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Abstract: In the present article we initiate the study of submanifolds in normal complex contact
metric manifolds. We define invariant and anti-invariant (CC-totally real) submanifolds in such
manifolds and start the study of their basic properties. Also, we establish the Chen first inequality
and Chen inequality for the invariant δ (2, 2) for CC-totally real submanifolds in a normal complex
contact space form and characterize the equality cases. We also prove the minimality of CC-totally
real submanifolds of maximum dimension satisfying the equalities.
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1. Introduction

Complex and contact geometries represent some of the most studied areas in differential geometry.
The complex contact metric structures are less explored and there is a short list of papers in the

mathematical literature on this topic. However, in [1] there is a chapter in which D.E. Blair realizes
a comprehensive survey of known results on (normal) complex contact manifolds.

In [2], D.E. Blair and the first author in this work, proved that a locally symmetric normal complex
contact metric manifold is locally isometric to the complex projective space CP2n+1(4) of constant
holomorphic curvature 4. They also studied reflections in the integral submanifolds of the vertical
subbundle of a normal complex contact manifold and showed that when such reflections are isometries
the manifold fibers over a locally symmetric space. If the normal complex contact manifold is Kähler,
then the manifold fibers over a quaternionic symmetric space. Also, if the complex contact structure is
given by a global holomorphic contact form, then the manifold fibers over a locally symmetric complex
symplectic manifold.

In [3], the same authors studied the homogeneity and local symmetry of complex (κ, µ)-spaces.
It was proved that for k < 1, a complex (κ, µ)-space is locally homogeneous and GH-locally symmetric.

On the other hand, in differential geometry, the theory of submanifolds plays a very important
role. As we know, articles on submanifolds in normal complex contact manifolds have not been
published until now.

In this paper, we define invariant and anti-invariant (CC-totally real) submanifolds of normal
complex contact metric manifolds and start the study of their basic properties.

Also, the theory of Chen invariants represents one of the most useful tools for obtaining
relationships between extrinsic and intrinsic invariants of a submanifold. In [4], B.-Y. Chen wrote
a survey on Chen invariants and Chen inequalities and their applications. We establish the Chen first
inequality and Chen inequality for the invariant δ (2, 2) for CC-totally real submanifolds in a normal
complex contact space form and give the characterizations of the equality cases.
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2. Preliminaries

A complex contact manifold [1] is a complex manifold M of odd complex dimension 2n + 1 together
with an open covering {O} of coordinate neighborhoods such that:

(1) On each O there is a holomorphic 1-form θ such that θ ∧ (dθ)n 6= 0.
(2) On O ∩O′ 6= ∅ there is a non-vanishing holomorphic function f such that θ′ = f θ.

The complex contact structure determines a non-integrable subbundleH by the equation θ = 0;
H is called the complex contact subbundle or the horizontal subbundle.

A Hermitian manifold M with almost complex structure J, Hermitian metric g, and open covering
by coordinate neighborhoods {O} is a complex almost contact metric manifold if it satisfies the following
two conditions:

(1) In each O there exist 1-forms u and v = u ◦ J with dual vector fields U and V = −JU and (1,1)
tensor fields G and H = GJ such that

G2 = H2 = −I + u⊗U + v⊗V,

GJ = −JG, GU = 0, g(X, GY) = −g(GX, Y).

(2) On O ∩O′ 6= ∅,
u′ = Au− Bv, v′ = Bu + Av,

G′ = AG− BH, H′ = BG + AH,

where A and B are functions with A2 + B2 = 1.

A complex contact manifold admits a complex almost contact metric structure for which the local
contact form θ is u− iv to within a non-vanishing complex-valued function multiple. The local tensor
fields G and H and du and dv are related by

du(X, Y) = Ĝ(X, Y) + (σ ∧ v)(X, Y),

dv(X, Y) = Ĥ(X, Y)− (σ ∧ u)(X, Y)

for some 1-form σ and where Ĝ(X, Y) = g(X, GY) and Ĥ(X, Y) = g(X, HY).
Also, on O ∩ O′ one has U′ ∧ V′ = U ∧ V; it follows that there is a global vertical bundle V

orthogonal to H (which is generally assumed to be integrable), and, in this case, σ takes the form
σ(X) = g(∇XU, V), ∇ being the Levi–Civita connection of g. The subbundle V is the analogue of the
characteristic or Reeb vector field of real contact geometry.

