

Keywords: LiDAR; agricultural yield prediction; geographically weighted regression; topographic
derivatives

1. Introduction

Precision agriculture technologies are increasingly dependent on accurate crop yield
information in order to be effective. Unfortunately, not all farmers are able to collect these
data due to the initial cost or because of the technological knowledge required to extract
and examine the data. This is especially true in developing regions where the use of yield-
monitoring technology is rare. In addition, data protection and privacy rights can also
make it difficult to access annual yield data [1]. In these cases, it would be beneficial to use
proxies for crop yield that can be easily determined without the need for yield-monitoring
technology that require more investment and time.

Topographic variables have been shown to have significant influence on crop yield, most
likely due to surficial hydrological processes related to local topographic variation [2–4]. For
instance, soil water, nutrients such as nitrogen and phosphorous, and organic matter are
all essential in the development of agricultural crops and much of their spatial distribution
can be explained with the use of surficial topographic variables [5–9]. Therefore, using
topographic attributes may be a viable method for measuring within-field crop yield
variability to identify low-yielding regions of cropland where ecologically beneficial land
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uses may be more suitable [10]. This would allow for field assessment without the need for
crop yield data and may potentially increase the amount of lands set aside for ecological or
environmental benefits [10]. This approach may also provide supplemental insight into
crop yield potential in fields that have sparsely collected crop yield data.

Topographic variability is one of the main controls on surface flow and is subsequently
one of the most studied flow-inducing gradients for water and nutrients [11–13]. Lever-
aging the potential energy provided by gravity and vertical displacement, topographic
variability influences hydrological processes such as overland flow and throughflow, there-
fore affecting the distribution of soil water [12]. This is easily observed in regions with high
topographic variability, as water tends to pool in lower-lying areas while elevated areas are
subject to drier conditions. Surface characteristics that dictate crop yield potential, such as
surface moisture and available nutrients, often follow the spatial distribution represented
by these topographic attributes. Therefore, including a variety of these attributes when
assessing the relationships between topography and yield should be essential [2]. For
example, Green et al. [2] showed that slope, elevation and Wetness Index have significant
explanatory control on crop yield with the use of neural network and multiple linear regres-
sion models. Heil et al. (Ref. [5] experimented with the use of topographic parameters to
predict grain yields, notably concluding that catchment area, valley depth, plan curvature,
profile curvature and convergence are significant predictors of crop yields. Varying results
between studies highlight the necessity to include a variety of topographic parameters
as model inputs when predicting crop yield based on local topography. Attribute raster
spatial resolution may also impact the viability of specific topographic attributes [12,14].

Aerial-based LiDAR systems and GPS (Global Positioning System) technologies have
also made it efficient and reasonably cost-effective to collect highly accurate surficial data
for large areas [7,15]. This has led to extensive use LiDAR-generated digital elevation
models (DEM) in agricultural regions, where governments, research groups and private
entities have collected precise elevation data. In addition to the recent developments made
in surface data collection technology and expanded DEM coverage, the methods used to
evaluate land surfaces are continually developed as well. LiDAR derived topographic
attributes developed from surface data can be used to explain the distribution of surface
water and nutrients, therefore indicating areas where an increase in potential crop yield
can be achieved.

One of the benefits of these expanding datasets is the opportunity to assess topography-
controlled yield potential of farms where yield data do not exist or is inaccessible. This
opportunity will continue to grow as the geographic coverage of DEMs expands and may
contribute to the ability to assess potential within field yield variations in remote locations
or in developing regions. The use of these techniques may be economically beneficial to
agricultural practitioners, while providing information to encourage the implementation
of ecosystem service-providing land uses [10].

This study aims to assess how topographic attributes created from fine-resolution
LiDAR surface data can be used to evaluate in-field crop yield variation and assess rela-
tive yield variability within an agricultural field in southern Ontario, Canada. This was
accomplished through two main objectives: (1) Assess which topographic attributes are
most effective for predicting crop yield variance and for which crop types; and (2) use
a geographically weighted regression technique to determine the extent to which topo-
graphic derivates can predict in-field crop yield variation and to identify local areas of
topographically restricted yield potential that may be better suited for other land uses.

