Coenzyme Q10 and Cognition: A Review
Abstract
1. Introduction
2. Understanding CoQ10: Evidence from Cardiovascular and Non-Cognitive Human Research
2.1. CoQ10 Clinical Trials in the Cardiovascular System
2.2. CoQ10 Clinical Trials in Other Systems
3. Article Selection Method
4. CoQ10 in Animal and In Vitro Cognitive Studies
4.1. Ageing Mice
4.2. Alzheimer’s Disease
4.3. Epilepsy in Rats
4.4. Parkinson’s Disease
5. Human Clinical Research on Cognition
5.1. Studies in Healthy Humans
5.2. Alzheimer’s Disease
5.3. Mild Cognitive Impairment
5.4. Parkinson’s Disease
5.5. Progressive Supranuclear Palsy
5.6. Chronic Fatigue Syndrome
6. Discussion
6.1. Healthy Ageing Animals
6.2. Animals with Epilepsy and Alzheimer’s Disease
6.3. Healthy Humans and Cognitive Impairment Conditions
6.4. Humans with Diverse Neurological Disorders
6.5. CoQ10 in Cognitive Mechanisms
6.6. Justification and Directions for Future Studies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organisation. Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 29 September 2024).
- Harada, C.N.; Love, M.C.N.; Triebel, K. Normal Cognitive Aging. Clin. Geriatr. Med. 2013, 29, 737–752. [Google Scholar] [CrossRef]
- Salthouse, T.A. Selective Review of Cognitive Aging. J. Int. Neuropsychol. Soc. 2010, 16, 754–760. [Google Scholar] [CrossRef]
- Hajjar, I.; Hayek, S.S.; Goldstein, F.C.; Martin, G.; Jones, D.P.; Quyyumi, A. Oxidative Stress Predicts Cognitive Decline with Aging in Healthy Adults: An Observational Study. J. Neuroinflamm. 2018, 15, 17. [Google Scholar] [CrossRef]
- Ashraf-Ganjouei, A.; Moradi, K.; Bagheri, S.; Aarabi, M.H. The Association between Systemic Inflammation and Cognitive Performance in Healthy Adults. J. Neuroimmunol. 2020, 345, 577272. [Google Scholar] [CrossRef] [PubMed]
- Papathanasiou, I.V.; Fradelos, E.C.; Malli, F.; Stefanidis, I.; Zintzaras, E.; Doxani, C. A Systematic Review of Observational Studies Assessing the Impact of Oxidative Stress in Cognitive Decline. Wiad. Lek. 2021, 74, 1995–2003. [Google Scholar] [CrossRef] [PubMed]
- Leeuwis, A.E.; Smith, L.A.; Melbourne, A.; Hughes, A.D.; Richards, M.; Prins, N.D.; Sokolska, M.; Atkinson, D.; Tillin, T.; Jäger, H.R.; et al. Cerebral Blood Flow and Cognitive Functioning in a Community-Based, Multi-Ethnic Cohort: The SABRE Study. Front. Aging Neurosci. 2018, 10, 279. [Google Scholar] [CrossRef] [PubMed]
- Brasure, M.; Desai, P.; Davila, H.; Nelson, V.A.; Calvert, C.; Jutkowitz, E.; Butler, M.; Fink, H.A.; Ratner, E.; Hemmy, L.S.; et al. Physical Activity Interventions in Preventing Cognitive Decline and Alzheimer-Type Dementia a Systematic Review. Ann. Intern. Med. 2018, 168, 30–38. [Google Scholar] [CrossRef]
- Dumas, J.A. Strategies for Preventing Cognitive Decline in Healthy Older Adults. Can. J. Psychiatry 2017, 62, 754–760. [Google Scholar] [CrossRef]
- Cave, A.E.; Chang, D.H.; Münch, G.W.; Steiner-Lim, G.Z. A Systematic Review of the Safety and Efficacy on Cognitive Function of Herbal and Nutritional Medicines in Older Adults with and without Subjective Cognitive Impairment. Syst. Rev. 2023, 12, 143. [Google Scholar] [CrossRef]
- De Barcelos, I.P.; Haas, R.H. Coq10 and Aging. Biology 2019, 8, 28. [Google Scholar] [CrossRef]
- Mantle, D.; Dybring, A. Bioavailability of Coenzyme Q10: An Overview of the Absorption Process and Subsequent Metabolism. Antioxidants 2020, 9, 386. [Google Scholar] [CrossRef]