A complex contact manifold with a complex almost contact metric structure satisfying these
conditions is called a complex contact metric manifold.

Example 1. Examples of complex contact manifolds are given in [1]:

(i) Odd-dimensional complex projective space.
(ii) Twistor spaces.

(iii) The complex Boothby-Wang fibration.
(iv) Cn+1 × CPn(16).

S. Ishihara and M. Konishi [5] introduced a notion of normality for complex contact structures.
They defined two tensor fields S and T by

S(X, Y) = [G, G](X, Y) + 2Ĝ(X, Y)U − 2Ĥ(X, Y)V + 2(v(Y)HX− v(X)HY)+

+σ(GY)HX− σ(GX)HY + σ(X)GHY− σ(Y)GHX,
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T(X, Y) = [H, H](X, Y)− 2Ĝ(X, Y)U + 2Ĥ(X, Y)V + 2(u(Y)GX− u(X)GY)+

+σ(HX)GY− σ(HY)GX + σ(X)GHY− σ(Y)GHX,

where [G, G] and [H, H] denote the Nijenhuis tensors of G and H respectively.
A complex contact structure is said to be normal if S and T vanish, S = T = 0.
This notion is too strong; among its implications is that the underlying Hermitian manifold

(M, g) is Kähler. Also one remarks that the canonical examples of a complex contact manifold,
the odd-dimensional complex projective space, is normal in this sense, however, the complex
Heisenberg group is not.

B. Korkmaz [6] generalized the notion of normality and we will use her definition here. With this
notion of normality both odd-dimensional complex projective space and the complex Heisenberg
group with their standard complex contact metric structures are normal.

A complex contact metric structure is normal [6] if

S(X, Y) = T(X, Y) = 0, for every X, Y ∈ H,

S(U, X) = T(V, X) = 0, for every X ∈ H.

The definition appears to depend on the special nature of U and V, but it respects the change in
overlaps, O ∩O′; then it is a global notion.

The expressions for the covariant derivatives of the structures tensors on a normal complex
contact metric manifold are

∇XU = −GX + σ(X)V, (1)

∇XV = −HX− σ(X)U. (2)

Equivalently, a complex contact metric manifold is normal if and only if the covariant derivatives
of G and H have the following forms:

g((∇XG)Y, Z) = σ(X)g(HY, Z) + v(X)dσ (GZ, GY)− (3)

−2v(X)g(HGY, Z)− u(Y)g(X, Z)− v(Y)g(JX, Z)+

+u(Z)g(X, Y) + v(Z)g(JX, Y),

g((∇X H)Y, Z) = −σ(X)g(GY, Z)− u(X)dσ (HZ, HY)− (4)

−2u(X)g(GHY, Z) + u(Y)g(JX, Z)− v(Y)g(X, Z)+

+u(Z)g(X, JY) + v(Z)g(X, Y).

For the Hermitian structure J we have

g((∇X J)Y, Z) = u(X)
(
dσ (Z, GY)− 2g(HY, Z)

)
+ (5)

+v(X)
(
dσ (Z, HY) + 2g(GY, Z)

)
.

B. Korkmaz (see [1,6]) defined the notion of GH-sectional curvature for a (normal) complex contact
metric manifold M̃.

For p ∈ M̃ and a unit vector X ∈ Hp, the plane in Tp M̃ spanned by X and Y = λ GX + µHX,
λ, µ ∈ R, λ2 + µ2 = 1, is called a GH-plane section. The sectional curvature of the GH-plane section is
denoted by K̃(X, Y).