2. Study Area and Methods
2.1. Site Description

This research was conducted in an agricultural field located within the Canadian
Lake Erie basin of southwestern Ontario, Canada (Figure 1A,B). Southwestern Ontario has
regions of highly active agricultural activity, including more than 1.2 million hectares of
annually harvested crop land [16]. The most commonly grown crops in this region include
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corn, soybeans, and winter wheat [16]. These crops are generally grown in crop rotations
to promote the sustainability of the production system and soil health. Cover crops are
widely adopted by farmers as a practice to protect fields from soil erosion and to promote
organic matter accumulation within the field [17].

The study field covers approximately 26 hectares near the city of Guelph Ontario,
Canada (Figure 1C). The soils are typical of the surrounding region, classified as Hillsburgh
fine sandy loam series [18]. The site topography can be described as having irregular,
lightly sloping terrains. An elevated ridge runs on a 40◦ orientation over the length of the
field. The elevation of the field ranges from 397 m to 410 m above sea level (Figure 1C)
with slopes ranging from 0◦ to 9◦. There are several depressions throughout the field and a
ephemeral creek runs along the north-west side of the field, with the topography sloping
toward it.
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The field is owned and managed by a private farming company and agricultural
decisions are managed similarly to other farms in the surrounding area. Crops are subject
to nutrient application as needed and are visually monitored by farm operators and their
agronomy team throughout the growing season. Crops are generally planted using no-till
practices with soy and wheat crops planted using an air seed drill and corn using a modern
corn planter.

2.2. Processing Crop Yield Data

Crop yield data for this research were collected from the farmers that own and manage
the study site’s farming operation. The yield data were collected for 2011–2018, as shown
in Table 1. A commercial crop yield monitor, mounted to a traditional combine harvester,
was used to measure yield. The device measures the amount of flowing grain passed
through the elevator of the combine during harvest and then tags each measurement
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with real-time GPS coordinates. A point containing a yield measurement is created every
second, generating a dense network of points that cover the field. The data are collected
and formatted as georeferenced points (i.e., shapefiles) that were viewed and manipulated
in a geographic information system (GIS).

Table 1. Crop types included in this study.

Year Crop

2011 Soybeans
2013 Soybeans
2014 Corn
2015 Soybeans
2016 Winter Wheat
2017 Soybeans
2018 Corn

Following [20], the crop yield data were cleaned to remove incorrect values recorded
by the yield monitor. Commercial yield monitors are prone to erroneous data when
harvested rows overlap, suggesting that there is a low yielding crop in specific areas of
the field. Therefore, straight-line sequences of points that showed near-zero yield were
removed from the dataset. Additionally, all points along the edge of the fields were
removed to account for the head of the harvesting equipment potentially not being filled
end-to-end during harvesting. This event is minimal through the interior of the field,
but field edges are prone to being harvested without a full swath. When the combine
begins harvesting each length of the field, there is also potential for the yield monitor to
begin recording before flowing grain is measured. This results in the initial points of a
row appearing to yield poorly. In these cases, points were removed from the dataset. An
example image of the raw crop yields (before filtering) for an individual year (2017) is
shown in Figure 2a. The points removed based on known areas potential yield estimation
bias is shown in Figure 2b. Further description of crop yield for this field are presented in
Capmourteres et al. [10].

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 18 
 

 

shown in Table 1. A commercial crop yield monitor, mounted to a traditional combine 
harvester, was used to measure yield. The device measures the amount of flowing grain 
passed through the elevator of the combine during harvest and then tags each measure-
ment with real-time GPS coordinates. A point containing a yield measurement is created 
every second, generating a dense network of points that cover the field. The data are col-
lected and formatted as georeferenced points (i.e., shapefiles) that were viewed and ma-
nipulated in a geographic information system (GIS). 