- Langsjoen, P.H.; Langsjoen, A.M. Supplemental Ubiquinol in Patients with Advanced Congestive Heart Failure. BioFactors 2008, 32, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Langsjoen, P.H.; Langsjoen, A.M. Comparison Study of Plasma Coenzyme Q10 Levels in Healthy Subjects Supplemented with Ubiquinol versus Ubiquinone. Clin. Pharmacol. Drug Dev. 2014, 3, 13–17. [Google Scholar] [CrossRef]
- Sohal, R.S.; Forster, M.J. Coenzyme Q, Oxidative Stress and Aging. Mitochondrion 2007, 7, 103–111. [Google Scholar] [CrossRef]
- Spindler, M.; Flint Beal, M.; Henchcliffe, C. Coenzyme Q10 Effects in Neurodegenerative Disease. Neuropsychiatr. Dis. Treat. 2009, 5, 597–610. [Google Scholar] [CrossRef]
- Rosenfeldt, F.; Marasco, S.; Lyon, W.; Wowk, M.; Sheeran, F.; Bailey, M.; Esmore, D.; Davis, B.; Pick, A.; Rabinov, M.; et al. Coenzyme Q10 Therapy before Cardiac Surgery Improves Mitochondrial Function and in Vitro Contractility of Myocardial Tissue. J. Thorac. Cardiovasc. Surg. 2005, 129, 25–32. [Google Scholar] [CrossRef]
- Fotino, A.D.; Thompson-Paul, A.M.; Bazzano, L.A. Effect of Coenzyme Q10 Supplementation on Heart Failure: A Meta-Analysis. Am. J. Clin. Nutr. 2013, 97, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, S.A.; Rosenfeldt, F.; Kumar, A.; Dolliner, P.; Filipiak, K.J.; Pella, D.; Alehagen, U.; Steurer, G.; Littarru, G.P. The Effect of Coenzyme Q10 on Morbidity and Mortality in Chronic Heart Failure: Results from Q-SYMBIO: A Randomized Double-Blind Trial. JACC Heart Fail. 2014, 2, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeldt, F.L.; Haas, S.J.; Krum, H.; Hadj, A.; Ng, K.; Leong, J.Y.; Watts, G.F. Coenzyme Q10 in the Treatment of Hypertension: A Meta-Analysis of the Clinical Trials. J. Hum. Hypertens. 2007, 21, 297–306. [Google Scholar] [CrossRef]
- Zhao, D.; Liang, Y.; Dai, S.; Hou, S.; Liu, Z.; Liu, M.; Dong, X.; Zhan, Y.; Tian, Z.; Yang, Y. Dose-Response Effect of Coenzyme Q10 Supplementation on Blood Pressure among Patients with Cardiometabolic Disorders: A Grading of Recommendations Assessment, Development, and Evaluation (GRADE)-Assessed Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2022, 13, 2180–2194. [Google Scholar] [CrossRef]
- Rabanal-Ruiz, Y.; Llanos-González, E.; Alcain, F.J. The Use of Coenzyme Q10 in Cardiovascular Diseases. Antioxidants 2021, 10, 755. [Google Scholar] [CrossRef]
- Watts, G.F.; Playford, D.A.; Croft, K.D.; Ward, N.C.; Mori, T.A.; Burke, V. Coenzyme Q10 Improves Endothelial Dysfunction of the Brachial Artery in Type II Diabetes Mellitus. Diabetologia 2002, 45, 420–426. [Google Scholar] [CrossRef]
- Kure, C.E.; Rosenfeldt, F.L.; Scholey, A.B.; Pipingas, A.; Kaye, D.M.; Bergin, P.J.; Croft, K.D.; Wesnes, K.A.; Myers, S.P.; Stough, C. Relationships Among Cognitive Function and Cerebral Blood Flow, Oxidative Stress, and Inflammation in Older Heart Failure Patients. J. Card. Fail. 2016, 22, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.J.; Schroeder, E.C.; Grigoriadis, G.; Wee, S.O.; Bunsawat, K.; Heffernan, K.S.; Fernhall, B.; Baynard, T. Aging Reduces Cerebral Blood Flow Regulation Following an Acute Hypertensive Stimulus. J. Appl. Physiol. 2020, 128, 1186–1195. [Google Scholar] [CrossRef]
- Tarumi, T.; Zhang, R. Cerebral Blood Flow in Normal Aging Adults: Cardiovascular Determinants, Clinical Implications, and Aerobic Fitness. J. Neurochem. 2018, 144, 595–608. [Google Scholar] [CrossRef]
- Daneman, R.; Prat, A. The Blood–Brain Barrier. Cold Spring Harb. Perspect. Biol. 2015, 7, a020412. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, L.; Hargreaves, I.P.; Georgian, A.R.; Turner, C.; Dalton, R.N.; Abbott, N.J.; Heales, S.J.R.; Preston, J.E. CoQ10 Deficient Endothelial Cell Culture Model for the Investigation of CoQ10 Blood–Brain Barrier Transport. J. Clin. Med. 2020, 9, 3236. [Google Scholar] [CrossRef]
