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Abstract: We prove that a contact strongly pseudo-convex CR (Cauchy–Riemann) manifold
M2n+1, n ≥ 2, is locally pseudo-Hermitian symmetric and satisfies ∇ξ h = µhφ, µ ∈ R,
if and only if M is either a Sasakian locally φ-symmetric space or a non-Sasakian (k, µ)-space.
When n = 1, we prove a classification theorem of contact strongly pseudo-convex CR manifolds with
pseudo-Hermitian symmetry.
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1. Introduction

For a contact manifold (M2n+1; η), we have the two fundamental structures associated with
the contact form η: the Riemannian metric g and the Levi form related with an endomorphism J
on D(=Ker of η) such that J2 = −I. Between the two associated structures we have a one-to-one
correspondence by the equation

g = L + η ⊗ η,

where L denotes the (0,2)-tensor field on M which naturally extends the Levi form. When the
integrability of the almost complex structure J on D is assumed, we call it an (integrable) CR structure.
A Sasakian manifold is a contact Riemannian manifold (M; η, g) satisfying a normality condition (see,
Section 2.1). Then, we may describe the Sasakian structure as a contact strongly pseudo-convex CR
(Cauchy–Riemann) structure whose characteristic vector field is a Killing vector field for its associated
Riemannian metric.

In studying a contact manifold from the Riemannian view point, the question of contact metric
manifolds (M; η, g) satisfying (Cartan’s) local symmetry, that is, whose Riemannian curvature tensor
R satisfies

∇R = 0,

where ∇ denotes the Levi-Civita connection of g, has a long history (cf. Section 7.5 in Reference [1]).
(For Sasakian manifolds, the problem was settled already by M. Okumura [2].) At last, E. Boeckx and
the present author [3] have proved that a locally symmetric contact metric space is locally isometric
to either the unit sphere or the unit tangent sphere bundle of the Euclidean space with its standard
contact metric structure.

This result says that the local symmetry is too strong a condition to impose on contact manifolds.
In this context, T. Takahashi [4] introduced the notion of Sasakian locally φ-symmetric spaces as the
analogue of locally Hermitian symmetric spaces. A Sasakian manifold is said to be locally φ-symmetric
if the Riemannian curvature tensor R satisfies

(∗) g((∇XR)(Y, Z)V, U) = 0
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for all vector fields X, Y, Z, V and U orthogonal to ξ. Making a generalization of this definition,
in Reference [5], the authors call a contact metric manifold locally φ-symmetric if it satisfies the same
curvature condition (∗) as in the Sasakian case.

Taking a look at contact manifolds from the point of view of its pseudo-Hermitian structure,
then we have a canonical affine connection, distinct from the Levi-Civita connection of an associated
metric g. Indeed, the generalized Tanaka-Webster connection ∇̂ on a strongly pseudo-convex almost CR
manifold is invariant under pseudo-homothetic transformations (which preserve φ). In previous
works [6–11], the generalized Tanaka-Webster connection has been playing an important part
when we studied the interplay between the contact Riemannian structure and the contact strongly
pseudo-convex almost CR structure. In Reference [10] (for the CR-integrable case in Reference [6]),
we defined locally pseudo-Hermitian symmetric spaces to be strongly pseudo-convex almost CR manifolds
whose pseudo-Hermitian curvature tensor R̂ satisfies

L((∇̂X R̂)(Y, Z)V, U) = 0

for all vector fields X, Y, Z, V and U orthogonal to ξ. Then, in Section 3 of the present paper, we prove
that a contact strongly pseudo-convex CR manifold M2n+1, n ≥ 2, is locally pseudo-Hermitian
symmetric and satisfies ∇ξ h = µhφ, µ ∈ R, if and only if M is either a Sasakian locally φ-symmetric
space or a non-Sasakian (k, µ)-space (Theorem 2). In Section 4, we treat the three-dimensional case.
In particular, we prove a classification theorem of three-dimensional contact strongly pseudo-convex
CR manifolds with pseudo-Hermitian symmetry (Theorem 4). Moreover, we give non-homogeneous
examples of locally pseudo-Hermitian symmetric contact strongly pseudo-convex CR manifolds.

2. Preliminaries

2.1. Contact Riemannian Structures

First of all, we recall some basic notions and formulas in contact Riemannian geometry.
All manifolds treated in this paper are assumed to be connected and of class C∞.