Following [20], the crop yield data were cleaned to remove incorrect values recorded 
by the yield monitor. Commercial yield monitors are prone to erroneous data when har-
vested rows overlap, suggesting that there is a low yielding crop in specific areas of the 
field. Therefore, straight-line sequences of points that showed near-zero yield were re-
moved from the dataset. Additionally, all points along the edge of the fields were removed 
to account for the head of the harvesting equipment potentially not being filled end-to-
end during harvesting. This event is minimal through the interior of the field, but field 
edges are prone to being harvested without a full swath. When the combine begins har-
vesting each length of the field, there is also potential for the yield monitor to begin re-
cording before flowing grain is measured. This results in the initial points of a row ap-
pearing to yield poorly. In these cases, points were removed from the dataset. An example 
image of the raw crop yields (before filtering) for an individual year (2017) is shown in 
Figure 2a. The points removed based on known areas potential yield estimation bias is 
shown in Figure 2b. Further description of crop yield for this field are presented in Cap-
mourteres et al. [10]. 

 
Figure 2. Map illustrating high and low yielding regions for 2017 crop year (a). The yields are expressed from a standard-
ized anomaly (Equation (1)) from a mean of 3.04 and standard deviation of 0.46 tonnes/ha. In (b) the yield data removed 
(based on the criteria described in Section 2.2) are shown in gray. 

Table 1. Crop types included in this study. 

Year Crop  
2011 Soybeans 

a) b)

Figure 2. Map illustrating high and low yielding regions for 2017 crop year (a). The yields are expressed from a standardized
anomaly (Equation (1)) from a mean of 3.04 and standard deviation of 0.46 tonnes/ha. In (b) the yield data removed (based
on the criteria described in Section 2.2) are shown in gray.
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The output yield shapefiles were interpolated to generate continuous raster surfaces
for the entire field. The raster surfaces were created using a two-dimensional minimum
curvature spline technique, implemented in ArcMap. This method was chosen because
the method minimizes inflated curvature between points and ensures point data values
are left intact within the raster cells [21]. Spline-generated raster surfaces are also typically
smoother than raster surfaces produced by other interpolation techniques, which aids in
visual interpretation of the results [22]. The spatial scale of the interpolated yield data was
0.5 m, this spatial scale was selected to match the spatial resolution of the topographic data
(and its derivatives) as described in Section 2.3.

The newly created yield raster maps were normalized between 0 and 1 to allow for
evenly weighted comparison between different crops using Equation (1). The yield at raster
location x was normalized (x′) as:

x′ =
x− Field Minimum

Field Maximum− Field Minimum
(1)

where the maximum and minimum values are highest and lowest yield observations
on the field, following screening for anomalous values described above. This removes
much of the inter-annual variance and the natural differences in yields by crop type. After
normalization, the average of all yield rasters was also calculated to allow for spatial
analyses on multiple years of crop yields. Averages for each crop were also calculated in
this manner. The inclusion of multiple years of normalized yield data was completed to
further minimize the effects that climate anomalies or agricultural management decisions
may have had on resulting crop yields [15,23,24]. It must be noted that although there are
benefits to this approach, it naturally excludes the ability to measure inter-annual factors
on crop yield such as meteorological differences between years. Since there was only one
year of wheat data available, the single layer represents wheat for the study.

2.3. LiDAR Dataset Acquisition and Processing

A LiDAR-derived DEM was created for the study site with the use of publicly avail-
able data collected by the Ontario Ministry of Food and Rural Affairs (OMAFRA) and
the Ontario Ministry of Natural Resources and Forestry (MNRF). The LiDAR data were
collected using a Leica geosystems ADS100 sensor from an airborne platform (2377 m AMT)
over the studied field in 2017 and 2018 during the non-growing season, thus minimizing
the number and effect of off terrain objects including vegetation canopies. The dataset used
for this study was an interpolated 0.5 m bare-earth raster DEM derived from the LiDAR
point clouds using a triangulation-based routine.

