remotesensing-logo

Journal Browser

Journal Browser

Artificial Intelligence-Driven Methods for Remote Sensing Target and Object Detection (Third Edition)

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "AI Remote Sensing".

Deadline for manuscript submissions: 31 March 2026 | Viewed by 966

Special Issue Editors

School of Resource and Environment Sciences, Wuhan University, Wuhan, China
Interests: hyperspectral remote sensing image processing; target detection; dimensionality reduction; classification; metric learning; transfer learning; deep learning; lithologic mapping; geological application of remote sensing
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
Interests: distance metric learning; few-shot learning; hyperspectral image analysis; statistical classification
Special Issues, Collections and Topics in MDPI journals

grade E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

Remote sensing images include rich descriptions of the Earth’s surface in various modalities (hyperspectral data, high resolution data, multispectral data, synthetic aperture radar (SAR) data, etc.). Remote sensing target detection and object detection aim to determine whether there are targets or objects of interest in an image, playing a decisive role in various fields, such as resource detection, environmental monitoring, urban planning, national security, agriculture, forestry, climate, hydrology, etc. In recent years, artificial intelligence (AI) has undergone considerable development and been successfully applied for various applications, such as regression, clustering, classification, etc. Although AI-driven approaches can handle the massive quantities of data acquired by remote sensors, they require many high-quality labeled samples to deal with remote sensing big data, leading to fragile results; in other words, AI-driven approaches with strong feature extraction abilities have limited performance and are still far from meeting practical demands. Thus, target detection and object detection in the presence of complicated backgrounds with limited labeled samples remains a challenging mission. There is still much room for research on remote sensing target detection and object detection. The main goal of this Special Issue is to address advanced topics related to remote sensing target detection and object detection.

Topics of interests include, but are not limited to, the following:

  • New AI-driven methods for remote sensing data, such as GNN, transformers, etc.;
  • New remote sensing datasets, including hyperspectral, high resolution, SAR, etc.;
  • Machine learning techniques for remote sensing applications, such as domain adaptation, few-shot learning, manifold learning, and metric learning;
  • Machine learning-based drone detection and fine-grained detection;
  • Target detection, object detection, and anomaly detection;
  • Data-driven applications in remote sensing;
  • Technique reviews on related topics.

Dr. Yanni Dong
Dr. Xiaochen Yang
Prof. Dr. Qian Du
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • remote sensing
  • target detection
  • artificial intelligence
  • machine learning
  • deep learning
  • object detection
  • new datasets

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 43419 KB  
Article
KFGOD: A Fine-Grained Object Detection Dataset in KOMPSAT Satellite Imagery
by Dong Ho Lee, Ji Hun Hong, Hyun Woo Seo and Han Oh
Remote Sens. 2025, 17(22), 3774; https://doi.org/10.3390/rs17223774 - 20 Nov 2025
Viewed by 639
Abstract
Object detection in high-resolution satellite imagery is a critical technology for various applications, yet it faces persistent challenges due to extreme variations in object scale, orientation, and density. The development of numerous public datasets has been pivotal for advancing the field. To continue [...] Read more.
Object detection in high-resolution satellite imagery is a critical technology for various applications, yet it faces persistent challenges due to extreme variations in object scale, orientation, and density. The development of numerous public datasets has been pivotal for advancing the field. To continue this progress and expand the diversity of sensor data available for research, we introduce the KOMPSAT Fine-Grained Object Detection (KFGOD) dataset, a new large-scale benchmark for fine-grained object detection. KFGOD is uniquely constructed using 70 cm and 55 cm resolution optical imagery from the KOMPSAT-3 and 3A satellites, sources not covered by existing major datasets. It provides approximately 880,000 object instances across 33 fine-grained classes, encompassing a wide range of ships, aircraft, vehicles, and infrastructure. The dataset ensures high quality and sensor consistency, covering diverse geographical regions worldwide to promote model generalization. For precise localization, all objects are annotated with both oriented (OBB) and horizontal (HBB) bounding boxes. Comprehensive experiments with state-of-the-art detection models provide benchmark results and highlight the challenging nature of the dataset, particularly in distinguishing between visually similar fine-grained classes. The KFGOD dataset is publicly available and aims to foster further research in fine-grained object detection and analysis of high-resolution satellite imagery. Full article
Show Figures

Graphical abstract

Back to TopTop