- Forte, G.; De Pascalis, V.; Favieri, F.; Casagrande, M. Effects of Blood Pressure on Cognitive Performance: A Systematic Review. J. Clin. Med. 2020, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Bueno, C.; Cunha, P.G.; Martinez-Vizcaino, V.; Pozuelo-Carrascosa, D.P.; Visier-Alfonso, M.E.; Jimenez-Lopez, E.; Cavero-Redondo, I. Arterial Stiffness and Cognition Among Adults: A Systematic Review and Meta-Analysis of Observational and Longitudinal Studies. J. Am. Heart Assoc. 2020, 9, e014621. [Google Scholar] [CrossRef]
- Cooke, M.; Iosia, M.; Buford, T.; Shelmadine, B.; Hudson, G.; Kerksick, C.; Rasmussen, C.; Greenwood, M.; Leutholtz, B.; Willoughby, D.; et al. Effects of Acute and 14-Day Coenzyme Q10 Supplementation on Exercise Performance in Both Trained and Untrained Individuals. J. Int. Soc. Sports Nutr. 2008, 5, 8. [Google Scholar] [CrossRef]
- Siebrecht, S.; Chan, D.Y.L.; Rosenfeldt, F.; Lin, K.W. Coenzyme Q10 and Ubiquinol for Physical Performance. In Coenzyme Q10: From Fact to Fiction; Hargreaves, I., Ed.; Nova Science Pub Inc.: London, UK, 2015; pp. 293–321. [Google Scholar]
- Iso-Markku, P.; Aaltonen, S.; Kujala, U.M.; Halme, H.L.; Phipps, D.; Knittle, K.; Vuoksimaa, E.; Waller, K. Physical Activity and Cognitive Decline Among Older Adults A Systematic Review and Meta-Analysis. JAMA Netw. Open 2024, 7, e2354285. [Google Scholar] [CrossRef]
- Zhu, W.; Wadley, V.G.; Howard, V.J.; Hutto, B.; Blair, S.N.; Hooker, S.P. Objectively Measured Physical Activity and Cognitive Function in Older Adults. Med. Sci. Sports Exerc. 2017, 49, 47–53. [Google Scholar] [CrossRef]
- Weuve, J.; Jae, S.; Kang, H.; Manson, J.E.; Breteler, M.M.B.; Ware, J.H.; Grodstein, F. Physical Activity, Including Walking, and Cognitive Function in Older Women. JAMA 2004, 292, 1454–1461. [Google Scholar] [CrossRef]
- Kennedy, G.; Hardman, R.J.; MacPherson, H.; Scholey, A.B.; Pipingas, A. How Does Exercise Reduce the Rate of Age-Associated Cognitive Decline? A Review of Potential Mechanisms. J. Alzheimer’s Dis. 2016, 55, 1–18. [Google Scholar] [CrossRef]
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a Risk Factor for Neurodegenerative Disease. Nat. Rev. Neurol. 2019, 15, 565–581. [Google Scholar] [CrossRef]
- Shetty, R.A.; Ikonne, U.S.; Forster, M.J.; Sumien, N. Coenzyme Q10 and α-Tocopherol Reversed Age-Associated Functional Impairments in Mice. Exp. Gerontol. 2014, 58, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Sumien, N.; Heinrich, K.R.; Shetty, R.A.; Sohal, R.S.; Forster, M.J. Prolonged Intake of Coenzyme Q10 Impairs Cognitive Functions in Mice. J. Nutr. 2009, 139, 1926–1932. [Google Scholar] [CrossRef]
- Mcdonald, S.R.; Sohal, R.S.; Forster, M.J. Concurrent Administration of Coenzyme Q10 and α-Tocopherol Improves Learning in Aged Mice. Free Radic. Biol. Med. 2005, 38, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Dolatabadi, H.R.D.; Reisi, P.; Alaei, H.; Malekabadi, H.A.; Pilehvarian, A.A. Folic Acid and Coenzyme Q10 Ameliorate Cognitive Dysfunction in the Rats with Intracerebroventricular Injection of Streptozotocin. Iran. J. Basic Med. Sci. 2012, 15, 719–724. [Google Scholar] [CrossRef]
- Dumont, M.; Kipiani, K.; Yu, F.; Wille, E.; Katz, M.; Noel, Y.; Gouras, G.K.; Lin, M.T.; Beal, M.F. Coenzyme Q10 Decrease Amyloid Pathology and Improves Behavior in a Transgenic Mouse Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2011, 27, 211–223. [Google Scholar] [CrossRef]