For a given tangent vector X, the sectional curvature K̃(X, Y) is independent of the vector Y in
the plane of GX and HX. This is equivalent to K̃(X, GX) = K̃(X, HX) and g̃(R̃X(GX)HX, X) = 0.
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Let M̃ be a normal complex contact manifold. If the GH-sectional curvature is independent of the
choice of GH-section at each point, it is constant on the manifold M̃ and then M̃ is called a (normal)
complex contact space form.

According to [6] and the convention used by D.E. Blair, the curvature tensor of M̃ have
the expression

R̃(X, Y, Z, W) = g(R̃XYZ, W) = g(R̃(X, Y)Z, W) = (6)

=
c + 3

4
[g(Y, Z)g(X, W)− g(X, Z)g(Y, W) +

+ g(Z, JY)g(JX, W)− g(Z, JX)g(JY, W) + 2g(X, JY)g(JZ, W)] +

+
c− 1

4
[− (u(Y)u(Z) + v(Y)v(Z)) g(X, W) + (u(X)u(Z) + v(X)v(Z)) g(Y, W) +

+ 2u ∧ v(Z, Y)g(JX, W)− 2u ∧ v(Z, X)g(JY, W) + 4u ∧ v(X, Y)g(JZ, W) +

+ g(Z, GY)g(GX, W)− g(Z, GX)g(GY, W) + 2g(X, GY)g(GZ, W) +

g(Z, HY)g(HX, W)− g(Z, HX)g(HY, W) + 2g(X, HY)g(HZ, W) +

+ (−u(X)g(Y, Z) + u(Y)g(X, Z) + v(X)g(JY, Z)− v(Y)g(JX, Z) + 2v(Z)g(X, JY)) g(U, W) +

+ (−v(X)g(Y, Z) + v(Y)g(X, Z) + u(X)g(JY, Z)− u(Y)g(JX, Z) + 2u(Z)g(X, JY)) g(V, W)] +

+
4
3
(Ω(U, V) + c + 1) [(v(X)u ∧ v(Z, Y)− v(Y)u ∧ v(Z, X) + 2v(Z)u ∧ v(X, Y)) g(U, W) −

− (u(X)u ∧ v(Z, Y)− u(Y)u ∧ v(Z, X) + 2u(Z)u ∧ v(X, Y)) g(V, W)] ,

where Ω (U, V) = g(U, JV).

Remark 1 ([1]).

(i) An odd-dimensional complex projective space with the Fubini–Study metric of constant holomorphic
sectional curvature 4 is of constant GH-sectional curvature 1.

(ii) The complex Heisenberg group has holomorphic sectional curvature 0 for horizontal and vertical holomorphic
sections and constant GH-sectional curvature −3.

We recall some results.

Theorem 1 ([1]). Let M̃ be a normal complex contact metric manifold. Then M̃ has constant GH-sectional
curvature c if and only if for X horizontal, the holomorphic sectional curvature of the plane spanned by X and
JX is c + 3.

Theorem 2 ([1]). Let M̃ be a normal complex contact metric manifold of constant GH-sectional curvature +1
and satisfying dσ (V, U) = 2. Then M̃ has constant holomorphic sectional curvature c.

If, in addition, M̃ is complete and simply connected, then M̃ is isometric to CP2n+1 with the Fubini–Study
metric of constant holomorphic sectional curvature c.

We denote a (normal) complex contact space form by M̃(c), c being the constant GH-sectional
curvature of M̃.

3. Submanifolds

By analogy with the geometry of submanifolds in (real) contact manifolds [7], we shall define
certain special classes of submanifolds in normal complex contact manifolds (see also [8]).
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Let M be a submanifold of a normal complex contact manifold M̃. Assume that U and V are
normal vector fields to M. For p ∈ M and X, Y ∈ Tp M, we have

g(GX, Y) = −g(∇̃XU, Y) = g(U, ∇̃XY) = g(U, h(X, Y)).

Since the first term of the above equalities is skew-symmetric and the last term is symmetric
(in X, Y), then g(GX, Y) = 0. Similarly, g(HX, Y) = 0.

