sustainability-logo

Journal Browser

Journal Browser

Life Cycle Assessment (LCA) for Sustainable Development of Emerging Technologies and Industries

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Pollution Prevention, Mitigation and Sustainability".

Deadline for manuscript submissions: closed (1 November 2025) | Viewed by 1342

Special Issue Editor


E-Mail Website
Guest Editor
School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg 2000, South Africa
Interests: life cycle assessment (LCA); chemical engineering; industrial ecology; green engineering

Special Issue Information

Dear Colleagues,

This Special Issue focuses on life cycle assessment (LCA) as a critical tool for sustainable development in emerging technologies and industries. LCA provides a holistic framework for evaluating the environmental impacts of new technologies and industrial processes across their entire lifecycle. This Special Issue explores the latest LCA methodologies, case studies, and best practices, emphasizing the need for integration into decision-making processes. Contributors discuss the potential of LCA in guiding innovation towards environmental sustainability, resource efficiency, and climate resilience. This Special Issue aims to inform and inspire researchers, policymakers, and practitioners towards a more sustainable future.

In this Special Issue, original research articles and reviews are welcome. Research areas may include, but are not limited to, the following:

  • Life cycle assessment (LCA);
  • Sustainable development;
  • Emerging technologies;
  • Industries;
  • Environmental impacts;
  • Decision making;
  • Resource efficiency;
  • Climate resilience.

I look forward to receiving your contributions. 

Dr. Kevin Graham Harding
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • life cycle assessment (LCA)
  • sustainable development
  • emerging technologies
  • industries
  • environmental impacts
  • decision making
  • resource efficiency
  • climate resilience

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 953 KB  
Article
Comparative Environmental Insights into Additive Manufacturing in Sand Casting and Investment Casting: Pathways to Net-Zero Manufacturing
by Alok Yadav, Rajiv Kumar Garg, Anish Sachdeva, Karishma M. Qureshi, Mohamed Rafik Noor Mohamed Qureshi and Muhammad Musa Al-Qahtani
Sustainability 2025, 17(21), 9709; https://doi.org/10.3390/su17219709 - 31 Oct 2025
Viewed by 575
Abstract
As manufacturing industries pursue net-zero emission (NZE) goals, hybrid manufacturing processes that integrate additive manufacturing (AM) with traditional casting techniques are gaining traction for their sustainability potential across the globe. Therefore, this work presents a “gate-to-gate” life cycle assessment (LCA) comparing AM-assisted sand [...] Read more.
As manufacturing industries pursue net-zero emission (NZE) goals, hybrid manufacturing processes that integrate additive manufacturing (AM) with traditional casting techniques are gaining traction for their sustainability potential across the globe. Therefore, this work presents a “gate-to-gate” life cycle assessment (LCA) comparing AM-assisted sand casting (AM-SC) and AM-assisted investment casting (AM-IC), for Al-Si5-Cu3 alloy as a case material, under various energy scenarios including a conventional grid mix and renewable sources (wind, solar, hydro, and biomass). This study compares multiple environmental impact categories based on the CML 2001 methodology. The outcomes show that AM-SC consistently outperforms AM-IC in most impact categories. Under the grid mix scenario, AM-SC achieves 31.57% lower GWP, 19.28% lower AP, and 21.15% lower EP compared to AM-IC. AM-SC exhibits a 90.5% reduction in “Terrestrial Ecotoxicity Potential” and 75.73% in “Marine Ecotoxicity Potential”. Wind energy delivers the most significant emission reduction across both processes, reducing GWP by up to 98.3%, while AM-IC performs slightly better in HTP. These outcomes of the study offer site-specific empirical insights that support strategic decision-making for process selection and energy optimisation in casting. By quantifying environmental trade-offs aligned with India’s current energy mix and future renewable targets, the study provides a practical benchmark for tracking incremental gains toward the NZE goal. This work followed international standards (ISO 14040 and 14044), and the data were validated with both foundry records and field measurements; this study ensures reliable methods. The findings provide practical applications for making sustainable choices in the manufacturing process and show that the AM-assisted conventional manufacturing process is a promising route toward net-zero goals. Full article
Show Figures

Figure 1

Back to TopTop