Definition 1 ([1]). A contact manifold (M2n+1; η) is an odd-dimensional manifold equipped with a global
1-form η such that η ∧ (dη)n 6= 0 everywhere.

For a contact form η, we have a unique vector field ξ, which is called the characteristic vector field
or the Reeb vector field, satisfying η(ξ) = 1 and iξ dη = 0. Here, iξ denotes the interior product operator
by ξ. Then we have also a Riemannian metric g and a (1, 1)-tensor field φ such that

η(X) = g(X, ξ), φ2X = −X + η(X)ξ, dη(X, Y) = g(X, φY), (1)

for all X, Y ∈ X(M), where X(M) denotes the Lie algebra of all smooth vector fields on M. From (1),
we have easily that

η ◦ φ = 0, φξ = 0, g(φX, φY) = g(X, Y)− η(X)η(Y). (2)

A manifold M equipped with structure tensors (η, ξ, φ, g) satisfying (1) is said to be a contact Riemannian
manifold or contact metric manifold and is denoted by M = (M; η, g). We define a (1, 1)-tensor field h on
M by 2h = Lξφ, where Lξ denotes Lie differentiation with respect to ξ. The operator h is self-adjoint
and satisfies

hξ = 0, hφ = −φh, (3)

∇Xξ = −φX− φhX, (4)
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where ∇ is the Levi-Civita connection. From (3) and (4) we see that any flow line of ξ is a geodesic.
Furthermore, we know that ∇ξ φ = 0 in general (cf. p. 67 in Reference [1]). From the second equation
of (3) it follows also that

(∇ξ h)φ = −φ(∇ξ h). (5)

The Riemannian curvature tensor R is defined by

R(X, Y)Z = ∇X(∇YZ)−∇Y(∇XZ)−∇[X,Y]Z

for all X, Y, Z ∈ X(M). The characteristic Jacobi operator ` is the symmetric (1, 1)-tensor defined by
`(X) = R(X, ξ)ξ. Then, from the definition of R, by using (4) we have

` = −φ2 + φ∇ξ h− h2. (6)

Using (6), together with (3) and (5), then we have

2∇ξ h = `φ− φ`. (7)

A contact metric manifold is called a K-contact manifold if ξ is a Killing vector field, or equivalently,
h vanishes. Given M = (M; η, g), an almost complex structure J̃ on M×R is naturally defined by

J̃(X, f
d
dt
) = (φX− f ξ, η(X)

d
dt
),

where X ∈ X(M), t ∈ R and f ∈ F (M×R), where F (M×R) denotes the algebra of differentiable
functions on M×R. If the almost complex structure J̃ is integrable, M is said to be normal or Sasakian.
Note that any 3-dimensional K-contact manifold is already Sasakian, but in higher dimension it does
not hold any more. A Sasakian structure is characterized by the following equation:

(∇Xφ)Y = g(X, Y)ξ − η(Y)X, (8)

or eqiuvalently
R(X, Y)ξ = η(Y)X− η(X)Y (9)

for all X, Y ∈ X(M). We refer to Blair’s book [1] for more details.

2.2. Strongly Pseudo-Convex almost CR Structures

In this subsection, we begin by a brief reviewing of pseudo-Hermitian CR structure.

Definition 2 ([12]). Let M be a (2n+ 1)-dimensional manifold and TM be its tangent bundle. A CR structure
on M is the subbundleH ⊂ CTM = TM⊗C satisfying the following:

• each fiberHp, p ∈ M, is of complex dimension n
• H ∩ H̄ = {0}, where H̄ denotes the complex conjugation ofH,
• [H,H] ⊂ H (integrability).

We call (M;H) a CR manifold (of hypersurface type).

Given a CR manifold (M;H), we have a unique subbundle D = Re{H⊕ H̄}, which is maximally
holomorphic subbundle of TM, and have a unique bundle isomorphism J : D → D such that J2 = −I
andH = {X− i JX|X ∈ Γ(D)}. Such (D, J) is called the real representation ofH. Let E ⊂ T∗M be the
conormal bundle of D. If M is oriented, then E is a trivial bundle, and hence it admits globally defined
a nowhere zero 1-form η such that Ker(η) = D. The Levi form is defined by