Then we have the following.

Remark 2. If the vector fields U and V are normal to M, then for any p ∈ M, G(Tp M) ⊂ T⊥p M and
H(Tp M) ⊂ T⊥p M.

Remark 3. The above conditions do not imply J(Tp M) ⊂ T⊥p M, for all p ∈ M.

Based on the previous two remarks, we define two classes of submanifolds.

Definition 1. A submanifold M of a normal complex contact manifold M̃ is said to be an invariant submanifold
if G(Tp M) ⊂ Tp M and H(Tp M) ⊂ Tp M, for all p ∈ M.

Remark 4. It is immediately that, in the case when M is invariant, according to the above definition, Tp M is
invariant by J, too.

We shall prove the minimality of an invariant submanifold in a normal complex complex contact
manifold.

First of all, we remark that U and V have to be tangent to the submanifold.
Suppose that U is not tangent to the submanifold and decompose U into its tangential and normal

parts, say U = UT + U⊥. Then 0 = GU = GUT + GU⊥; since the G-invariance of the tangent space
implies the G invariance of the normal space, both GUT and GU⊥ vanish.

Let X be a horizontal tangent vector field; then

g(U, [X, GX]) = u([X, GX]) = −2du(X, GX) = −2g(X, G2X) = 2g(X, X). (7)

Now [X, GX] is tangent to the submanifold and therefore

g(U, [X, GX]) = g(UT , [X, GX]) = g(UT , ∇̃XGX− ∇̃GXX) =

= g(UT , (∇̃XG)X + (∇̃GXG)GX).

Using the Formula (3) for the covariant derivative of G for a normal complex contact metric
manifold, this becomes

g(U, [X, GX]) = u(UT)g(X, X) + u(UT)g(GX, GX) = 2g(UT , UT)g(X, X).

Comparing with (7), g(UT , UT) = 1, i.e., UT is unit as is U; therefore U⊥ = 0, contradicting the
supposition that U was not tangent.

For this reason, an orthonormal basis of M, dimM = 4n + 2, can be written as

{E1, ..., En, GE1, ..., GEn, HE1, ..., HEn, JE1, ..., JEn, U, V}.

The proof of the minimality uses the formula of the covariant derivative given by B. Foreman in
his Ph.D. Thesis [9].



Mathematics 2019, 7, 1195 6 of 11

Let pr : TM −→ H denote the projection to the horizontal subbundle and J′ = pr ◦ J. We then have

2g((∇̃XG)Y, Z) = g([G, G](Y, Z), GX)−

− 3v ∧ dσ(X, GY, GZ) + 3v ∧ dσ(X, Y, Z)−

− 2σ(X)g(Y, HZ) + 4v(X)g(Y, J′Z)− σ(Y)g(Z, HX) + σ(GY)g(Z, J′X)−

− 2u(Y)g(X, pZ)− 2v(Y)g(Z, J′X) + σ(Z)g(Y, HX)− σ(GZ)g(Y, J′X) +

+ 2u(Z)g(X, pY) + 2v(Z)g(Y, J′X).

Now taking X as horizontal and Y = X we make the following computation

2g((∇̃XG)Y, Z) + 2g((∇̃GXG)GY, Z) =

= g([G, G](X, Z), GX)− 2σ(X)g(X, HZ)−

− σ(X)g(Z, HX) + σ(GX)g(Z, JX) +

+ 2u(Z)g(X, X)− g([G, G](GX, Z), X)− 2σ(GX)g(GX, HZ)+

+ σ(GX)g(HZ, GX) + σ(X)g(Z, HX) + 2u(Z)g(X, X).

Expanding the Nijenhuis torsion terms and cancelling as appropriate, we have

g((∇̃XG)Y, Z) + g((∇̃GXG)GY, Z) =

= σ(X)g(HX, Z) + σ(GX)g(JX, Z) + 2u(Z)g(X, X).

