Biomimetic Application on Applied Bioengineering

A special issue of Biomimetics (ISSN 2313-7673). This special issue belongs to the section "Development of Biomimetic Methodology".

Deadline for manuscript submissions: 15 February 2026 | Viewed by 6532

Special Issue Editors


E-Mail Website
Guest Editor
School of Aeronautical and Space Engineering, Department of Aircraft and Space Vehicles, Polytechnical University of Madrid Plaza del Cardenal Cisneros, 28040 Madrid, Spain
Interests: fracture mechanics; models; damage; bioengineering; experiments; computational mechanics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
ETS de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza Cardenal Cisneros 3, 28040 Madrid, Spain
Interests: damage; biomechanics; FEM

E-Mail Website
Guest Editor
Departamento de Ingeniería Civil, Construcción, E.T.S de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, c/Profesor Aranguren, s/n, 28040 Madrid, Spain
Interests: biomechanics; multiphysics; FEM

Special Issue Information

Dear Colleagues,

Bioengineering is a complex field where biology, chemistry, and mechanics converge, among other disciplines. When faced with an issue related to any of these fields, it would thus be convenient to focus on bioengineering, its influence on the overall problem, and the interaction between different phenomena, adding extra complexity to this approach. For this reason, one must first partially study the problem at hand and then progress to more global, interdisciplinary approaches.

This Special Issue focuses on the field of continuum and discrete mechanics, where materials, structures, and deformations go beyond the traditional approaches for engineering structures and coexist with agents that interact with them, changing the boundary conditions and the chemical environment. This study opens a wide variety of ways to explore, from the topological optimization of bones to interstitial pressure in tumours and one’s response to different treatments. For this, several models and approaches need to be considered to reproduce cellular behaviour, material stiffening, or vessel growth. Agent-based and multi-physical models together with discrete angiogenesis approaches are needed for further studying this topic. As such, they are welcome in this Special Issue.

Through the above, we expect to offer a general view of current trends and computational models in the bioengineering field.

Dr. Luis Saucedo-Mora
Dr. Laura Moreno-Corrales
Dr. Lucía López-de Abajo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomimetics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • agent-based model
  • computational bioengineering
  • tumour
  • angiogenesis
  • bone remodelling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 6625 KB  
Article
Design and Validation of a Piston-Driven Syringe-Extrusion Bioprinter Using an FDM Frame
by Linlin Zhou and Siheng Su
Biomimetics 2025, 10(12), 811; https://doi.org/10.3390/biomimetics10120811 - 4 Dec 2025
Viewed by 272
Abstract
Direct ink writing (DIW) deposits viscous, shear-responsive inks at low temperature, enabling hydrogels and cell-laden bioinks for biomedical fabrication. Access to DIW remains limited by the cost of dedicated systems and the complexity of custom motion control. Repurposing fused deposition modeling (FDM) printers [...] Read more.
Direct ink writing (DIW) deposits viscous, shear-responsive inks at low temperature, enabling hydrogels and cell-laden bioinks for biomedical fabrication. Access to DIW remains limited by the cost of dedicated systems and the complexity of custom motion control. Repurposing fused deposition modeling (FDM) printers lowers these barriers by using accurate motion stages, open firmware, and familiar workflows while preserving build volume. In this study, three DIW actuator designs were implemented on an FDM frame. The first used a gear-and-rail transmission that converted stepper rotation to plunger travel. The second used a direct trapezoidal-screw pusher that increased force but reduced build-space clearance. The third relocated actuation to a remote piston-driven module that decoupled force generation from the printhead. The final architecture integrates the remote piston with partitioned control, where the printer executes motion and a programmable logic controller (PLC) manages extrusion. This arrangement reduces carried mass, preserves build space, and enables precise volumetric dosing with fast response. On a standard desktop frame, the system achieved controllable deposition of an agar/alginate ink using off-the-shelf electronics and modest modifications. This approach promotes sustainable and accessible innovation by repurposing existing FDM printers with open-source hardware and modular components. The resulting platform supports biomimetic biofabrication by combining mechanical efficiency, environmental responsibility, and cost-effective design. Full article
(This article belongs to the Special Issue Biomimetic Application on Applied Bioengineering)
Show Figures