Topographic derivatives (shown in in Table 2) were selected based on pertinent
theoretical and applied literature and raster layers created for each of the tested topographic
derivatives [15,25–28]. For example, a crop’s dependence on soil water to produce a
substantial yield makes layers associated with water movement appropriate for yield
forecasting. Flow-driven nutrient movement may also indicate areas of higher yield
potential [29]. Each layer was calculated using the DEM of the field and surrounding area
in order to minimize potential unnatural edge-effects of the field boundary. Derivative
raster layers were then clipped to match the extent of the field. The created topographic
derivatives can be split into two subgroups: primary and secondary. Primary derivatives
are those calculated directly from the DEM (i.e., slope, aspect), while secondary derivatives
rely on a combination of primary surface derivatives or developed indices (i.e., topographic
wetness index) to model topographic characteristics [30].

All the included variables and the source algorithms are briefly described in Table
2. Each of the source the algorithms were run using Whitebox-Tools [31]. Including a
wide range of topographic derivatives can provide insight into which variables should be
included in future models. This is critical for model transferability, as it may encourage
the proper selection of variables to be chosen to fit the area of focus. It also allows for the



Remote Sens. 2021, 13, 4152 6 of 17

topographic attributes to compensate for each other if there are distinct features within a
field that influence crop yield variability.

Table 2. Topographic attributes included in the regression analysis.

Topographic Attribute Description Source

Circular variance of aspect Local slope aspect variance [32]
Depression depth Vertical depth of depressions [33]
Downslope Index Slope gradient between a cell and downslope cell [34]

Catchment area with divergent flow (upslope area) Multi-directional flow algorithm [35]
Impoundment size index Resulting upslope impoundment from placement of dam [36]

Plan curvature Curvature perpendicular to dominant slope angle [37]
Profile curvature Curvature parallel to dominant slope angle [37]

Relative topographic position Cell elevation relative to surrounding cells [38]
Slope Surface gradient [37]

Tangential curvature Plan curvature related to slope [37]
Topographic wetness index Steady state soil moisture index based slope contributing area [39]

Total curvature Curvature across a surface [37]
Upslope flow path length Average length of each cell’s upslope flow paths [31]

2.4. Statistical Analysis
2.4.1. Field-Wide Statistical Analysis

In our first stage of analysis, a set of 13 topographic derivatives (Table 2) were indi-
vidually correlated against crop yield variance to identify which attributes may be the
most important factors for use in a multi-input regression. Linear regressions were per-
formed between each topographic variable and average crop yield to assess their global
(i.e., field-wide) relationships. Linear regressions were computed using R statistical analy-
sis software [40].

2.4.2. Local Statistical Analysis

In addition to global or field average correlations, a moving-window technique [31,38]
was used over the raster layers to calculate the Pearson correlation (i.e., r) coefficient. Then,
the obtained r coefficients were used to observe local influence of the topographic attributes
and to explain yield variance. To complete this step, the moving window tool collects cell
values from each raster layer within a user-specified moving window and then performs
Pearson’s correlation analysis on the selected values to calculate a single coefficient for each
cell. For this study the chosen window size was 50 × 50 m to balance between sufficient
sample size (number of samples greater than ~30) while minimizing the search distance.
This window size was also chosen to strike a balance between the necessary sample size and
scale of the terrain feature within the field and to form areas large enough for identification
of management zones for future precision agricultural-based applications (which in this
case would be limited the size of the field equipment). This technique allows for spatial
influence from localized neighbouring cells that would otherwise be neglected from the
analysis if the correlation were calculated in a global or point method [41,42].

2.4.3. Geographic Weighted Regression

In our second analysis, a geographic weighted regression (GWR) technique was used
to evaluate the spatial relationship between tested topographic derivatives and crop yield.
This method creates many linear regression models while incorporating geographic lo-
cation into its analysis, enabling the model to assign location-based weight to attributes
and compensate for variable non-stationarity [43]. The regression operates by surveying
and considering data from neighbouring locations that can influence each individual out-
put value. This allows the created model to consider local area in its analysis, similar
to the moving-window technique described above for testing for individual correlation.
This localized method of multiple regression has been shown to improve model accuracy,
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outperforming standard ordinary least squares methods, when input variables are con-
sidered nonstationary [41,43,44]. The approach also provides opportunities to observe
where, within the agricultural field, each variable is contributing most to the output of the
model. GWR models are naturally sensitive to collinearity between variables at global and
local scales [43].