L : Γ(D)× Γ(D)→ F (M), L(X, Y) = −dη(X, JY).
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If the Levi form is non-degenerate (positive or negative definite, resp.), then (η, L) is called a
non-degenerate (strongly pseudo-convex, resp.) pseudo-Hermitian CR structure. Then there exists a unique
globally defined nowhere vanishing vector field ξ such that η(ξ) = 1 and iξ dη = 0. In particular,
for a strongly pseudo-convex pseudo-Hermitian CR structure (η, L), we can extend the Levi form
canonically to a Riemannian metric on M defined by

gη = L + η ⊗ η,

where iξ L = 0. It is called the Webster metric (cf. Reference [13]).
Let’s return to a contact Riemannian manifold M = (M; η, g). At each point p ∈ M, the subspace

Dp(= Ker of ηp) of the tangent space Tp M of M gives the decomposition Tp M = Dp ⊕ {ξ}p

(direct sum). Then D : p→ Dp defines a 2n-dimensional distribution orthogonal to ξ, which is called
the contact distribution or the contact subbundle. The associated pseudo-Hermitian structure is naturally
provided by the subbundle H = {X − i JX : X ∈ Γ(D)} ⊂ CTM, where J = φ|D, the restriction
of φ to D. In fact, we see that each fiber Hp, p ∈ M, is of complex dimension n, H ∩ H̄ = {0} and
CD = H⊕ H̄. Moreover, M satisfies

[JX, JY]− [X, Y] ∈ Γ(D) (or [JX, Y] + [X, JY] ∈ Γ(D)) (10)

for all X, Y ∈ Γ(D). Such (η, J) is called an pseudo-Hermitian almost CR structure. It should be notable
that the CR-integrability does not hold in general for a contact metric manifold. In terms of the
structure tensors, CR-integrability condition is equivalent to the condition Ω = 0, where Ω is the
(1, 2)-tensor field on M defined by

Ω(X, Y) = (∇Xφ)Y− g(X + hX, Y)ξ + η(Y)(X + hX) (11)

for all X, Y ∈ X(M) (see Reference [14], [Proposition 2.1]). From (8) and (11), we see that the associated
pseudo-Hermitian structure of a Sasakian manifold is strongly pseudo-convex and CR-integrable.
The same is true for all three-dimensional contact metric spaces [6].

Definition 3 ([15]). A pseudo-homothetic or Da-homothetic transformation of a contact metric manifold
is a diffeomorphism f on M such that f ∗η = aη, f∗ξ = 1

a ξ, φ ◦ f∗ = f∗ ◦ φ, f ∗g = ag + a(a− 1)η ⊗ η,
where a is a positive constant.

A pseudo-homothetic or Da-homothetic deformation (η̄, ξ̄, φ̄, ḡ) of a given contact metric structure
(η, ξ, φ, g) is defined by

η̄ = aη, ξ̄ =
1
a

ξ, φ̄ = φ, ḡ = ag + a(a− 1)η ⊗ η. (12)

From (12), we have h̄ = (1/a)h. We remark that CR-integrability of the associated pseudo-Hermitian
structure is preserved under pseudo-homothetic transformations. In fact, by direct computations,
we have that Ω = 0 implies Ω̄ = 0 [6].

3. The pseudo-Hermitian Symmetric Spaces

In this section, we study on the pseudo-Hermitian curvature tensor and symmetric properties.

Definition 4 ([14]). The generalized Tanaka-Webster connection ∇̂ on a contact strongly pseudo-convex
almost CR manifold M = (M; η, L) is defined by

∇̂XY = ∇XY + η(X)φY + (∇Xη)(Y)ξ − η(Y)∇Xξ

for all X, Y ∈ X(M).
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Using (4), we may rewrite ∇̂ as

∇̂XY = ∇XY + A(X, Y). (13)

Here, A is (1, 2)-tensor field defined by

A(X, Y) = η(X)φY + η(Y)(φX + φhX)− g(φX + φhX, Y)ξ. (14)

Then ∇̂ has the torsion

T̂(X, Y) = 2g(X, φY)ξ + η(Y)φhX− η(X)φhY. (15)

In particular, for the K-contact case we get A(X, Y) = η(X)φY + η(Y)φX− g(φX, Y)ξ.

Proposition 1 ([14]). The generalized Tanaka-Webster connection ∇̂ on a contact Riemannian manifold
M = (M; η, g) is the unique linear connection satisfying the following conditions:

(i) ∇̂η = 0, ∇̂ξ = 0;
(ii) ∇̂g = 0;

(iii-1) T̂(X, Y) = 2L(X, JY)ξ, X, Y ∈ Γ(D);
(iii-2) T̂(ξ, φY) = −φT̂(ξ, Y), Y ∈ Γ(D);
(iv) (∇̂Xφ)Y = Ω(X, Y), X, Y ∈ Γ(TM).

