You are currently viewing a new version of our website. To view the old version click .

Linear Elliptic PDEs

Special Issue Information

Dear Colleagues,

Although the field of linear elliptical partial differential equations (PDEs) is one of the most-studied and best-understood topics in PDE theory and numerics; active research is still ongoing in this area. Regarding the analysis of linear elliptic operators, many open scientific problems can be found, e.g., in Section 5 of Vladimir Maz’ya, “Seventy Five (Thousand) Unsolved Problems in Analysis and Partial Differential Equations”, Integr. Equ. Oper. Theory (2018) 90:25, https://doi.org/10.1007/s00020-018-2460-8.

Among other things, new theoretical results about (systems of) linear elliptic PDEs and the regularity of solutions (for measure data or rough data) are suitable for this Special Issue. Furthermore, the numerical analysis of computational methods for the solution of linear elliptic PDEs (the finite element method, FEM; the finite difference method, FDM; and the finite volume method, FVM) and new trends in numerics, e.g., estimating Green’s function of a linear elliptic operator by machine learning or quantum algorithms for the solution of linear PDEs, fit into the scope of this Special Issue.

To summarize, this Special Issue gives authors the opportunity to present their latest findings related to linear elliptic PDEs.

Prof. Dr. Jochen Merker
Dr. Falko Baustian
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • linear elliptic PDEs
  • regularity theory
  • eigenvalue problems
  • numerical analysis of PDE algorithms
  • machine learning for PDEs
  • quantum algorithms for PDEs

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Published Papers

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Mathematics - ISSN 2227-7390Creative Common CC BY license