- Ibrahim Fouad, G. Combination of Omega 3 and Coenzyme Q10 Exerts Neuroprotective Potential Against Hypercholesterolemia-Induced Alzheimer’s-Like Disease in Rats. Neurochem. Res. 2020, 45, 1142–1155. [Google Scholar] [CrossRef]
- Ishrat, T.; Khan, M.B.; Hoda, M.N.; Yousuf, S.; Ahmad, M.; Ansari, M.A.; Ahmad, A.S.; Islam, F. Coenzyme Q10 Modulates Cognitive Impairment against Intracerebroventricular Injection of Streptozotocin in Rats. Behav. Brain Res. 2006, 171, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Ying, M.; Sui, X.; Zhang, Y.; Sun, Q.; Qu, Z.; Luo, X.; Chang, R.C.C.; Ni, J.; Liu, J.; Yang, X. Identification of Novel Key Molecules Involved in Spatial Memory Impairment in Triple Transgenic Mice of Alzheimer’s Disease. Mol. Neurobiol. 2017, 54, 3843–3858. [Google Scholar] [CrossRef]
- Attia, H.; Albuhayri, S.; Alaraidh, S.; Alotaibi, A.; Yacoub, H.; Mohamad, R.; Al-Amin, M. Biotin, Coenzyme Q10, and Their Combination Ameliorate Aluminium Chloride-Induced Alzheimer’s Disease via Attenuating Neuroinflammation and Improving Brain Insulin Signaling. J. Biochem. Mol. Toxicol. 2020, 34, e22519. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kumar, A. Microglial Inhibitory Mechanism of Coenzyme Q10 against Aβ (1–42) Induced Cognitive Dysfunctions: Possible Behavioral, Biochemical, Cellular, and Histopathological Alterations. Front. Pharmacol. 2015, 6, 268. [Google Scholar] [CrossRef]
- Sheykhhasan, M.; Amini, R.; Soleimani Asl, S.; Saidijam, M.; Hashemi, S.M.; Najafi, R. Neuroprotective Effects of Coenzyme Q10-Loaded Exosomes Obtained from Adipose-Derived Stem Cells in a Rat Model of Alzheimer’s Disease. Biomed. Pharmacother. 2022, 152, 113224. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaran, K.; Kanwar, A.; Vegh, C.; Marginean, A.; Elliott, A.; Guilbeault, N.; Badour, A.; Sikorska, M.; Cohen, J.; Pandey, S. Ubisol-Q10 (a Nanomicellar Water-Soluble Formulation of CoQ10) Treatment Inhibits Alzheimer-Type Behavioral and Pathological Symptoms in a Double Transgenic Mouse (TgAPEswe, PSEN1dE9) Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 61, 221–236. [Google Scholar] [CrossRef]
- Tawfik, M.K. Coenzyme Q10 Enhances the Anticonvulsant Effect of Phenytoin in Pilocarpine-Induced Seizures in Rats and Ameliorates Phenytoin-Induced Cognitive Impairment and Oxidative Stress. Epilepsy Behav. 2011, 22, 671–677. [Google Scholar] [CrossRef]
- Abu-Elfotuh, K.; Hamdan, A.M.E.; Mohammed, A.A.; Atwa, A.M.; Kozman, M.R.; Ibrahim, A.M.; Motawea, S.M.; Selim, H.M.R.M.; Tohamy, S.T.K.; El-Din, M.N.; et al. Neuroprotective Effects of Some Nutraceuticals against Manganese-Induced Parkinson’s Disease in Rats: Possible Modulatory Effects on TLR4/NLRP3/NF-ΚB, GSK-3β, Nrf2/HO-1, and Apoptotic Pathways. Pharmaceuticals 2022, 15, 1554. [Google Scholar] [CrossRef]
- Hartl, D.; May, P.; Gu, W.; Mayhaus, M.; Pichler, S.; Spaniol, C.; Glaab, E.; Bobbili, D.R.; Antony, P.; Koegelsberger, S.; et al. A Rare Loss-of-Function Variant of ADAM17 Is Associated with Late-Onset Familial Alzheimer Disease. Mol. Psychiatry 2020, 25, 629–639. [Google Scholar] [CrossRef]
- Wong, T.H.; Seelaar, H.; Melhem, S.; Rozemuller, A.J.M.; van Swieten, J.C. Genetic Screening in Early-Onset Alzheimer’s Disease Identified Three Novel Presenilin Mutations. Neurobiol. Aging 2020, 86, 201.e9–201.e14. [Google Scholar] [CrossRef]
- Bomfim, T.R.; Forny-Germano, L.; Sathler, L.B.; Brito-Moreira, J.; Houzel, J.C.; Decker, H.; Silverman, M.A.; Kazi, H.; Melo, H.M.; McClean, P.L.; et al. An Anti-Diabetes Agent Protects the Mouse Brain from Defective Insulin Signaling Caused by Alzheimer’s Disease-Associated Aβ Oligomers. J. Clin. Investig. 2012, 122, 1339–1353. [Google Scholar] [CrossRef]
