Special Issue "Complex and Contact Manifolds"

A special issue of Mathematics (ISSN 2227-7390).

Deadline for manuscript submissions: 30 September 2019

Special Issue Editors

Guest Editor
Prof. Dr. Ion Mihai

Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, 010014 Bucharest, Romania
Website | E-Mail
Interests: differentiable manifolds; Riemannian manifolds; distinguished vector fields; Riemannian invariants; sectional curvature; complex manifolds; contact manifolds; affine manifolds; statistical manifolds; submanifold theory
Guest Editor
Assoc. Prof. Dr. Adela Mihai

Department of Mathematics and Computer Science, Technical University of Civil Engineering Bucharest, Bd. Lacul Tei 122-124, 020396 Bucharest, Romania
Website | E-Mail
Interests: (pseudo-)Riemannian manifolds, curvature invariants, complex manifolds, contact manifolds, submanifold theory, statistical manifolds

Special Issue Information

Dear Colleagues,

The most studied differentiable manifolds are those endowed with certain endomorphisms of their tangent bundles: almost complex, almost product, almost contact, and almost paracontact manifolds, etc. Among complex manifolds, Kaehler manifolds play the most important role via their geometrical properties. Roughly speaking, contact manifolds are the odd-dimensional version of complex manifolds; in particular, Sasakian manifolds correspond to Kaehler manifolds. There are topological obstructions to the existence of Kaehler and Sasakian structures, respectively, on compact Riemannian manifolds.

The geometry of submanifolds in such manifolds is an important topic of research. Obstructions to the existence of special classes of submanifolds in complex and Sasakian manifolds were obtained in terms of their Riemannian curvature invariants.

The purpose of this Special Issue is to collect selected review works written by well-known researchers in the field, as well as new developments in the geometry of complex and contact manifolds or/and explore applications in other areas.

Prof. Dr. Ion Mihai
Assoc. Prof. Dr. Adela Mihai
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 850 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • complex manifolds
  • contact manifolds
  • Riemannian invariants
  • complex contact manifolds
  • submanifolds in complex and contact manifolds
  • holomorphic and Sasakian statistical manifolds

Published Papers

This special issue is now open for submission.
Mathematics EISSN 2227-7390 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top