Acoustical Comfort in Educational Buildings

A special issue of Acoustics (ISSN 2624-599X).

Deadline for manuscript submissions: 20 February 2025 | Viewed by 7020

Special Issue Editors

Building Environment and Energy Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Interests: indoor air pollution; indoor environmental quality; natural ventilation; thermal comfort

E-Mail Website
Guest Editor
Department of Architecture and Industrial Design, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
Interests: psychoacoustic; environmental acoustic; virtual reality; noise exposure
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues, 

Acoustical quality in buildings is a critical factor that could impact occupants’ health, comfort, and performance. Its influence is more significant when it comes to educational buildings. Learning environments, including classrooms, lecture halls, and self-study rooms, must meet specific acoustical requirements in order to promote good communication and learning outcomes. To achieve optimal acoustical comfort, educational buildings must be designed and constructed with acoustics in mind, taking into account factors such as room shape, size, and layout, as well as the construction and interior materials. Although most indoor acoustic problems have been studied, there are still many new spaces worth exploring, especially in the context of personal control, brain–computer interface technologies, and artificial intelligence (AI). For example, why do occupants have different acoustic perceptions and requirements, and how to achieve personal control of acoustic quality in education buildings? How can brain–computer interface devices be used to monitor occupants’ acoustic perceptions, instead of traditional questionnaires? How to identify the optimal acoustic design for educational buildings with the help of AI? These problems are all significant and need to be answered through new studies on indoor acoustic quality. 

Therefore, this Special Issue aims to encourage any new exploration on acoustic quality in educational buildings. Both original research papers and review papers are welcomed. Potential topics include, but are not limited to: 

  • Individual differences in acoustic perceptions; 
  • Personal control of acoustic quality; 
  • Improvement of acoustic quality in educational buildings; 
  • Optimal acoustic design for educational buildings; 
  • Application of machine learning and/or artificial intelligence methods in building acoustics; 
  • Application of brain–computer interface technologies in acoustic perceptions; 
  • Interactions between acoustic quality and other indoor environmental quality in educational buildings. 

Dr. Dadi Zhang
Prof. Massimiliano Masullo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Acoustics is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

33 pages, 46059 KiB  
Article
Real and Virtual Lecture Rooms: Validation of a Virtual Reality System for the Perceptual Assessment of Room Acoustical Quality
by Angela Guastamacchia, Riccardo Giovanni Rosso, Giuseppina Emma Puglisi, Fabrizio Riente, Louena Shtrepi and Arianna Astolfi
Acoustics 2024, 6(4), 933-965; https://doi.org/10.3390/acoustics6040052 - 30 Oct 2024
Viewed by 828
Abstract
Enhancing the acoustical quality in learning environments is necessary, especially for hearing aid (HA) users. When in-field evaluations cannot be performed, virtual reality (VR) can be adopted for acoustical quality assessments of existing and new buildings, contributing to the acquisition of subjective impressions [...] Read more.
Enhancing the acoustical quality in learning environments is necessary, especially for hearing aid (HA) users. When in-field evaluations cannot be performed, virtual reality (VR) can be adopted for acoustical quality assessments of existing and new buildings, contributing to the acquisition of subjective impressions in lab settings. To ensure an accurate spatial reproduction of the sound field in VR for HA users, multi-speaker-based systems can be employed to auralize a given environment. However, most systems require a lot of effort due to cost, size, and construction. This work deals with the validation of a VR-system based on a 16-speaker-array synced with a VR headset, arranged to be easily replicated in small non-anechoic spaces and suitable for HA users. Both objective and subjective validations are performed against a real university lecture room of 800 m3 and with 2.3 s of reverberation time at mid-frequencies. Comparisons of binaural and monoaural room acoustic parameters are performed between measurements in the real lecture room and its lab reproduction. To validate the audiovisual experience, 32 normal-hearing subjects were administered the Igroup Presence Questionnaire (IPQ) on the overall sense of perceived presence. The outcomes confirm that the system is a promising and feasible tool to predict the perceived acoustical quality of a room. Full article
(This article belongs to the Special Issue Acoustical Comfort in Educational Buildings)
Show Figures