- Aldahmash, B.A.; El-Nagar, D.M.; Ibrahim, K.E. Attenuation of Hepatotoxicity and Oxidative Stress in Diabetes STZ-Induced Type 1 by Biotin in Swiss Albino Mice. Saudi J. Biol. Sci. 2016, 23, 311–317. [Google Scholar] [CrossRef]
- Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B12, Folate, and the Methionine Remethylation Cycle—Biochemistry, Pathways, and Regulation. J. Inherit. Metab. Dis. 2018, 42, 673–685. [Google Scholar] [CrossRef]
- Militão, G.C.G.; Ferreira, P.M.P.; de Freitas, R.M. Effects of Lipoic Acid on Oxidative Stress in Rat Striatum after Pilocarpine-Induced Seizures. Neurochem. Int. 2010, 56, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Reeta, K.H.; Mehla, J.; Gupta, Y.K. Curcumin Is Protective against Phenytoin-Induced Cognitive Impairment and Oxidative Stress in Rats. Brain Res. 2009, 1301, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Yoritaka, A.; Kawajiri, S.; Yamamoto, Y.; Nakahara, T.; Ando, M.; Hashimoto, K.; Nagase, M.; Saito, Y.; Hattori, N. Randomized, Double-Blind, Placebo-Controlled Pilot Trial of Reduced Coenzyme Q10 for Parkinson’s Disease. Park. Relat Disord 2015, 21, 911–916. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Stevenson, E.J.; Jackson, P.A.; Dunn, S.; Wishart, K.; Bieri, G.; Barella, L.; Carne, A.; Dodd, F.L.; Robertson, B.C.; et al. Multivitamins and Minerals Modulate Whole-Body Energy Metabolism and Cerebral Blood-Flow during Cognitive Task Performance: A Double-Blind, Randomised, Placebo-Controlled Trial. Nutr. Metab. (Lond.) 2016, 13, 11. [Google Scholar] [CrossRef]
- Kinoshita, T.; Maruyama, K.; Hashimoto, Y. The Effects of Ubiquinol (Reduced Form of Coenzyme Q10) on Memory. Jpn. Pharmacol. Ther. 2021, 49, 1739–1747. [Google Scholar]
- Galasko, D.R.; Peskind, E.; Clark, C.M.; Quinn, J.F.; Ringman, J.M.; Jicha, G.A.; Cotman, C.; Cottrell, B.; Montine, T.J.; Thomas, R.G.; et al. Antioxidants for Alzheimer Disease: A Randomized Clinical Trial with Cerebrospinal Fluid Biomarker Measures. Arch. Neurol. 2012, 69, 836–841. [Google Scholar] [CrossRef]
- García-Carpintero, S.; Domínguez-Bértalo, J.; Pedrero-Prieto, C.; Frontiñán-Rubio, J.; Amo-Salas, M.; Durán-Prado, M.; García-Pérez, E.; Vaamonde, J.; Alcain, F.J. Ubiquinol Supplementation Improves Gender-Dependent Cerebral Vasoreactivity and Ameliorates Chronic Inflammation and Endothelial Dysfunction in Patients with Mild Cognitive Impairment. Antioxidants 2021, 10, 143. [Google Scholar] [CrossRef] [PubMed]
- Beal, F.M.; Oakes, D.; Shoulson, I.; Henchcliffe, C.; Galpern, W.R.; Haas, R.; Juncos, J.L.; Nutt, J.G.; Voss, T.S.; Ravina, B.; et al. A Randomized Clinical Trial of High-Dosage Coenzyme Q10 in Early Parkinson Disease No Evidence of Benefit. JAMA Neurol. 2014, 75, 543–552. [Google Scholar] [CrossRef]
- Li, Z.; Wang, P.; Yu, Z.; Cong, Y.; Sun, H.; Zhang, J.; Zhang, J.; Sun, C.; Zhang, Y.; Ju, X. The Effect of Creatine and Coenzyme Q10 Combination Therapy on Mild Cognitive Impairment in Parkinson’s Disease. Eur. Neurol. 2015, 73, 205–211. [Google Scholar] [CrossRef]
- Stamelou, M.; Reuss, A.; Pilatus, U.; Magerkurth, J.; Niklowitz, P.; Eggert, K.M.; Krisp, A.; Menke, T.; Schade-Brittinger, C.; Oertel, W.H.; et al. Short-Term Effects of Coenzyme Q10 in Progressive Supranuclear Palsy: A Randomized, Placebo-Controlled Trial. Mov. Disord. 2008, 23, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Nojima, J.; Kajimoto, O.; Yamaguti, K.; Nakatomi, Y.; Kuratsune, H.; Watanabe, Y. Ubiquinol-10 Supplementation Improves Autonomic Nervous Function and Cognitive Function in Chronic Fatigue Syndrome. BioFactors 2016, 42, 431–440. [Google Scholar] [CrossRef]