For this study, the GWR methodology was applied using ArcGIS. The algorithm
selected uses the Akaike Information Criterion (AIC) to determine the distance band or
number of neighbors included in the regression calculation. In this case, the distances
(number of neighboring cells) are chosen as those with the minimal AIC value with the
search constrained between 10 and 100 m. Finally, GWR can produce unreliable results if
there is significant multicollinearity among the input variables; therefore, input variables
that scored high collinearity (i.e., r ≥ 0.7) are removed from the model before the GWR
is computed.

The GWR models were constructed using insights from isolated variable testing results
(completed in Sections 2.4.1 and 2.4.2), jointly chosen for their proven explained variance
and for the lack of collinearity between input variables. The models were used to predict
normalized yield values for the field that were then compared to the actual yield values.
Predictions were made for the average of the corn, soy and wheat layers, as well as for
the average of all of crops within the time period. A yield prediction was made for each
year and for each crop. To create these models, the most recent year was removed from the
dataset and the training data was created from the remaining crop years. Predicted yield
for the removed years of each crop was assessed with observed yield values to estimate
the accuracy of the GWR yield predictions. Ideally, the models for each crop type would
be composed of solely the predicted crop type; however, the lack of a significant number
of years of each crop type (particularly for wheat) required that all the available crops
yield data (with the exception of the validation year) within the study period be used to
maximize the sample population of the model development data. For the prediction of
the individual crops, the model development years included all the available years and
validation years were 2018 (corn), 2017 (soybeans) and 2016 (wheat).

3. Results
3.1. Field Scale Assessment

When assessed at field scale, the regression relationships (i.e., R2) observed between
the average of crop yield (all crops and years) and the described topographic derivatives
varied greatly. Linear regression between each attribute and average yield produced
coefficient of determination values ranging from ~0. to 0.32 (Table 3). Slope (R2 = 0.32),
relative topographic position (R2 = 0.27), topographic wetness index (TWI, R2 = 0.24),
average flow path length (R2 = 0.21), and downslope index (R2 = 0.18) were found to
have the strongest relationships between topographic derivatives and crop yield. Circular
variance of aspect, (CVA; with R2 = 0.08) and upslope area with R2 = 0.08 had relatively low
coefficient of determination when assessed at the field scale, while other tested attributes
explained effectively no variance. Given the very large sample size (n > 10,000), most of
the coefficients of determination were considered statistically significant (p < 0.05; Table 3),
however, aside from slope, the secondary topographic derivatives generally had higher
coefficients of determination than primary derivatives.

The predictive relationships among topographic derivatives and yield appear to differ
between crop types (data for each crop and each year are not shown). For example, slope
(R2 = 0.23) had the highest coefficient of determination for soy and wheat, however for
corn relative topographic position explained a greater amount of variance (R2 = 0.25).
Downslope index explained greater variance for corn (R2 = 0.19) than it did for soybeans
(R2 = 0.11) and wheat (R2 = 0.12). Wetness index explained greater variance for wheat
(R2 = 0.23) and soybeans (R2 = 0.20) than it did for corn (R2 = 0.17). All other indices were
consistent in their coefficient of determination observed between the index and specific
crop yield.
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Table 3. Coefficient of determination (R2) values from a linear regression between overall crop yields
and topographic parameters (bold values are statistically significant at p < 0.05).