Figure 1

19 pages, 2472 KB  
Article
Immunomodulation Through Fibroblast-Derived Extracellular Vesicles (EVs) Within 3D Polycaprolactone–Collagen Matrix
by Afsara Tasnim, Diego Jacho, Agustin Rabino, Jose Benalcazar, Rafael Garcia-Mata, Yakov Lapitsky and Eda Yildirim-Ayan
Biomimetics 2025, 10(8), 484; https://doi.org/10.3390/biomimetics10080484 - 22 Jul 2025
Viewed by 1086
Abstract
Extracellular vesicles (EVs) have emerged as promising acellular tools for modulating immune responses for tissue engineering applications. This study explores the potential of human fibroblast-derived EVs delivered within a three-dimensional (3D) injectable scaffold composed of polycaprolactone (PCL) nanofibers and collagen (PNCOL) to reprogram [...] Read more.
Extracellular vesicles (EVs) have emerged as promising acellular tools for modulating immune responses for tissue engineering applications. This study explores the potential of human fibroblast-derived EVs delivered within a three-dimensional (3D) injectable scaffold composed of polycaprolactone (PCL) nanofibers and collagen (PNCOL) to reprogram macrophage behavior and support scaffold integrity under inflammatory conditions. EVs were successfully isolated from human fibroblasts using ultracentrifugation and characterized for purity, size distribution and surface markers (CD63 and CD9). Macrophage-laden PNCOL scaffolds were prepared under three conditions: macrophage-only (MP), fibroblast co-encapsulated (F-MP), and EV-encapsulated (EV-MP) groups. Structural integrity was assessed via scanning electron microscopy and Masson’s trichrome staining, while immunomodulatory effects were evaluated through metabolic assays, gene expression profiling, and immunohistochemistry for macrophage polarization markers (CD80, CD206). When co-encapsulated with pro-inflammatory (M1) macrophages in PNCOL scaffolds, fibroblast-derived EVs preserved scaffold structure and significantly enhanced macrophage metabolic activity compared to the control (MP) and other experimental group (F-MP). The gene expression and immunohistochemistry data demonstrated substantial upregulation of anti-inflammatory markers (TGF-β, CD163, and CCL18) and surface protein CD206, indicating a phenotypic shift toward M2-like macrophages for EV-encapsulated scaffolds relative to the other groups. The findings of this study demonstrate that fibroblast-derived EVs integrated into injectable PCL–collagen scaffolds offer a viable, cell-free approach to modulate inflammation, preserve scaffold structure, and support regenerative healing. This strategy holds significant promise for advancing immuno-instructive platforms in regenerative medicine, particularly in settings where conventional cell therapies face limitations in survival, cost, or safety. Full article
(This article belongs to the Special Issue Biomimetic Application on Applied Bioengineering)
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 1509 KB  
Review
Biomimetic Phantoms in X-Ray-Based Radiotherapy Research: A Narrative Review
by Elisabeth Schültke
Biomimetics 2025, 10(12), 794; https://doi.org/10.3390/biomimetics10120794 - 21 Nov 2025
Viewed by 653
Abstract
The field of experimental radiooncology and the quality assessment (QA) aimed at patient safety both profit from the utilisation of biomimetic principles. The work with phantoms based on biological structures of animals or humans, utilising the principles of anatomic mimicry, has a long [...] Read more.
The field of experimental radiooncology and the quality assessment (QA) aimed at patient safety both profit from the utilisation of biomimetic principles. The work with phantoms based on biological structures of animals or humans, utilising the principles of anatomic mimicry, has a long tradition in radiotherapy research. When phantoms are produced from tissue-equivalent materials, they mimic the radiological properties of tissues and organs, allowing researchers and clinicians to study dose distribution and optimise treatment plans without exposing real patients to radiation. Biomechanical mimicry would take this a step further by creating phantoms that replicate the movement and deformation of organs during physiological movement, such as heartbeat or breathing, enabling a more accurate simulation of dynamic treatment scenarios. Bioinspired sensor technologies, such as artificial skin or integrated detectors, can be used to monitor radiation exposure, organ motion or temperature changes during therapy with high precision. The utility of such a phantom could be further enhanced by creating a realistic tumour microenvironment as an irradiation target, following the principles of microenvironmental biomimicry. Thus, biomimetic strategies can be exploited in the validation of radiotherapy technologies and open new perspectives for adaptive radiotherapy and real-time monitoring. Full article
(This article belongs to the Special Issue Biomimetic Application on Applied Bioengineering)
Show Figures