- Stough, C.; Nankivell, M.; Camfield, D.A.; Perry, N.L.; Pipingas, A.; Macpherson, H.; Wesnes, K.; Ou, R.; Hare, D.; De Haan, J.; et al. COQ10 and Cognition a Review and Study Protocol for a 90-Day Randomized Controlled Trial Investigating the Cognitive Effects of Ubiquinol in the Healthy Elderly. Front. Aging Neurosci. 2019, 11, 103. [Google Scholar] [CrossRef]
- Huang, L.K.; Chao, S.P.; Hu, C.J. Clinical Trials of New Drugs for Alzheimer Disease. J. Biomed. Sci. 2020, 27, 18. [Google Scholar] [CrossRef]
- Petersen, R.C.; Negash, S. Mild Cognitive Impairment: An Overview. CNS Spectrums 2008, 13, 45–53. [Google Scholar] [CrossRef]
- Shults, C.W.; Oakes, D.; Kieburtz, K. Effects of Coenzyme Q10 in Early Parkinson Disease. Arch. Neurol. 2002, 59, 1541. [Google Scholar] [CrossRef] [PubMed]
- Shults, C.W.; Beal, M.F.; Song, D.; Fontaine, D. Pilot Trial of High Dosages of Coenzyme Q10 in Patients with Parkinson’s Disease. Exp. Neurol. 2004, 188, 491–494. [Google Scholar] [CrossRef]
- Yang, L.; Calingasan, N.Y.; Wille, E.J.; Cormier, K.; Smith, K.; Ferrante, R.J.; Flint Beal, M. Combination Therapy with Coenzyme Q10 and Creatine Produces Additive Neuroprotective Effects in Models of Parkinson’s and Huntington’s Diseases. J. Neurochem. 2009, 109, 1427–1439. [Google Scholar] [CrossRef] [PubMed]
- Piot, I.; Schweyer, K.; Respondek, G.; Stamelou, M.; Sckopke, P.; Schenk, T.; Goetz, C.G.; Stebbins, G.T.; Höglinger, G.U. The Progressive Supranuclear Palsy Clinical Deficits Scale. Mov. Disord. 2020, 35, 650–661. [Google Scholar] [CrossRef]
- Shults, C.W. Therapeutic Role of Coenzyme Q10 in Parkinson’s Disease. Pharmacol. Ther. 2005, 107, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Straus, S.E.; Hickie, I.; Sharpe, M.C.; Psych, M.; Dobbins, J.G.; Komaroff, A. The Chronic Fatigue Syndrome: A Comprehensive Approach to Its Definition and Study. Ann. Intern. Med. 1994, 121, 953–959. [Google Scholar] [CrossRef]
- Tsai, I.C.; Hsu, C.W.; Chang, C.H.; Tseng, P.T.; Chang, K.V. Effectiveness of Coenzyme Q10 Supplementation for Reducing Fatigue: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Pharmacol. 2022, 13, 883251. [Google Scholar] [CrossRef] [PubMed]
- Joyce, J.; Hotopf, M.; Wessely, S. The Prognosis of Chronic Fatigue and Chronic Fatigue Syndrome: A Systematic Review. QJM Int. J. Med. 1997, 90, 223–233. [Google Scholar] [CrossRef]
- Trollor, J.N.; Smith, E.; Agars, E.; Kuan, S.A.; Baune, B.T.; Campbell, L.; Samaras, K.; Crawford, J.; Lux, O.; Kochan, N.A.; et al. The Association between Systemic Inflammation and Cognitive Performance in the Elderly: The Sydney Memory and Ageing Study. Age 2012, 34, 1295–1308. [Google Scholar] [CrossRef]
- Baierle, M.; Nascimento, S.N.; Moro, A.M.; Brucker, N.; Freitas, F.; Gauer, B.; Durgante, J.; Bordignon, S.; Zibetti, M.; Trentini, C.M.; et al. Relationship between Inflammation and Oxidative Stress and Cognitive Decline in the Institutionalized Elderly. Oxid. Med. Cell. Longev. 2015, 2015, 804198. [Google Scholar] [CrossRef]
- Farsi, F.; Heshmati, J.; Keshtkar, A.; Irandoost, P.; Alamdari, N.M.; Akbari, A.; Janani, L.; Morshedzadeh, N.; Vafa, M. Can Coenzyme Q10 Supplementation Effectively Reduce Human Tumor Necrosis Factor-α and Interleukin-6 Levels in Chronic Inflammatory Diseases? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pharmacol. Res. 2019, 148, 104290. [Google Scholar] [CrossRef]
