Engineering 3D Tissue Models: Techniques and Applications in Regenerative Medicine

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Cell Biology and Pathology".

Deadline for manuscript submissions: 31 July 2024 | Viewed by 81

Special Issue Editor

Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
Interests: human skin; keratinocytes; endothelial cells; skin substitutes; stem cells; melanocytes; adipose-dervied stem cells; fat tissue; skin inflammation; immune cells; skin adipocyte progenitors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Animal experimentation has long been used in science to study complex biological phenomena that cannot be studied using two-dimensional in vitro models. With time, it emerged that animal models do not fully resemble the real (patho-) physiological tissue environment, in particular when translated to human patients. Recently, 3D cell culture systems have been improved with new techniques and formulations that allow the culture of cell lines as well as organoids from primary tissues. In these conditions, tissue-engineered micro-tissues can orient themselves spatially, creating niches enriched in stem or differentiated cells specific to the tissue of origin. These tools allow precise and direct monitoring of physiological and pathological mechanisms and are often much more informative and versatile than in vivo tests. Thus, three-dimensional cell culture represents an excellent alternative to the animal model by mimicking the in vivo microenvironment. These innovative in vitro models can recapitulate the complexity of the tissue of origin, with different cellular components (epithelium, stroma, leukocytes) colonizing a matrix that reproduces the spatial conformation of the tissue vitro by mimicking the in vivo microenvironment without the use of animal models that are usually quite expensive and, in some instances, do not fully resemble the real pathophysiological environment. These tools can be essential for analyzing the physiological behavior of healthy cells and patient cells derived from several diseases such as cancers, metabolic diseases, neurodegenerative disorders, autoimmune diseases, and inherited pathologies allowing for a more accurate personalized medicine approach.

Dr. Agnes Klar
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


  • application of organoids
  • self-assembly method
  • dynamic perfusion bioreactor approach for tissue engineering
  • magnetic levitation
  • microfluidic 3D cell culture
  • body-on-a-chip
  • adipocyte in vitro platform to model metabolic diseases
  • skin irritation models
  • vascular blood-brain barrier in vitro
  • iPSC-derived models of healthy and diseased tissues
  • personalized medicine
  • integrated 3D cell culture models for preclinical drug development

Published Papers

This special issue is now open for submission.
Back to TopTop