In the case Ω = 0, that is, CR-integrability holds, ∇̂ reduces to the Tanaka-Webster connection,
which is defined on a non-degenerate integrable pseudo-Hermitian manifold [16,17]. So, the above
definition is useful especially for the non-integrable case.

Proposition 2 ([6]). The generalized Tanaka-Webster connection is invariant under a pseudo-homothetic
transformation.

The generalized Tanaka-Webster curvature tensor R̂ is defined by: R̂(X, Y)Z = ∇̂X(∇̂YZ) −
∇̂Y(∇̂XZ)− ∇̂[X,Y]Z. We call sometimes R̂ the pseudo-Hermitian curvature tensor. Then we have

Corollary 1 ([6]). The pseudo-Hermitian curvature tensor R̂ and its covariant derivative ∇̂R̂ are
pseudo-homothetically invariant.

Proposition 3 ([6]).

R̂(X, Y)Z = −R̂(Y, X)Z, L(R̂(X, Y)Z, W) = −L(R̂(X, Y)W, Z).

In order to make a development of the curvature tensor R̂, from (3) and (13), we first compute

(∇̂Xh)Y =(∇Xh)Y + A(X, hY)− hA(X, Y)

=(∇Xh)Y + 2η(X)φhY + g((φh + φh2)X, Y)ξ (16)

+ η(Y)(φhX + φh2X)

for all X, Y ∈ X(M). We put P(X, Y) = (∇Xh)Y− (∇Yh)X. Then, from the definition of R̂ and (13),
taking into account ∇̂η = 0, ∇̂ξ = 0, ∇̂g = 0, ∇̂φ = Ω and (16), together with (1)–(3) and (14), we have

R̂(X, Y)Z = R(X, Y)Z + B(X, Y)Z, (17)



Mathematics 2020, 8, 1583 6 of 13

where we have put

B(X, Y)Z =− g
(

Ω(X, Y)−Ω(Y, X) + Ω(X, hY)−Ω(Y, hX) + φP(X, Y), Z
)

ξ

− η(X)
(
Ω(Y, Z) + g(Y + hY, Z)ξ

)
+ g(φY + φhY, Z)(φX + φhX)− g(φX + φhX, Z)(φY + φhY)

− 2g(φX, Y)φZ

for any X ∈ X(M) and any vector fields Y, Z ⊥ ξ (cf. Reference [10]). Define the pseudo-Hermitian
Ricci curvature tensor ρ̂ by ρ̂(X, Y) = tr {V 7→ R̂(V, X)Y}, X, Y ⊥ ξ. Then from (17) we have

ρ̂(X, Y) = ρ(X, Y) +
2n+1

∑
I=1

g(B(eI , X)Y, eI), (18)

where {eI}, I = 1, 2, · · · , 2n + 1, is an orthonormal frame and ρ denotes the Ricci curvature for the
Levi-Civita connection. The pseudo-Hermitian scalar curvature r̂ is defined by r̂ = ∑2n

i=1 ρ̂(ei, ei),
where {ei, e2n+1 = ξ} (i = 1, · · · , 2n) is an adapted orthonormal frame. We recall

Definition 5 ([10]). Let (M; η, L) be a pseudo-Hermitian strongly pseudo-convex almost CR manifold. Then
M is said to be a locally pseudo-Hermitian symmetric space if M satisfies

L((∇̂X R̂)(Y, Z)U, V) = 0

for all vector fields X, Y, Z, U, V orthogonal to ξ.

Then we obtain the following results.

Proposition 4 ([10]). A locally pseudo-Hermitian symmetric space has constant pseudo-Hermitian scalar
curvature r̂.

Proposition 5 ([6]). A Sasakian manifold is locally pseudo-Hermitian symmetric if and only if it is
locally φ-symmetric.

