Special Issue "Novel Anti-cancer Agents and Cellular Targets and Their Mechanism(s) of Action"

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Cancer Biology and Therapeutics".

Deadline for manuscript submissions: closed (30 June 2021).

Special Issue Editor

Dr. Simon J Allison
E-Mail Website
Guest Editor
School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
Interests: cancer metabolism; NAD+ biology; sirtuins; cancer selectivity; novel targets; target deconvolution

Special Issue Information

Dear Colleagues,

The focus of this Special Issue is “Novel Anti-Cancer Agents and Cellular Targets and Their Mechanism(s) of Action”. Whilst there have been significant improvements in treatments and outcomes for some cancers, for others there has been little change in survival rates over many years. Side effects resulting from the toxicity of agents towards normal tissues and the development of drug resistance can be a problem with both targeted and traditional anti-cancer agents. There is a pressing need for new anti-cancer agents with novel mechanism(s) of action and the identification of new putative cellular targets and therapeutic strategies that are both potent and more selective towards cancer cells. This Special Issue invites submissions in any area relating to these themes. Possible topics within this scope include (but are not limited to) the following:

  • New promising compounds with in vitro and/or in vivo anti-cancer activity identified through a phenotypic approach, and studies on elucidating their mechanism(s) of action;
  • New putative cellular targets that may offer cancer selectivity to targeting approaches (targeted therapies);
  • Novel therapeutic approaches, such as combinatorial chemotherapy, that may confer synthetic lethality or improve selectivity;
  • Drug re-purposing;
  • Promising agents showing polypharmacology;
  • Target deconvolution and target validation studies.

 We invite authors to submit original research articles or review articles.

Dr. Simon J Allison
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • novel cellular anti-cancer targets
  • phenotypic screening
  • novel anti-cancer agents
  • target deconvolution
  • polypharmacology
  • targeted therapies
  • drug re-purposing
  • combinatorial chemotherapy
  • target validation

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Cytocidal Antitumor Effects against Human Ovarian Cancer Cells Induced by B-Lactam Steroid Alkylators with Targeted Activity against Poly (ADP-Ribose) Polymerase (PARP) Enzymes in a Cell-Free Assay
Biomedicines 2021, 9(8), 1028; https://doi.org/10.3390/biomedicines9081028 - 17 Aug 2021
Viewed by 504
Abstract
We evaluated three newly synthesized B-lactam hybrid homo-aza-steroidal alkylators (ASA-A, ASA-B and ASA-C) for their PARP1/2 inhibition activity and their DNA damaging effect against human ovarian carcinoma cells. These agents are conjugated with an alkylating component (POPA), which also served as a reference [...] Read more.
We evaluated three newly synthesized B-lactam hybrid homo-aza-steroidal alkylators (ASA-A, ASA-B and ASA-C) for their PARP1/2 inhibition activity and their DNA damaging effect against human ovarian carcinoma cells. These agents are conjugated with an alkylating component (POPA), which also served as a reference molecule (positive control), and were tested against four human ovarian cell lines in vitro (UWB1.289 + BRCA1, UWB1.289, SKOV-3 and OVCAR-3). The studied compounds were thereafter compared to 3-AB, a known PARP inhibitor, as well as to Olaparib, a standard third-generation PARP inhibitor, on a PARP assay investigating their inhibitory potential. Finally, a PARP1 and PARP2 mRNA expression analysis by qRT-PCR was produced in order to measure the absolute and the relative gene expression (in mRNA transcripts) between treated and untreated cells. All the investigated hybrid steroid alkylators and POPA decreased in vitro cell growth differentially, according to the sensitivity and different gene characteristics of each cell line, while ASA-A and ASA-B presented the most significant anticancer activity. Both these compounds induced PARP1/2 enzyme inhibition, DNA damage (alkylation) and upregulation of PARP mRNA expression, for all tested cell lines. However, ASA-C underperformed on average in the above tasks, while the compound ASA-B induced synthetic lethality effects on the ovarian cancer cells. Nevertheless, the overall outcome, leading to a drug-like potential, provides strong evidence toward further evaluation. Full article
Show Figures