Figure 1

24 pages, 12647 KiB  
Article
The Adjusting Effects of Trees on Cfa-Climate Campus Acoustic Environments and Thermal Comforts in the Summer
by Wen Lu, Yanyi Chen, Tianru Zhou, Jian Zhang, Aoyan Xiao, Feng Zhu, Hui Yin and Ting Liu
Acoustics 2024, 6(4), 887-910; https://doi.org/10.3390/acoustics6040050 - 16 Oct 2024
Viewed by 1178
Abstract
This study explores the effects of trees on the acoustic and thermal environment in addition to people’s responses to trees in different contexts. Through field measurements conducted during the summer of 2023 at the campus of the Southwest University of Science and Technology [...] Read more.
This study explores the effects of trees on the acoustic and thermal environment in addition to people’s responses to trees in different contexts. Through field measurements conducted during the summer of 2023 at the campus of the Southwest University of Science and Technology in Mianyang, residents’ neutral points were locally found to be 52.2 dBA (acoustic) and 23.8 °C (thermal). Further, at their maximum, the trees were able to reduce heat stress by 4 °C (indicated by the physiologically equivalent temperature—PET) and the noise level by 10 dBA (indicated by the A-weighted sound pressure—LAeq); this was achieved by trees with a crown diameter of 20 m. Subjective acoustic and thermal responses varied depending on the context. Acoustically, their neutral LAeq values toward the sounds of traffic, teaching, sports, and daily life were 46.9, 52.5, 51.0, and 52.7 dBA, respectively. Thermally, pedestrians’ neutral PET values were 24.2, 26.1, 22.3, and 25.1 °C, respectively, under the same conditions. These phenomena might be a consequence of the effects of sound frequencies. Future urban forestry research should focus on planting for environmental quality improvement. Full article
(This article belongs to the Special Issue Acoustical Comfort in Educational Buildings)
Show Figures

Figure 1

17 pages, 2909 KiB  
Article
Application of Machine Learning Techniques for Predicting Students’ Acoustic Evaluation in a University Library
by Dadi Zhang, Kwok-Wai Mui, Massimiliano Masullo and Ling-Tim Wong
Acoustics 2024, 6(3), 681-697; https://doi.org/10.3390/acoustics6030037 - 25 Jul 2024
Viewed by 1379
Abstract
Understanding students’ acoustic evaluation in learning environments is crucial for identifying acoustic issues, improving acoustic conditions, and enhancing academic performance. However, predictive models are not specifically tailored to predict students’ acoustic evaluations, particularly in educational settings. To bridge this gap, the present study [...] Read more.
Understanding students’ acoustic evaluation in learning environments is crucial for identifying acoustic issues, improving acoustic conditions, and enhancing academic performance. However, predictive models are not specifically tailored to predict students’ acoustic evaluations, particularly in educational settings. To bridge this gap, the present study conducted a field investigation in a university library, including a measurement and questionnaire survey. Using the collected personal information, room-related parameters, and sound pressure levels as input, six machine learning models (Support Vector Machine–Radial Basis Function (SVM (RBF)), Support Vector Machine–Sigmoid (SVM (Sigmoid)), Gradient Boosting Machine (GBM), Logistic Regression (LR), Random Forest (RF), and Naïve Bayes (NB)) were trained to predict students’ acoustic acceptance/satisfaction. The performance of these models was evaluated using five metrics, allowing for a comparative analysis. The results revealed that the models better predicted acoustic acceptance than acoustic satisfaction. Notably, the RF and GBM models exhibited the highest performance, with accuracies of 0.87 and 0.84, respectively, in predicting acoustic acceptance. Conversely, the SVM models performed poorly and were not recommended for acoustic quality prediction. The findings of this study demonstrated the feasibility of employing machine learning models to predict occupants’ acoustic evaluations, thereby providing valuable insights for future acoustic assessments. Full article
(This article belongs to the Special Issue Acoustical Comfort in Educational Buildings)
Show Figures

Figure 1

19 pages, 3385 KiB  
Article
Influence of Test Room Acoustics on Non-Native Listeners’ Standardized Test Performance
by Makito Kawata, Mariko Tsuruta-Hamamura and Hiroshi Hasegawa
Acoustics 2023, 5(4), 1161-1179; https://doi.org/10.3390/acoustics5040066 - 11 Dec 2023
Viewed by 2272
Abstract
Understanding the impact of room acoustics on non-native listeners is crucial, particularly in standardized English as a foreign language (EFL) proficiency testing environments. This study aims to elucidate how acoustics influence test scores, considering variables overlooked in prior research such as seat position [...] Read more.
Understanding the impact of room acoustics on non-native listeners is crucial, particularly in standardized English as a foreign language (EFL) proficiency testing environments. This study aims to elucidate how acoustics influence test scores, considering variables overlooked in prior research such as seat position and baseline language proficiency. In this experiment, 42 Japanese university students’ performance on standardized EFL listening tests was assessed in two rooms with distinct acoustic qualities, as determined by the speech transmission index (STI) and reverberation time (RT). The rooms differed significantly in their STI values and RT measurements, with one exhibiting high speech intelligibility qualities of ≥0.66 STI and RT0.5–2kHz < 0.7 s and the other falling below these benchmarks. The findings revealed that listening test scores were consistently higher in the acoustically favorable room across all participants. Notably, the negative effect of poor acoustics was more pronounced for students with lower baseline language proficiency. No significant score differences were observed between front- and rear-seat positions, suggesting that overall room acoustics may be more influential than individual seating locations. The study concludes that acoustics play a significant role in the standardized EFL test performance, particularly for lower-proficiency learners. This highlights the necessity of standardized testing environments to be more carefully selected in order to ensure the fair and reliable assessment of language proficiency. Full article
(This article belongs to the Special Issue Acoustical Comfort in Educational Buildings)
Show Figures

Figure 1

Back to TopTop