Now suppose that Z is normal to the submanifold. Then the previous formula yields

g(h(X, GX)− Gh(X, X), Z) + g(h(GX,−X)− Gh(GX, GX), Z) = 0,

giving
h(X, X) + h(GX, GX) = 0,

where h denotes the second fundamental form of the submanifold M.
If we put JX instead of X, we find h(JX, JX) + h(HX, HX) = 0.
Then, we have proven:

Theorem 3. Any invariant submanifold of a normal complex contact manifold is minimal.

Example 2. Example of an invariant submanifold:
Consider the Segre embedding:

CP2m+1 × CP2n+1 → CP(2m+1)(2n+1)+2m+2n+2,

([z1, ..., z2m+2], [w1, ..., w2n+2]) 7→ [z1w1, ..., ziwj, ..., z2m+2w2n+2].

Its image is an invariant submanifold.

Another important class of submanifolds are the anti-invariant submanifolds.

Definition 2. A submanifold M of a normal complex contact manifold M̃ is said to be a CC-totally real
(anti-invariant) submanifold if

(i) U and V are normal to M;
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(ii) M is a totally real submanifold of M̃ (with respect to J).

Example 3. Example of a CC-totally real submanifold: RPn ⊂ CP2n+1.

For a CC-totally real (anti-invariant) submanifold M of a (normal) complex contact space form
M̃(c) (dimR M = n; dimR M̃(c) = m) of arbitrary codimension, an orthonormal basis of Tp M, p ∈ M,
can be written as {E1, E2, . . . , En}, n = dimR M.

Obviously,
U, V ⊥ Ei, ∀i = 1, n,

U, V ⊥ GEi, U, V ⊥ HEi, U, V ⊥ JEi, ∀i = 1, n.

4. Chen Inequalities

In this section we shall prove the Chen first inequality and Chen inequality for the invariant
δ (2, 2) for CC-totally real submanifolds in a normal complex contact space form M̃(c).

Recall the definitions of the Chen first invariant and Chen invariant δ (2, 2) (see, for example,
[4,10]).

Let (M, g) be a Riemannian manifold of dimension n ≥ 2 and denote by K and τ the sectional
curvature and scalar curvature of M, respectively.

Chen first invariant δM is defined by δM = τ − inf K.
Chen invariant δ (2, 2) is given by δ (2, 2) = τ− inf[K(π1) + K(π2)], where π1 and π2 are mutually

orthogonal plane sections.
In order to prove Chen first inequality, we state the following lemma.

Lemma 1 ([11]). Let n ≥ 3 be an integer and let a1, ..., an be n real numbers. Then one has:

∑
1≤i<j≤n

aiaj − a1a2 ≤
n− 2

2(n− 1)

(
n

∑
i=1

ai

)2

.

Moreover, the equality holds if and only if a1 + a2 = a3 = ... = an.

Let M be an n-dimensional CC-totally real submanifold of a normal complex contact space form
of arbitrary codimension m.

The Gauss equation for M in M̃(c) is given by

R̃(X, Y, Z, W) = R(X, Y, Z, W)− g(h(X, W), h(Y, Z)) + g(h(X, Z), h(Y, W)), (8)

for any X, Y, Z, W ∈ Γ(TM), where h is the second fundamental form.
Let p ∈ M, π a plane section in Tp M, {E1, E2} an orthonormal basis of π, {E1, ..., En}

an orthonormal basis of Tp M and {En+1, ..., Em} an orthonormal basis of T⊥p M.
The Gauss equation implies

K(π) = R(E1, E2, E2, E1) = (9)

=
c + 3

4
+ g(h(E1, E1), h(E2, E2))− g(h(E1, E2), h(E1, E2)) =

=
c + 3

4
+

m

∑
α=n+1

[hα
11 hα

22 − (hα
12)

2],

where hα
ij = g(h(Ei, Ej), Eα), i, j ∈ {1, ..., n}, α ∈ {n + 1, ..., m}.
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On the other hand,
τ = ∑

1≤i<j≤n
R(Ei, Ej, Ej, Ei) = (10)

= n(n− 1)
c + 3

8
+ ∑

1≤i<j≤n
[g(h(Ei, Ei), h(Ej, Ej))− g(h(Ei, Ej), h(Ei, Ej))] =

= n(n− 1)
c + 3

8
+

m

∑
α=n+1

∑
1≤i<j≤n

[hα
ii hα

jj − (hα
ij)

2].