Topographic Parameter R2

Circular Variance of Aspect 0.08
Depression Depth 0.00
Downslope Index 0.18

Upslope Area 0.08
Impound Size Index 0.03

Plan Curvature 0.00
Profile Curvature 0.01

Relative Topographic Index 0.27
Slope 0.32

Tangential Curvature 0.02
Topographic Wetness Index 0.24

Total Curvature 0.03
Upslope Flow Path Length 0.21

3.2. Localized Correlation Analysis

Localized correlations were calculated to identify feature-specific relationships within
the field that may be masked by calculating correlation or regression relationships for the
whole field. Mapping these relationships locally provides a spatially distributed maps
of the bivariate relationships that may assist in model building. Overall, the localized
correlation analysis provided similar general results to the global regression analysis,
suggesting that slope, wetness index, relative topographic position and average upslope
flow path length have the greatest correlation with crop yield among tested topographic
derivatives. The spatial distribution of the Pearson r values was visually inspected to observe
the performance of each derivative on features within the field as shown in Figure 3. Although
there is significant range in the correlation values across the field, much of the field exhibits
similar trends. Areas of the field that are topographically unlike the rest of the field, such
as homogenous low-lying areas, appear in contrast to the higher correlations observed in
more topographically complex regions of the field. The differences among crop types were
insignificant therefore the following descriptions are for the correlations calculated on the
raster layer that included the yield anomalies estimated from an average of all crop years.

Slope and TWI (Figure 3b,c, respectively) have similar spatial distributions of correla-
tion values with crop yield, albeit in opposite directions. This similarity should be expected,
as wetness index is partially derived from slope. Correlation between crop yield and
average upslope flow path length (Figure 3d) also follows similar spatial trends as slope,
but experiences slightly reduced correlation values. These three topographic derivatives
perform better in regions of greater topographic variation and perform relatively poorly
along the flat, low-lying area along the northwest side of the field. This could be due to a
threshold relationship between soil moisture and crop yield, where it no longer benefits
crop yield to add more moisture after it has become adequately saturated [45,46].

Relative topographic position correlates with yield almost uniformly throughout the
field, although to a milder extent than many areas of slope and wetness index. While it
does perform best on the largest topographic feature in the field, its performance appears
to be the least affected by topographic variation. The difference in its correlation spatial
distribution from the other derivatives suggests it may have value in a multi-input GWR
without introducing detrimental collinearity. Relative topographic position also appears to
be a much better alternative to raw elevation for predicting crop yield, as done in several
other studies [3,47]. The in-field region where relative topographic position is the least
correlated to yield, the southern corner of the field, is also poorly correlated to other
indices. This suggests that poor correlation in this area is due to externally influenced yield
anomalies rather than topographically controlled variance. These external factors may
be due to the proximity to the roadway, especially compacted soil, or manually modified
drainage within that region of the field.
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The remaining tested topographic derivatives fail to form any consistent spatial
patterns with crop yield, although CVA and the downslope index have small regions where
there is noticeable correlation. This limits their potential as independent predictors of
crop yield, but these indices may still have utility in multi-input GWR models if they
can improve predictions of areas within the field where the more correlated values fail to
explain observed variance.

3.3. Crop Yield Predictions

GWR models successfully predicted yield variation within the field, particularly when
identifying areas of low yield. The spatial distribution of local coefficient of determination
values demonstrates where the models explain the greatest amount of yield variance within
the field (Figure 4). It is evident that the local regressions (regressions within the defined
moving window) are more effective in topographically variable regions within the field,
while the homogenous areas of the field achieved lower R2 values. Global coefficient of
determination values (determined from an average of all the local relationships) for the
corn (R2 = 0.80, Root Mean Square Error [RMSE] = 0.088), soy (R2 = 0.71, RMSE = 0.073),
wheat (R2 = 0.73, RMSE = 0.096) and the average of all crops (R2 = 0.75) indicate that the
models can explain yield variation of all crop types effectively at the whole field scale. This
shows that the distribution of the coefficient of determination values and RMSE values do
not vary greatly between crop types. The average (standard deviation) of the crop yield for
the test years for the specific crops (2018–2016, respectively) in tonnes/ha were 12.5 (1.75)
for corn, 3.04 (0.46) for soybeans, and 5.39 (1.41) for wheat. The residuals for all constructed
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models follow a normal distribution centred around zero, indicating that the models are
adequately specified (as shown in Figure 5). In addition to visually inspecting the plotted
R2 values, residuals for each crop layer were spatially plotted to reveal potential model
prediction tendencies related to topographic characteristics (Figure 5).
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For predicting crop yield, each GWR model was developed during the model training
phase using different combinations of the topographic indices reported in Table 2. The
frequency that the selected GWR used a specific topographic index is reported in Table 4.
Although the wetness index was determined to be individually correlated with yield
variance, it was not included in the any of the constructed models because of its high local
and global collinearity with slope and relative topographic position. Relative topographic
position and slope were included in each of the created models. The GWR model created
to predict corn yield also included circular variance of aspect as an explanatory variable,
which boosted prediction accuracy in regions where relative topographic position and slope
explained low yield variance. The GWR developed for predicting wheat yields included
both circular variance of aspect and downslope index as input variables. Downslope index
was only used by the model to predict soybeans yields.
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Table 4. Frequency of each topographic attribute included in GWR models. There was a total of
4 models one for each crop type and the average of all crop types.

