Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Review

13 pages, 14797 KiB  
Review
Radiation Damage in Macromolecular Crystallography—An Experimentalist’s View
by Helena Taberman
Crystals 2018, 8(4), 157; https://doi.org/10.3390/cryst8040157 - 04 Apr 2018
Cited by 13 | Viewed by 7683
Abstract
Radiation damage still remains a major limitation and challenge in macromolecular X-ray crystallography. Some of the high-intensity radiation used for diffraction data collection experiments is absorbed by the crystals, generating free radicals. These give rise to radiation damage even at cryotemperatures (~100 K), [...] Read more.
Radiation damage still remains a major limitation and challenge in macromolecular X-ray crystallography. Some of the high-intensity radiation used for diffraction data collection experiments is absorbed by the crystals, generating free radicals. These give rise to radiation damage even at cryotemperatures (~100 K), which can lead to incorrect biological conclusions being drawn from the resulting structure, or even prevent structure solution entirely. Investigation of mitigation strategies and the effects caused by radiation damage has been extensive over the past fifteen years. Here, recent understanding of the physical and chemical phenomena of radiation damage is described, along with the global effects inflicted on the collected data and the specific effects observed in the solved structure. Furthermore, this review aims to summarise the progress made in radiation damage studies in macromolecular crystallography from the experimentalist’s point of view and to give an introduction to the current literature. Full article
(This article belongs to the Special Issue Recent Advances in Protein Crystallography)
Show Figures

Figure 1

16 pages, 9480 KiB  
Review
Multifunctional Aromatic Carboxylic Acids as Versatile Building Blocks for Hydrothermal Design of Coordination Polymers
by Jinzhong Gu, Min Wen, Xiaoxiao Liang, Zifa Shi, Marina V. Kirillova and Alexander M. Kirillov
Crystals 2018, 8(2), 83; https://doi.org/10.3390/cryst8020083 - 03 Feb 2018
Cited by 106 | Viewed by 7700
Abstract
Selected recent examples of coordination polymers (CPs) or metal-organic frameworks (MOFs) constructed from different multifunctional carboxylic acids with phenyl-pyridine or biphenyl cores have been discussed. Despite being still little explored in crystal engineering research, such types of semi-rigid, thermally stable, multifunctional and versatile [...] Read more.
Selected recent examples of coordination polymers (CPs) or metal-organic frameworks (MOFs) constructed from different multifunctional carboxylic acids with phenyl-pyridine or biphenyl cores have been discussed. Despite being still little explored in crystal engineering research, such types of semi-rigid, thermally stable, multifunctional and versatile carboxylic acid building blocks have become very promising toward the hydrothermal synthesis of metal-organic architectures possessing distinct structural features, topologies, and functional properties. Thus, the main aim of this mini-review has been to motivate further research toward the synthesis and application of coordination polymers assembled from polycarboxylic acids with phenyl-pyridine or biphenyl cores. The importance of different reaction parameters and hydrothermal conditions on the generation and structural types of CPs or MOFs has also been highlighted. The influence of the type of main di- or tricarboxylate ligand, nature of metal node, stoichiometry and molar ratio of reagents, temperature, and presence of auxiliary ligands or templates has been showcased. Selected examples of highly porous or luminescent CPs, compounds with unusual magnetic properties, and frameworks for selective sensing applications have been described. Full article
(This article belongs to the Special Issue Structural Design and Properties of Coordination Polymers)
Show Figures

Graphical abstract

Other

14 pages, 1098 KiB  
Perspective
Perspective/Discussion on “Quantum Mechanical Metric for Internal Cohesion in Cement Crystals” by C. C. Dharmawardhana, A. Misra and Wai-Yim Ching
by Natt Makul
Crystals 2021, 11(12), 1450; https://doi.org/10.3390/cryst11121450 - 24 Nov 2021
Viewed by 1706
Abstract
The single most important structural material, and the major Portland cement binding phase in application globally, is calcium silicate hydrate (C-S-H). The concentration has increasingly changed due to its atomic level comprehension because of the chemistry and complex structures of internal C-S-H cohesion [...] Read more.
The single most important structural material, and the major Portland cement binding phase in application globally, is calcium silicate hydrate (C-S-H). The concentration has increasingly changed due to its atomic level comprehension because of the chemistry and complex structures of internal C-S-H cohesion in cement crystals at different lengths. This perspective aimed at describing on calcium-silicate-hydrates (C-S-H) structures with differing contents of Ca/Si ratio based on the report entitled “Quantum mechanical metric for internal cohesion in cement crystals” published by C. C. Dharmawardhana, A. Misra and Wai-Yim Ching. Crystal structural and bond behaviors in synthesized C-S-H were also discussed. The investigator studied large subset electronic structures and bonding of the common C-S-H minerals. From each bonding type, the results and findings show a wide variety of contributions, particularly hydrogen bonding, that allow critical analyses of spectroscopic measurement and constructions of practical C-S-H models. The investigator found that the perfect overall measurement for examining crystal cohesions of the complex substances is the total bond density (TBOD), which needs to be substituted for traditional metrics such as calcium to silicon ratios. In comparison to Tobermorite and Jennite, hardly known orthorhombic phased Suolunites were revealed to have greater cohesion and total order distribution density than those of the hydrated Portland cement backbone. The findings of the perspective showed that utilizing quantum mechanical metrics, the total bond orders and total bond order distributions are the most vital criteria for assessing the crystalline cohesions in C-S-H crystals. These metrics encompass effects of both interatomic interactions and geometric elements. Thus, the total bond order distribution and bond order offer comprehensive and in-depth measures for the overall behaviors of these diverse groups of substances. The total bond order distributions must clearly be substituted for the conventional and longstanding Ca/Si ratios applied in categorizing the cement substances. The inconspicuous Suolunite crystals were found to have the greatest total bond order distributions and the perfect bonding characteristics, compositions, and structures for cement hydrates. Full article
Show Figures

Figure 1

Back to TopTop