Since g((∇̂X R̂)(ξ, Y)Z, ξ) = 0, we find that

(∇̂X ρ̂)(Y, Z) =
2n

∑
i=1

g(∇̂X R̂)(ei, Y)Z, ei), (19)

where {ei, e2n+1 = ξ} (i = 1, · · · , 2n) is an adapted orthonormal frame. Now, we introduce a very
useful class of contact metric manifolds when we study their pseudo-Hermitian geometry. This is the
so-called (k, µ)-spaces [18] defined by the condition:

R(X, Y)ξ = (kId + µh)(η(Y)X− η(X)Y), (20)

where k, µ ∈ R. It includes Sasakian spaces for k = 1 and h = 0. Popular examples of non-Sasakian
(k, µ)-spaces are provided by the unit tangent sphere bundles of spaces of constant curvature c
(k = c(2− c) and µ = −2c) when c 6= 1. (Due to Tashiro’s result [19], we know that the standard
contact metric structure is Sasakian only when c = 1.) Very recently, the present author [13] proved a
complete classification theorem of non-Sasakian (k, µ)-spaces which are realized as real hypersurfaces
in the complex quadric Qn+1, its dual Q∗n+1, or the complex Euclidean space Cn+1. Other remarkable
properties of (k, µ)-spaces [18] are as follows:

• such a class is invariant under pseudo-homothetic transformations,
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• the associated pseudo-Hermitian structure is CR-integrable.

From the second property, we obtain a formula of∇φ by (11). Also for∇h, we have an explicit expression:

(∇Xh)Y =
(
(1− k)g(X, φY)− g(X, φhY)

)
ξ (21)

− η(Y)
(
(1− k)φX + φhX

)
− µη(X)φhY

for all X, Y ∈ X(M) [18]. From (21), we have that a (k, µ)-space is an η-parallel contact metric space,
which means that it satisfies g((∇Xh)Y, Z) = 0 for all vector fields X, Y, Z ⊥ ξ. E. Boeckx and the
present author proved that the converse holds also:

Theorem 1 ([20]). An η-parallel contact metric space is either a K-contact space or a (k, µ)-space.

In Reference [6], we obtained the following property of non-Sasakian (k, µ)-spaces.

Proposition 6. A non-Sasakian (k, µ)-space is a locally pseudo-Hermitian symmetric space.

Now, we prove the following theorem.

Theorem 2. A contact strongly pseudo-convex CR manifold M2n+1, n ≥ 2, is locally pseudo-Hermitian
symmetric and satisfies∇ξ h = µhφ, µ ∈ R, if and only if M is either a Sasakian locally φ-symmetric space or a
non-Sasakian (k, µ)-space.

Proof of Theorem 2. First of all, use (3), (4) and the assumption ∇ξ h = µhφ to get

P(X, ξ) =(∇Xh)ξ − (∇ξ h)X

=(1− µ)hφX− h2φX.
(22)

From (18) and (22), we compute

g(ŜX, Y) = g(SX, Y)− µg(hX, Y) + 2g(X, Y) (23)

for any vector fields X, Y ⊥ ξ, where S and Ŝ are the (1, 1)-tensors defined by
ρ(X, Y) = g(SX, Y), ρ̂(X, Y) = g(ŜX, Y), respectively. Using (23) we have

g((Ŝφ− φŜ)X, Y) = g((Sφ− φS)X, Y)− 2µg(hφX, Y) (24)

for any vector fields X, Y ⊥ ξ. Here, we recall a useful formula which holds in general for a contact
strongly pseudo-convex CR manifold (cf. Reference [21]):

Sφ− φS = `φ− φ`+ 4(n− 1)hφ− η ⊗ φSξ + (η ◦ Sφ)⊗ ξ.

Since ∇ξ h = µhφ, together with (7), we have

g((Sφ− φS)X, Y) = (2µ + 4(n− 1))g(hφX, Y) (25)

for any vector fields X, Y ⊥ ξ. Hence, from (24) and (25) we have

g((Ŝφ− φŜ)X, Y) = 4(n− 1)g(hφX, Y) (26)

for any vector fields X, Y ⊥ ξ.
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Suppose that (M; η, L) is locally pseudo-Hermitian symmetric. Then from (19) we have

g((∇̂U Ŝ)X, Y) = 0 (27)

for any vector fields U, X, Y ⊥ ξ. Differentiating (26) covariantly for ∇̂, then using ∇̂φ = 0 and (27)
we have

(n− 1) g((∇̂Uh)φX, Y) = 0 (28)

for any vector fields U, X, Y orthogonal to ξ. From (28) we have either n = 1 or h is η-parallel (for ∇̂
and ∇). Indeed, from (16) we are easily aware that η-parallel h for ∇ and for ∇̂ are equivalent each
other. Thus, owing to Proposition 5 and Theorem 1, we have that M is either a Sasakian locally
φ-symmetric space or a non-Sasakian (k, µ)-space when n ≥ 2. In order to prove the converse, we first
note that a Sasakian manifold (h = 0) and non-Sasakian (k, µ)-space satisfies ∇ξ h = µhφ (see (21))
authomatically. Moreover, by virtue of Propositions 5 and 6, we find that the converse holds. Therefore,
we have completed the proof.