Topographic Attribute GWR Frequency Models Used

Relative Topographic Position 4 All Models
Slope 4 All Models

Circular variance of aspect 2 Corn, Soybeans
Upslope Flow Path Length 2 Wheat, Average

Downslope Index 1 Soybeans

4. Discussion

The results from this study indicate that using specific topographic derivates variables
to explain in-field crop yield variation is a valid approach for corn, wheat and soybeans on
a topographically variable farm with loamy soils. Ideally, we would have multiple study
locations for the identification and evaluation of the important topographic attributes
for explaining crop yield variance, however, given the large number of years of yield
data and that the data were collected among different crop types, we suggest that the
attributes observed are still highly valuable for characterization of yield variance. Further
we suggest that the methods employed can be applied more broadly particularly in fields
with significant topographic variation. The topographic derivative variables identified
as being the most important in explaining crop yield variance were consistent with other
findings in the literature [2,4,7]. Relative topographic position, slope, upslope flow path
length, circular variance of aspect and the downslope index were the key contributing
attributes in predicting crop yield variance. TWI also showed potential as a useful model
parameter, but it was not used in this case because of its high collinearity with other
variables. Relative topographic position and slope were essential in estimating yield
variance for each crop, while circular variance of aspect, average upslope flow path length,
and the downslope index were also used to estimate individual crop types. The circular
variance of aspect is related to the complexity of surface unlike the remaining variables
that are related to topographic position. In our study, the use of secondary derivatives was
crucial for the performance of the GWR models. This result emphasizes the importance
of their consideration when evaluating surface-related processes and indicates that their
continued development may improve future crop yield predictions. Using a GWR approach
with these topographic attributes explained nearly 75% of the yield variance over the seven-
year study period and successfully identified the bottom-yielding 10% of the study site for
each crop type.

The highest-yielding areas of the field were generally well identified by the GWR
models (contrast Figure 6 with Figure 4). Perhaps more importantly for improved conser-
vation efforts on farmland [10], the lowest yielding areas of the field (<10%) were correctly
classified for all crop types included in the study (Figure 6). The lowest ten percent of
each predicted raster layer results in approximately 2 Ha (5 ac) of the field. The regions
associated with the lowest yield were typically located on the local high ground of the
field (Figure 1). These regions within fields may be unable to produce sufficient yield to
offset the cost of growing the crop and therefore may be ideal candidates for alternate land
uses [10] or agricultural management approaches. Identifying these regions is important
for improving a farm’s overall profitability while conversion of these lands to alternative
landcovers such as cover crops or pollination habitat may limit negative environmental
impacts. Of the identified low-yielding regions, areas near the perimeter of the farm would
be most suitable for alternative land uses as interior regions may be difficult to manage
separately from the rest of the field.
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In a recent study over the same field, Capmourteres et al. [10] demonstrated that there
can be financial and ecological benefits from converting low-yielding regions within a field
into alternate land uses (i.e., cover crops, pollination habitat). To be able to identify these
areas without having to use crop yield data would be beneficial to farmers, conservationists
and governing agencies. It creates an opportunity to evaluate farms owned by smaller
operations that may not collect their own crop yield data [48]. Maximizing efficiency
is crucial for small farm operations, so being able to provide insight into which areas
of the field have topographically limited yield potential may greatly improve their net
productivity [49,50]. Severely yield-limited areas within the field may be best suited as an
alternate land use, while areas within the field may simply require altered management
strategies such as reduced pesticide or nutrient application throughout the growing season.