Figure 1

24 pages, 2296 KB  
Review
Regenerative Strategies for Vocal Fold Repair Using Injectable Materials
by Se Hyun Yeou and Yoo Seob Shin
Biomimetics 2025, 10(11), 748; https://doi.org/10.3390/biomimetics10110748 - 6 Nov 2025
Viewed by 1557
Abstract
Injectable biomaterials for vocal fold disorders are being developed to provide not only mechanical reinforcement but also a regenerative microenvironment. Recent hydrogels based on hyaluronic acid (HA) derivatives, calcium hydroxylapatite and decellularized matrix scaffolds are designed to approximate the viscoelastic behavior of native [...] Read more.
Injectable biomaterials for vocal fold disorders are being developed to provide not only mechanical reinforcement but also a regenerative microenvironment. Recent hydrogels based on hyaluronic acid (HA) derivatives, calcium hydroxylapatite and decellularized matrix scaffolds are designed to approximate the viscoelastic behavior of native tissue, allow controlled degradation, and modulate local immune responses. Rather than serving merely as space-filling agents, several of these materials deliver extracellular matrix (ECM)-like biochemical signals that help maintain pliability and overcome some limitations of conventional augmentation. Experimental and early clinical studies involving growth factor delivery, stem cell-based injections, and ECM-mimetic hydrogels have demonstrated improved mucosal wave vibration and reduced fibrosis in cases of scarring. In clinical series, benefits from basic fibroblast growth factor can persist for up to 12 months. Further progress will depend on correlating material properties with objective vibratory performance to achieve lasting restoration of phonation and advance true tissue-regenerative therapy. Full article
(This article belongs to the Special Issue Biomimetic Application on Applied Bioengineering)
Show Figures

Graphical abstract

17 pages, 1714 KB  
Review
Tissue-Engineered Tracheal Reconstruction
by Se Hyun Yeou and Yoo Seob Shin
Biomimetics 2025, 10(7), 457; https://doi.org/10.3390/biomimetics10070457 - 11 Jul 2025
Cited by 1 | Viewed by 2420
Abstract
Tracheal reconstruction remains a formidable clinical challenge, particularly for long-segment defects that are not amenable to standard surgical resection or primary anastomosis. Tissue engineering has emerged as a promising strategy for restoring the tracheal structure and function through the integration of biomaterials, stem [...] Read more.
Tracheal reconstruction remains a formidable clinical challenge, particularly for long-segment defects that are not amenable to standard surgical resection or primary anastomosis. Tissue engineering has emerged as a promising strategy for restoring the tracheal structure and function through the integration of biomaterials, stem cells, and bioactive molecules. This review provides a comprehensive overview of recent advances in tissue-engineered tracheal grafts, particularly in scaffold design, cellular sources, fabrication technologies, and early clinical experience. Innovations in biomaterial science, three-dimensional printing, and scaffold-free fabrication approaches have broadened the prospects for patient-specific airway reconstruction. However, persistent challenges, including incomplete epithelial regeneration and mechanical instability, have hindered its clinical translation. Future efforts should focus on the design of modular biomimetic scaffolds, the enhancement of immunomodulatory strategies, and preclinical validation using robust large animal models. Sustained interdisciplinary collaboration among surgical, engineering, and biological fields is crucial for advancing tissue-engineered tracheal grafts for routine clinical applications. Within this context, biomimetic approaches, including three-dimensional bioprinting, hybrid materials, and scaffold-free constructs, are gaining prominence as strategies to replicate the trachea’s native architecture and improve graft integration. Full article
(This article belongs to the Special Issue Biomimetic Application on Applied Bioengineering)
Show Figures

Figure 1

Back to TopTop