- Karimi, M.; Pirzad, S.; Hooshmand, F.; Shirsalimi, N.; Pourfaraji, S.M.A. Effects of Coenzyme Q10 Administration on Blood Pressure and Heart Rate in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Cardiol. Cardiovasc. Risk Prev. 2025, 26, 200424. [Google Scholar] [CrossRef]
- Dai, S.; Tian, Z.; Zhao, D.; Liang, Y.; Liu, M.; Liu, Z.; Hou, S.; Yang, Y. Effects of Coenzyme Q10 Supplementation on Biomarkers of Oxidative Stress in Adults: A GRADE-Assessed Systematic Review and Updated Meta-Analysis of Randomized Controlled Trials. Antioxidants 2022, 11, 1360. [Google Scholar] [CrossRef]
- Noyce, A.J.; Rees, R.N.; Acharya, A.P.; Schrag, A. An Early Diagnosis Is Not the Same as a Timely Diagnosis of Parkinson’s Disease. F1000Research 2018, 7, 1106. [Google Scholar] [CrossRef]
- Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T.T.; et al. Estimation of the Global Prevalence of Dementia in 2019 and Forecasted Prevalence in 2050: An Analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef] [PubMed]
- López-Lluch, G.; del Pozo-Cruz, J.; Sánchez-Cuesta, A.; Cortés-Rodríguez, A.B.; Navas, P. Bioavailability of Coenzyme Q10 Supplements Depends on Carrier Lipids and Solubilization. Nutrition 2019, 57, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Jal, M.; Suñé-Negre, J.M.; García-Montoya, E. Coenzyme Q10 Supplementation: Efficacy, Safety, and Formulation Challenges. Compr. Rev. Food Sci. Food Saf. 2020, 19, 574–594. [Google Scholar] [CrossRef]
| Condition | Authors | Animal | N | Study Length | CoQ10 Dosage | Cognitive Assessments | Outcome |
|---|---|---|---|---|---|---|---|
| Ageing | Shetty et al. (2014) [38] | Male C57BL/6j mice | 119 | 10 weeks | CoQ10 109 mg/kg/d; or CoQ10 109 mg/kg/d and alpha-tocopherol acetate 250 mg/kg/d |
| No improvement in cognitive performance. |
| Sumien et al. (2009) [39] | Male C57BL/6 mice | 150 | 21 months | CoQ10 0.72 mg/g; or 2.81 mg/g |
| CoQ10 treatment had no significant improvements in cognition. Increase in CoQ10 in the cerebral cortex with treatment. | |
| Mcdonald et al. (2005) [40] | Male C57BL/6JNia mice | 34 | 14 weeks | CoQ10 123 mg/kg or CoQ10 123 mg/kg and alpha-tocopherol acetate 200 mg/kg |
| Combination treatment increased avoidance responses, but CoQ10 alone did not. | |
| Alzheimer’s Disease | Dolatabadi et al. (2012) [41] | Male Wistar rats (280–320 g) | 52 | 21 days | CoQ10 10 mg/kg in corn oil |
| Protected memory performance. |
| Dumont et al. (2011) [42] | Tg19959 mice | 12 | 3 months | 0.4% CoQ10 in Chow |
| Treatment showed a greater ability to learn. Histological markers of AD lower. | |
| 27 | 5 Months | 2.4% CoQ10 in Chow | |||||
| Fouad (2020) [43] | Male Wistar rats (110–130 g) | 30 | 40 days | CoQ10 10 mg/kg body; or Omega 3 500 mg/kg and CoQ10 10 mg/kg |
| Faster maze completions. Near normal brain histology. | |
| Ishrat et al. (2006) [44] | Male Wistar rats (480–520 g) | 40 | 3 weeks | CoQ10 10 mg/kg |
| Enhanced learning. Reductions in oxidative stress and elevations in ATP | |
| Ying et al. (2017) [45] | Triple transgenic mice of AD (3xTg-AD); and Wild-type mice (strain B6129SF2/J) | 44 ± 4 | 3 months | CoQ10 800 mg/kg |
| Increase in memory. Hippocampal proteins protected cognitive function. | |
| Attia et al. (2020) [46] | Rats | 64 | 60 days | CoQ10 10 mg/kg, per os PO in corn oil; CoQ10 10 mg/kg, PO in corn oil and alumuminium chloride coadministered with biotin 2 mg/kg, IP, biotin and CoQ10 at the same doses. |