This concept builds on the rapidly growing idea of heterogeneous farm management,
where fields are designated into specific management zones based on their general needs
and yield potential [23,51–53]. The results of this research show that topography can be
used to create easily observable management zones and that their usage may be readily
communicated to farmers. This improved communication has the potential to make distinct
farm management zones become more widely adopted by farmers. This may be especially
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true of farmers that are hesitant to invest in precision agriculture technology or do not have
the required technological education or experience to operate these systems [54].

Modeling the relative crop yield variability of nearby fields may also improve the
assessment of farmland valuation. The market price of farmland can vary greatly through
time and location and is often based on the current agricultural economy and recent nearby
farm transactions [54]. The largest factor in farmland valuation has traditionally been the
available acreage of workable ground. The heterogeneity of yield potential within a field
is often overlooked as each hectare within the field is essentially considered equal. The
ability to quickly and remotely assess the spatial variance of crop yield potential through
the use of topographic variables may improve the accuracy of its valuation.

Considerations must be made for how these results may translate to other farms and
landscapes. The farm in this study is managed by farmers that have access to modern
agricultural equipment and accurate agronomic information. When common yield limiting
factors such as poor soil quality and human error are reduced, it places greater importance
on surface water and nutrient availability. Therefore, well-managed farms may see a
stronger relationship between topography and crop yield. The relationship would also
likely be weaker on farms with less topographic variation. The most utilized derivatives
in this research were relative topographic position and slope. With fewer sloping ter-
rains and more flat regions, there would naturally be less topographic control of surface
water movement. This would likely decrease the explanatory power of these variables.
Accounting for systematic drainage and using different topographic derivatives may be
useful in trying to predict crop yield with topographic variables in these types of fields [55].
Another approach to address this potential issue in less topographically variable fields may
be to identify and utilize multiscale derivatives that consider the topography at several
different scales [38].

This research shows mild differences in predictive ability between crop types, but
these differences may be greater in regions where entirely different crops are grown. Corn,
soybeans and winter wheat can generally be grown in the same region because of their
similar soil and temperature requirements. In areas where the topography and soil type
does not permit the successful growth of these crops, and other crop types are grown
instead, there may be large differences in the ability of topographic derivatives to predict
yield variation within a field. This highlights the need to individually test potential input
variables for a multi-input models such as the GWR. Further research may explore other
spatial prediction models, for example, several researchers suggest that GWR approaches
are more useful for the identification of stationarity in spatial distributed data [56,57],
rather than for spatial prediction, therefore, other approaches such as those which combine
GWR with more complex spatial models such as GWR combined with kriging [58] may
provide more reliable spatial models.

5. Conclusions

The results of this work suggest that topographic attributes should be considered to
identify relationships among crop yield and within-field topographic variations. This study,
which included multiple years of yield data for several cereal crops demonstrated that
topographic derivatives such as relative topographic position proved to be more predictive
than elevation, which has been included in past studies investigating relationships between
topography and crop yield. Additionally, this study shows that localized relationships
between topographic derivatives and yield, such as those determined using GWR results in
much better predictions than those which would be derived from generalized relationships
determined from the full field. Therefore, crop yield predictions should consider local
topography especially as fine-resolution topographic data become more accessible through
new aerial-based sensor technologies, such as LiDAR. Testing these methods in different
environments with other crops and soil types is advised to reveal more information about
topography–crop yield relationships and ensure that these results are transferable to
other regions.
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