Recently, A. Ghosh and R. Sharma [22] introduced the so-called Jacobi (k, µ)-contact manifolds,
which generalize the (k, µ)-spaces. Namely, a Jacobi (k, µ)-contact manifold is a contact metric manifold
whose characteristic Jacobi operator ` satisfies

` = −kφ2 + µh. (29)

There are a lot of examples of Jacobi (k, µ)-contact manifolds which are not (k, µ)-spaces (cf. Reference [23]).
We note that Jacobi (k, µ)-contact metric structures are also invariant under a pseudo-homothetic
transformation. From (7), together with (29) we have ∇ξ h = µhφ.

Corollary 2. Let (M2n+1; η, L), n ≥ 2, be a contact strongly pseudo-convex CR manifold. Then M is locally
pseudo-Hermitian symmetric Jacobi (k, µ)-space if and only if M is either a Sasakian locally φ-symmetric space
or a non-Sasakian (k, µ)-space.

4. The Contact Strongly Pseudo-Convex 3-Manifolds

In this section, we study three-dimensional locally pseudo-Hermitian symmetric contact metric
spaces. Let (M; η, g) be a three-dimensional contact metric manifold. Let U1 be the open set defined
by h 6= 0 and U2 be the maximal open subset on which h is identically zero. The union U1 ∪U2 is
open and dense subset of M. Suppose that M is non-Sasakian. Then U1 is non-empty and fix a point
x in U1. Then we have a local orthonormal frame field {ξ, e, φe} on a neighborhood of x ∈ U1 such
that h(e) = λe, h(φe) = −λφe for some positive function λ. The covariant derivative is then of the
following form (see Reference [24], [Lemma 2.1]):

∇ξ ξ = 0, ∇ξ e = −uφe, ∇ξ φe = ue,

∇eξ = −(λ + 1)φe, ∇φeξ = (1− λ)e,

∇ee = pφe, ∇φeφe = qe, (30)

∇eφe = −pe + (λ + 1)ξ,

∇φee = −qφe + (λ− 1)ξ,
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where u is a smooth function and we have put p = 1
2λ (φe(λ) + σ(e)), q = 1

2λ (e(λ) + σ(φe)).
Here, σ = ρ(ξ, ·) and ρ denotes the Ricci curvature tensor. By using (14) we also calculate the
(1,2)-tensor field A:

A(ξ, ξ) = 0, A(e, ξ) = (1 + λ)φe, A(φe, ξ) = −(1− λ)e,

A(ξ, e) = φe, A(e, e) = 0, A(φe, e) = (1− λ)ξ, (31)

A(ξ, φe) = −e, A(e, φe) = −(1 + λ)ξ, A(φe, φe) = 0.

Using (30) and (31), we get the following expressions for ∇̂ from (13):

∇̂ξ ξ = 0, ∇̂ξ e = (1− u)φe, ∇̂ξ φe = −(1− u)e,

∇̂eξ = 0, ∇̂ee = pφe, ∇̂eφe = −pe, (32)

∇̂φeξ = 0, ∇̂φee = −qφe, ∇̂φeφe = qe.

From these equations, we calculate the pseudo-Hermitian curvature tensor:

R̂(e, φe)e = ∇̂e∇̂φee− ∇̂φe∇̂ee− ∇̂[e,φe]e (33)

= −
(
e(q) + φe(p)− (p2 + q2) + 2(1− u)

)
φe,

R̂(e, φe)φe =
(
e(q) + φe(p)− (p2 + q2) + 2(1− u)

)
e.

Then we have the holomorphic sectional curvature Ĥ for ∇̂ and the pseudo-Hermitian scalar
curvature r̂:

Ĥ = e(q) + φe(p)− (p2 + q2) + 2(1− u), r̂ = 2Ĥ. (34)

Thus we have the following theorem.

Theorem 3. A three-dimensional contact strongly pseudo-convex CR manifold is a locally pseudo-Hermitian
symmetric space if and only if it is of constant holomorphic sectional curvature Ĥ.