Subtracting the above two equations, one has

τ − K(π) = (n− 2)(n + 1)
c + 3

8
+

m

∑
α=n+1

(
∑

1≤i<j≤n
hα

ii hα
jj − hα

11 hα
22

)
−

−
m

∑
α=n+1

[
∑

1≤i<j≤n
(hα

ij)
2 − (hα

12)
2

]
≤

≤ (n− 2)(n + 1)
c + 3

8
+

m

∑
α=n+1

(
∑

1≤i<j≤n
hα

ii hα
jj − hα

11 hα
22

)
.

By applying Lemma 1, we obtain for all α ∈ {n + 1, ..., m}:

∑
1≤i<j≤n

hα
ii hα

jj − hα
11 hα

22 ≤
n− 2

2(n− 1)

(
n

∑
i=1

hα
ii

)2

=
n2(n− 2)
2(n− 1)

(Hα)2.

By summing the above relations, we obtain

τ − K(π) ≤ (n− 2)(n + 1)
c + 3

8
+

n2(n− 2)
2(n− 1)

‖~H‖2,

where ~H is the mean curvature vector.
The equality holds at a point p ∈ M if and only if for any α ∈ {n + 1, ..., m},{

hα
11 + hα

22 = hα
33 = ... = hα

nn,

hα
ij = 0, ∀1 ≤ i < j ≤ n, (i, j) 6= (1, 2).

(11)

If we take En+1 parallel to ~H(p) and E1, E2 such that hn+1
12 = 0, the shape operators take the forms

given in the following:

Theorem 4. Let M̃(c) be a normal complex contact space form and M an n-dimensional (n ≥ 3) CC-totally
real submanifold. Then we have

δM = τ − inf K ≤ n− 2
2

[
n2

n− 1
‖~H‖2 + (n + 1)

c + 3
4

]
.
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Moreover, the equality case of the inequality holds at a point p ∈ M if and only if there exist an orthonormal
basis {E1, E2, ..., En} of Tp M and an orthonormal basis {En+1, ..., Em} of T⊥p M such that the shape operators
take the following forms:

An+1 =


a 0 0 . . . 0
0 b 0 . . . 0
0 0 µ . . . 0
...

...
...

. . .
...

0 0 0 ... µ

 , a + b = µ,

Ar =


hr

11 hr
12 0 . . . 0

hr
12 −hr

11 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 ... 0

 , r ∈ {n + 2, ..., m}.

If M is of maximum dimension, i.e., dim M = n and dim M̃ = 4n + 2 (the analogue of
a Legendrian submanifold in the real case), we obtain:

Theorem 5. Let M̃(c) be a normal complex contact space form of dimension 4n + 2. Then any n-dimensional
CC-totally real submanifold M satisfying the equality case of Chen first inequality, identically, is minimal.

Proof. Let M be an n-dimensional CC-totally real submanifold in a (4n + 2)-dimensional normal
complex contact space form M̃(c) satisfying the equality case of Chen first inequality, identically.
Then the Equations (11) can be written as{

h(E1, E1) + h(E2, E2) = h(E3, E3) = ... = h(En, En),

h(Ei, Ej) = 0, ∀1 ≤ i < j ≤ n, (i, j) 6= (1, 2).
(12)

Then, by using (1), we have

g(h(E3, E3), U) = g(∇̃E3 E3, U) = −g(E3, ∇̃E3U) = g(E3, GE3 − σ (E3)V) = 0,

and similarly g(h(E3, E3), V) = 0.
On the other hand, using (3), we find for any j 6= 3

g(h(E3, E3), GEj) = g(∇̃E3 E3, GEj) = −g(E3, ∇̃E3 GEj) = g(GE3, h(E3, Ej)) = 0,

and

g(h(E3, E3), GE3) = g(h(E1, E1) + h(E2, E2), GE3) = g(h(E1, E3), GE1) + g(h(E2, E3), GE2) = 0.