| Alleviated cognitive impairments. Reduced neuroinflammation. | |
| Singh et al. (2015) [47] | Male Sprague-Dawley rats (180–200 g) | 120 | 21 days | CoQ10 20 and 40 mg/kg, galantamine 2 mg/kg, minocycline 50 and 100 mg/kg and their combinations |
| Improved memory learning. Markers of reduced neuroinflammation. Restored mitochondrial function. | |
| Sheykhhasan et al. (2022) [48] | Wistar rats (250–300 g) | 40 | 5 days | CoQ10 |
| Improved memory. Histological marker of AD lower. | |
| Muthukumaran et al. (2018) [49] | Male Transgenic male mice; Male C57BL/6 wildtype mice | 23 | 18 months | CoQ10 50 µg/mL |
| Improved long-term memory. Histological markers of AD lower. | |
| Epilepsy | Tawfik (2011) [50] | Male Wistar rats (200–250 g) | 40 | 2 weeks | CoQ10 10 mg/kg |
| Improved Learning. Reductions in oxidative stress. |
| Parkinson’s Disease | Abu-Elfotuh et al. (2022) [51] | Male Sprague Dawley rats (300–320 g) | 84 | 5 weeks | CoQ10 200 mg/kg PO; CoQ10 200 mg/kg, Sesamol 15 mg/kg, Thymol 30 mg/kg, and Wheat Grass 100 mg/kg. |
| Improved Spatial Memory. Reduced Oxidative Stress and neuroinflammation. Apoptotic pathways modulated. |
| Condition | Authors | N | Treatment Duration | CoQ10 Dosage | Cognitive Assessments and Cognitive Domains | Outcome |
|---|---|---|---|---|---|---|
| Healthy Humans | Kennedy et al. (2016) [60] | 97 | 8 weeks | CoQ10 4.5 mg/d, and Supradyn 1RDA |
| No significant cognitive difference between groups. CoQ10 and 1RDA treatment significantly improved cerebral blood flow. |
| Kinoshita et al. (2021) [61] | 90 | 34 weeks | Ubiquinol 100 mg/d |
| Borderline evidence of Improved cognitive function. | |
| Mild to Moderate Alzheimer Disease | Galasko et al. (2012) [62] | 78 | 16 weeks | CoQ10 400 mg 3 times/d |
| No significant results for cognitive measure. |
| Mild Cognitive Impairment | García-Carpintero (2021) [63] | 69 | 12 months | Ubiquinol 200 mg/d |
| No statistically significant results for cognitive measures. Ubiquinol significantly improved cerebral vasoreactivity. |
| Parkinson’s Disease | Beal et al. (2014) [64] | 600 | 16 months | CoQ10 1200 mg/d or CoQ10 2400 mg/d, each with 1200 IU/d of vitamin E |
| No significant cognitive difference between groups. |
| Li et al. (2015) [65] | 75 | 18 months | CoQ10 100 mg t.i.d and Creatine 5 g b.i.d |
| Improved MoCA scores after 12 and 18 months of treatment. | |
| Progressive Supranuclear Palsy | Stamelou et al. (2008) [66] | 21 | 6 weeks ± 4 days | CoQ10 5 mg/kg/d |
| Improved FAB scores with treatment. |
| Chronic Fatigue Syndrome | Fukuda et al. (2016) [67] | 20 + 43 | 8 weeks + 12 weeks | Ubiquinol 150 mg/d |
| Improved arithmetic task performance with Ubiquinol treatment. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nankivell, M.C.; Rosenfeldt, F.; Pipingas, A.; Pase, M.P.; Reddan, J.M.; Stough, C. Coenzyme Q10 and Cognition: A Review. Nutrients 2025, 17, 2896. https://doi.org/10.3390/nu17172896
Nankivell MC, Rosenfeldt F, Pipingas A, Pase MP, Reddan JM, Stough C. Coenzyme Q10 and Cognition: A Review. Nutrients. 2025; 17(17):2896. https://doi.org/10.3390/nu17172896
Chicago/Turabian StyleNankivell, Madeleine C., Franklin Rosenfeldt, Andrew Pipingas, Matthew P. Pase, Jeffery M. Reddan, and Con Stough. 2025. "Coenzyme Q10 and Cognition: A Review" Nutrients 17, no. 17: 2896. https://doi.org/10.3390/nu17172896
APA StyleNankivell, M. C., Rosenfeldt, F., Pipingas, A., Pase, M. P., Reddan, J. M., & Stough, C. (2025). Coenzyme Q10 and Cognition: A Review. Nutrients, 17(17), 2896. https://doi.org/10.3390/nu17172896