Proof of Theorem 3. Suppose that M is locally pseudo-Hermitian symmetric. Then, since h = 0 on U2,
we see that it has Sasakian structure. Then by Proposition 5 it is locally φ-symmetric, moreover, due to
a result in Reference [25] we have that it has a constant holomorphic sectional curvature Ĥ(= H + 3)
on U2, where H denotes the holomorphic sectional curvature for ∇. Next, from (32) and (33) we
compute on U1:

(∇̂eR̂)(e, φe)e = ∇̂e(R̂(e, φe)e)− R̂(∇̂ee, φe)e

− R̂(e, ∇̂eφe)e− R̂(e, φe)∇̂ee

= −e
(
e(q) + φe(p)− (p2 + q2) + 2(1− u)

)
φe,

(∇̂φeR̂)(e, φe)e = −φe
(
e(q) + φe(p)− (p2 + q2) + 2(1− u)

)
φe.

Since M is locally pseudo-Hermitian symmetric, Ĥ satisfies

e(Ĥ) = φe(Ĥ) = 0.

We also have, using the second condition of (1):

0 = [e, φe](Ĥ) = η([e, φe])ξ(Ĥ) = −2dη(e, φe)ξ(Ĥ) = 2ξ(Ĥ).

These computations imply that Ĥ is constant on U1. Since U1 ∪U2 is dense and M is connected, Ĥ
is constant on the whole M. In addition, we can easily show that the converse also holds. After all,
we conclude the proof of Theorem 3.
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In a 3-dimensional Riemannian manifold, we have the curvature tensor R by the following form:

R(X, Y)Z =ρ(Y, Z)X− ρ(X, Z)Y + g(Y, Z)SX− g(X, Z)SY

− r
2
{g(Y, Z)X− g(X, Z)Y}

(35)

for all X, Y, Z ∈ X(M), where r is the (Riemannian) scalar curvature of the manifold. From (17),
we have Ĥ = H + 3− 1

2 tr h2. But, using (35), we have a holomorphic sectional curvature for ∇:
H = g(R(e, φe)φe, e) = ρ(e, e) + ρ(φe, φe)− r

2 . Then, we have again Ĥ = 1
2 (r− ρ(ξ, ξ)) + 2, where we

have used ρ(ξ, ξ) = 2− tr h2 (Corollary 7.1 in Reference [1]). Together with Theorem 3, we have

Corollary 3. A three-dimensional contact metric space is a locally pseudo-Hermitian symmetric space if and
only if it is a Sasakian space form on U2 and r− ρ(ξ, ξ) is constant on U1. Here, a Sasakian space form is a
Sasakian space of constant holomorphic sectional curvature H.

For a Jacobi (k, µ)-contact manifold, use (29) to obtain ρ(ξ, ξ) = tr ` = 2k. A three-dimensional
Sasakian manifold is locally φ-symmetric if and only if the scalar curvature is constant (cf. Reference [5]).

Corollary 4. A three-dimensional Jacobi (k, µ)-contact manifold is locally pseudo-Hermitian symmetric if and
only if the scalar curvature is constant.

In a previous paper, we have proved the following fact.

Proposition 7 ([10]). A 3-dimensional homogeneous contact metric space is locally pseudo-Hermitian
symmetric space.

Now, we prove the following theorem.

Theorem 4. Let (M; η, g) be a three-dimensional contact metric space with constant scalar curvature r and
vertical Ricci curvature σ(X) for X ∈ Γ(D). Then M is a locally pseudo-Hermitian symmetric space if and
only if it is a Sasakian space form or a Lie group with left-invariant contact metric structure.

Proof of Theorem 4. Sppose that M is a locally pseudo-Hermitian symmetric space with constant
scalar curvature r. We divide our proof into two cases: U1 is empty or not. If U1 is empty, then M = U2

and M is a Sasakian space form by Corollary 3. Now, we treat the case that U1 is not empty, and we
deliver our argument on U1. Then, from Proposition 4 we have r̂ is a constant. But, from (18),
r̂ = r− ρ(ξ, ξ) + 4. Hence, we have that ρ(ξ, ξ) = 2− 2λ2 is a constant, which gives that λ(> 0) is a
constant. From this, we have M = U1. We compute

ρ(e, ξ) = 2λp, ρ(φe, ξ) = 2λq. (36)

Since a vertical Ricci curvature σ(X) for X ∈ Γ(D) is constant, from (36) we have that p and q are
constants, and from (34) we find that u is also a constant. Then, using (30) we get

[e, φe] = −pe + qφe + 2ξ, [φe, ξ] = (1− λ− u)e, [ξ, e] = (1 + λ− u)φe.