Analogously, g(h(E3, E3), HEj) = g(h(E3, E3), JEj) = 0, ∀j = 1, ..., n.
Therefore h(E3, E3) = 0.
It follows by (12) that

~H =
n− 1

n
h(E3, E3) = 0,

i.e., M is a minimal submanifold.

Next we shall prove Chen inequality for the invariant δ (2, 2). We shall use the following Lemma.
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Lemma 2 ([12]). Let n ≥ 4 be an integer and let a1, ..., an be n real numbers. Then one has:

∑
1≤i<j≤n

aiaj − a1a2 − a3a4 ≤
n− 3

2(n− 2)

(
n

∑
i=1

ai

)2

.

Moreover, the equality holds if and only if a1 + a2 = a3 + a4 = a5 = ... = an.

Let p ∈ M, π1 and π2 mutually orthogonal plane sections in Tp M, {E1, E2} and {E3, E4}
orthonormal bases of π1 and π2, and {E1, ..., En} an orthonormal basis of Tp M.

The Gauss equation implies

K(π1) =
c + 3

4
+ g(h(E1, E1), h(E2, E2))− g(h(E1, E2), h(E1, E2)) =

=
c + 3

4
+

m

∑
α=n+1

[hα
11 hα

22 − (hα
12)

2].

K(π2) =
c + 3

4
+ g(h(E3, E3), h(E4, E4))− g(h(E3, E4), h(E3, E4)) =

=
c + 3

4
+

m

∑
α=n+1

[hα
33 hα

44 − (hα
34)

2].

By subtracting the above two equations from (10), we obtain

τ − K(π1)− K(π2) = (n2 − n− 4)
c + 3

8
+

m

∑
α=n+1

(
∑

1≤i<j≤n
hα

ii hα
jj − hα

11 hα
22 − hα

33 hα
44

)
−

−
m

∑
α=n+1

[
∑

1≤i<j≤n
(hα

ij)
2 − (hα

12)
2 − (hα

34)
2

]
≤

≤ (n2 − n− 4)
c + 3

8
+

m

∑
α=n+1

(
∑

1≤i<j≤n
hα

ii hα
jj − hα

11 hα
22 − hα

33 hα
44

)
.

By applying Lemma 2, we have for all α ∈ {n + 1, ..., m}:

∑
1≤i<j≤n

hα
ii hα

jj − hα
11 hα

22 − hα
33hα

44 ≤
n− 3

2(n− 2)

(
n

∑
i=1

hα
ii

)2

=
n2(n− 2)
2(n− 1)

(Hα)2.

By summing the above relations, we have

τ − K(π1)− K(π2) ≤ (n2 − n− 4)
c + 3

8
+

n2(n− 3)
2(n− 2)

‖~H‖2.

Then, we found next

Theorem 6. Let M̃(c) be an m-dimensional normal complex contact space form and M an n-dimensional
(n ≥ 4) CC-totally real submanifold. Then we have

δ (2, 2) ≤ n2(n− 3)
2(n− 2)

‖~H‖2 + (n2 − n− 4)
c + 3

4
.
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Moreover, the equality holds at a point p ∈ M if and only if for any α ∈ {n + 1, ..., m},{
hα

11 + hα
22 = hα

33 + hα
44 = hα

55 = ... = hα
nn,

hα
ij = 0, ∀1 ≤ i < j ≤ n, (i, j) 6= (1, 2), (3, 4).

For a CC-totally real submanifold of maximum dimension, we have

Theorem 7. Let M̃(c) be a normal complex contact space form of dimension 4n + 2. Then any n-dimensional
CC-totally real submanifold M satisfying the equality case of Chen inequality for δ (2, 2), identically, is minimal.

Its proof is similar to the proof of Theorem 5.
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