Figure 1

Article
Predicting Agents That Can Overcome 5-FU Resistance in Colorectal Cancers via Pharmacogenomic Analysis
Biomedicines 2021, 9(8), 882; https://doi.org/10.3390/biomedicines9080882 - 24 Jul 2021
Viewed by 444
Abstract
5-Fluorouracil (5-FU) is one of several chemotherapeutic agents in clinical use as a standard of care to treat colorectal cancers (CRCs). As an antimetabolite, 5-FU inhibits thymidylate synthase to disrupt the synthesis and repair of DNA and RNA. However, only a small proportion [...] Read more.
5-Fluorouracil (5-FU) is one of several chemotherapeutic agents in clinical use as a standard of care to treat colorectal cancers (CRCs). As an antimetabolite, 5-FU inhibits thymidylate synthase to disrupt the synthesis and repair of DNA and RNA. However, only a small proportion of patients benefit from 5-FU treatment due to the development of drug resistance. This study applied pharmacogenomic analysis using two public resources, the Genomics of Drug Sensitivity in Cancer (GDSC) and the Connectivity Map, to predict agents overcoming 5-FU resistance in CRC cells based on their genetic background or gene expression profile. Based on the genetic status of adenomatous polyposis coli (APC), the most frequent mutated gene found in CRC, we found that combining a MEK inhibitor with 5-FU exhibited synergism effects on CRC cells with APC truncations. While considering the gene expression in 5-FU resistant cells, we demonstrated that targeting ROCK is a potential avenue to restore 5-FU response to resistant cells with wild-type APC background. Our results reveal MEK signaling plays a pivotal role in loss-of-function, APC-mediated 5-FU resistance, and ROCK activation serves as a signature in APC-independent 5-FU resistance. Through the use of these available database resources, we highlight possible approaches to predict potential drugs for combinatorial therapy for patients developing resistance to 5-FU treatment. Full article
Show Figures

Graphical abstract

Article
8-Hydroxydaidzein, an Isoflavone from Fermented Soybean, Induces Autophagy, Apoptosis, Differentiation, and Degradation of Oncoprotein BCR-ABL in K562 Cells
Biomedicines 2020, 8(11), 506; https://doi.org/10.3390/biomedicines8110506 - 16 Nov 2020
Cited by 5 | Viewed by 855
Abstract
8-Hydroxydaidzein (8-OHD, 7,8,4′-trihydoxyisoflavone) is a hydroxylated derivative of daidzein isolated from fermented soybean products. The aim of this study is to investigate the anti-proliferative effects and the underlying mechanisms of 8-OHD in K562 human chronic myeloid leukemia (CML) cells. We found that 8-OHD [...] Read more.
8-Hydroxydaidzein (8-OHD, 7,8,4′-trihydoxyisoflavone) is a hydroxylated derivative of daidzein isolated from fermented soybean products. The aim of this study is to investigate the anti-proliferative effects and the underlying mechanisms of 8-OHD in K562 human chronic myeloid leukemia (CML) cells. We found that 8-OHD induced reactive oxygen species (ROS) overproduction and cell cycle arrest at the S phase by upregulating p21Cip1 and downregulating cyclin D2 (CCND2) and cyclin-dependent kinase 6 (CDK6) expression. 8-OHD also induced autophagy, caspase-7-dependent apoptosis, and the degradation of BCR-ABL oncoprotein. 8-OHD promoted Early Growth Response 1 (EGR1)-mediated megakaryocytic differentiation as an increased expression of marker genes, CD61 and CD42b, and the formation of multi-lobulated nuclei in enlarged K562 cells. A microarray-based transcriptome analysis revealed a total of 3174 differentially expressed genes (DEGs) after 8-OHD (100 μM) treatment for 48 h. Bioinformatics analysis of DEGs showed that hemopoiesis, cell cycle regulation, nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) and Janus kinase/signal transducers and activators of transcription (JAK-STAT)-mediated apoptosis/anti-apoptosis networks were significantly regulated by 8-OHD. Western blot analysis confirmed that 8-OHD significantly induced the activation of MAPK and NF-κB signaling pathways, both of which may be responsible, at least in part, for the stimulation of apoptosis, autophagy, and differentiation in K562 cells. This is the first report on the anti-CML effects of 8-OHD and the combination of experimental and in silico analyses could provide a better understanding for the development of 8-OHD on CML therapy. Full article
Show Figures