Here we use the Jacobi identity:

[[e, φe], ξ] + [[φe, ξ], e] + [[ξ, e], φe] = 0.

Then, since p and q are constants, using again (30) we have (u + λ− 1)q = 0 and (−u + λ + 1)p = 0.
Since λ 6= 0, we have pq = 0. We divide our arguments into three cases:
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(i) p = 0, q 6= 0: Then u = 1− λ and

[e, φe] = qφe + 2ξ, [φe, ξ] = 0, [ξ, e] = 2λφe.

(ii) q = 0, p 6= 0: Then u = 1 + λ and

[e, φe] = −pe + 2ξ, [φe, ξ] = −2λe, [ξ, e] = 0.

Then, owing to Perrone’s result [26] (or Milnor’s result [27]) for the above two cases M is locally
isometric to a non-unimodular Lie group with left-invariant contact metric structure.
(iii) p = q = 0:

[e, φe] = 2ξ, [φe, ξ] = (1− λ− u)e, [ξ, e] = (1 + λ− u)φe.

Using Perrone’s result again, M is locally isometric to a unimodular Lie group with left-invariant
contact metric structure. Conversely, by Propositions 5 we know that any Sasakian space form is
locally pseudo-Hermitian symmetric space and by Proposition 7 we also know that a Lie group is
locally pseudo-Hermitian symmetric space. Therefore, we have completed the proof.

We have non-homogeneous locally pseudo-Hermitian symmetric spaces.

Example 1. ([28]) Let M = {(x, y, z) ∈ R3(x, y, z) | x 6= 0} be a 3-dimensional contact manifold with the
contact form η = xydx + dz. The Reeb vector field is given by ξ = ∂/∂z. For a positive constant β, take a
global frame field

e1 = − 2
x

∂

∂y
, e2 =

∂

∂x
− βz

x
∂

∂y
− xy

∂

∂z
, e3 = ξ,

and define a Riemannian metric g such that {e1, e2, e3} is orthonormal with respect to it. Define φ by φe1 =

e2, φe2 = −e1 and φξ = 0. Then we find that (η, g) is a Jacobi (k, µ)-contact structure, where k = 1− β2

16 , µ =

2 + β
2 . We compute Ĥ = − β

2 (< 0), which implies that Mβ = (M; η, L) is a locally pseudo-Hermitian

symmetric space. Moreover, we obtain that the components of the Ricci operator are ρ13 = ρ31 = − β
2x , that is,

vertical Ricci curvatures are not constant. Note that Mβ is a locally φ-symmetric space if and only if β = 4
(cf. Reference [29]).

Example 2. In R3(x, y, z), we define a contact 1-form η by

η = dx +
2y

1 + z2 dz.

For any smooth function f (y, z) of variables y, z, we define a global frame field {e1, e2, e3} by

e1 = −2y
∂

∂x
+ (2x− f y)

∂

∂y
+ (1 + z2)

∂

∂z
, e2 =

∂

∂y
, ξ =

∂

∂x
.

Define a Riemannian metric g such that {e1, e2, e3 = ξ} is orthonormal with respect to it. As usual,
the endomorphism field φ is defined by φe1 = e2, φe2 = −e1 and φe3 = 0. Then we see that M f = (R3; η, g)
is a Jacobi (0, 0)-contact space, but its vertical Ricci curvature σ(φe) = 2 f are not constant, in general. Then
we have locally pseudo-Hermitan symmetric spaces of constant holomorphic sectional curvature (for ∇̂) Ĥ = c
for all c ∈ R by the following examples:

• f = z: M f has a constant holomorphic sectional curvature Ĥ = 3. It is not locally φ-symmetric in the
sense of Reference [5].

• f = α (const.): M f has a constant holomorphic sectional curvature Ĥ = 2 + α2. It is curvature
homogeneous. A locally φ-symmetric space occurs only when α = 0.
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• f = α tan(α arctan z), α > 0 (const.) and if M f is restricted to the set {(x, y, z) ∈ R3| − π
2α <

arctan z < π
2α}: it has a constant holomorphic sectional curvature Ĥ = 2 − α2. It is not locally

φ-symmetric.

Remark 1. Since the class of Jacobi (k, µ)-contact manifolds is invariant under pseudo-homothetic
transformations, by applying a pseudo-homothetic transformation to Examples 1 and 2, we have more Jacobi
(k, µ)-contact manifolds which are locally pseudo-Hermitian symmetric.
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