Figure 1

Article
Potent Small-Molecule Inhibitors Targeting Acetylated Microtubules as Anticancer Agents Against Triple-Negative Breast Cancer
Biomedicines 2020, 8(9), 338; https://doi.org/10.3390/biomedicines8090338 - 09 Sep 2020
Cited by 3 | Viewed by 846
Abstract
Microtubules are one of the major targets for anticancer drugs because of their role in cell proliferation and migration. However, as anticancer drugs targeting microtubules have side effects, including the death of normal cells, it is necessary to develop anticancer agents that can [...] Read more.
Microtubules are one of the major targets for anticancer drugs because of their role in cell proliferation and migration. However, as anticancer drugs targeting microtubules have side effects, including the death of normal cells, it is necessary to develop anticancer agents that can target microtubules by specifically acting on cancer cells only. In this study, we identified chemicals that can act as anticancer agents by specifically binding to acetylated microtubules, which are predominant in triple-negative breast cancer (TNBC). The chemical compounds disrupted acetylated microtubule lattices by interfering with microtubule access to alpha-tubulin acetyltransferase 1 (αTAT1), a major acetyltransferase of microtubules, resulting in the increased apoptotic cell death of MDA-MB-231 cells (a TNBC cell line) compared with other cells, such as MCF-10A and MCF-7, which lack microtubule acetylation. Moreover, mouse xenograft experiments showed that treatment with the chemical compounds markedly reduced tumor growth progression. Taken together, the newly identified chemical compounds can be selective for acetylated microtubules and act as potential therapeutic agents against microtubule acetylation enrichment in TNBC. Full article
Show Figures

Figure 1

Review

Jump to: Research

Review
Intratumoural Cytochrome P450 Expression in Breast Cancer: Impact on Standard of Care Treatment and New Efforts to Develop Tumour-Selective Therapies
Biomedicines 2021, 9(3), 290; https://doi.org/10.3390/biomedicines9030290 - 12 Mar 2021
Cited by 1 | Viewed by 867
Abstract
Despite significant advances in treatment strategies over the past decade, selective treatment of breast cancer with limited side-effects still remains a great challenge. The cytochrome P450 (CYP) family of enzymes contribute to cancer cell proliferation, cell signaling and drug metabolism with implications for [...] Read more.
Despite significant advances in treatment strategies over the past decade, selective treatment of breast cancer with limited side-effects still remains a great challenge. The cytochrome P450 (CYP) family of enzymes contribute to cancer cell proliferation, cell signaling and drug metabolism with implications for treatment outcomes. A clearer understanding of CYP expression is important in the pathogenesis of breast cancer as several isoforms play critical roles in metabolising steroid hormones and xenobiotics that contribute to the genesis of breast cancer. The purpose of this review is to provide an update on how the presence of CYPs impacts on standard of care (SoC) drugs used to treat breast cancer as well as discuss opportunities to exploit CYP expression for therapeutic intervention. Finally, we provide our thoughts on future work in CYP research with the aim of supporting ongoing efforts to develop drugs with improved therapeutic index for patient benefit. Full article
Show Figures

Figure 1

Review
Anti-c-myc RNAi-Based Onconanotherapeutics
Biomedicines 2020, 8(12), 612; https://doi.org/10.3390/biomedicines8120612 - 15 Dec 2020
Cited by 2 | Viewed by 849
Abstract
Overexpression of the c-myc proto-oncogene features prominently in most human cancers. Early studies established that inhibiting the expression of oncogenic c-myc, produced potent anti-cancer effects. This gave rise to the notion that an appropriate c-myc silencing agent might provide a broadly applicable [...] Read more.
Overexpression of the c-myc proto-oncogene features prominently in most human cancers. Early studies established that inhibiting the expression of oncogenic c-myc, produced potent anti-cancer effects. This gave rise to the notion that an appropriate c-myc silencing agent might provide a broadly applicable and more effective form of cancer treatment than is currently available. The endogenous mechanism of RNA interference (RNAi), through which small RNA molecules induce gene silencing by binding to complementary mRNA transcripts, represents an attractive avenue for c-myc inhibition. However, the development of a clinically viable, anti-c-myc RNAi-based platform is largely dependent upon the design of an appropriate carrier of the effector nucleic acids. To date, organic and inorganic nanoparticles were assessed both in vitro and in vivo, as carriers of small interfering RNA (siRNA), DICER-substrate siRNA (DsiRNA), and short hairpin RNA (shRNA) expression plasmids, directed against the c-myc oncogene. We review here the various anti-c-myc RNAi-based nanosystems that have come to the fore, especially between 2005 and 2020. Full article
Show Figures

Figure 1

Back to TopTop