Solar UV Irradiance in a Changing Climate: Trends in Europe and the Significance of Spectral Monitoring in Italy
Abstract
1. Introduction
2. Data and Methodology
2.1. UV Trends in European Stations
2.2. UV in Rome and Aosta
2.3. Comparison of Ground-Based UV Index from Ground-Based Measurements with Forecasts and Satellite Estimates
3. UV Trends in Europe
3.1. Main Findings from Recent Studies
3.2. Update for Four Historical European Stations
4. Spectral UV Measurements in Italy
4.1. State of Measurements in Italy
4.2. Climatological Analysis for Rome and Aosta
4.3. UV from Forecast Models and Satellite Retrievals
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liou, K.N. An Introduction to Atmospheric Radiation; Elsevier Science: Amsterdam, The Netherlands, 2002. [Google Scholar]
 - Diffey, B.L. Solar ultraviolet radiation effects on biological systems. Phys. Med. Biol. 1991, 36, 299–328. [Google Scholar] [CrossRef] [PubMed]
 - Ambach, W.; Blumthaler, M. Biological effectiveness of solar UV radiation in humans. Experientia 1993, 49, 747–753. [Google Scholar] [CrossRef] [PubMed]
 - Bornman, J.F.; Barnes, P.W.; Robson, T.M.; Robinson, S.A.; Jansen, M.A.K.; Ballaré, C.L.; Flint, S.D. Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochem. Photobiol. Sci. 2019, 18, 681–716. [Google Scholar] [CrossRef] [PubMed]
 - Caldwell, M.M.; Björn, L.O.; Bornman, J.F.; Flint, S.D.; Kulandaivelu, G.; Teramura, A.H.; Tevini, M. Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J. Photochem. Photobiol. B Biol. 1998, 46, 40–52. [Google Scholar] [CrossRef]
 - Caldwell, M.M.; Bornman, J.F.; Ballaré, C.L.; Flint, S.D.; Kulandaivelu, G. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem. Photobiol. Sci. 2007, 6, 252–266. [Google Scholar] [CrossRef] [PubMed]
 - De Fabo, E.C.; Noonan, F.P.; Fears, T.; Merlino, G. Ultraviolet B but not Ultraviolet A Radiation Initiates Melanoma. Cancer Res. 2004, 64, 6372. [Google Scholar] [CrossRef]
 - Duthie, M.S.; Kimber, I.; Norval, M. The effects of ultraviolet radiation on the human immune system. Br. J. Dermatol. 1999, 140, 995–1009. [Google Scholar] [CrossRef]
 - Gonzaga, E.R. Role of UV Light in Photodamage, Skin Aging, and Skin Cancer. Am. J. Clin. Dermatol. 2009, 10, 19–24. [Google Scholar] [CrossRef]
 - Häder, D.-P. Effects of Enhanced Solar Ultraviolet Radiation on Aquatic Ecosystems. In Biophysics of Photoreceptors and Photomovements in Microorganisms; Lenci, F., Ghetti, F., Colombetti, G., Häder, D.P., Song, P.-S., Eds.; Springer: Boston, MA, USA, 1991; pp. 157–172. [Google Scholar]
 - Häder, D.P.; Kumar, H.D.; Smith, R.C.; Worrest, R.C. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 2007, 6, 267–285. [Google Scholar] [CrossRef]
 - Harm, W. Biological Effects of Ultraviolet Radiation; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
 - Juzeniene, A.; Brekke, P.; Dahlback, A.; Andersson-Engels, S.; Reichrath, J.; Moan, K.; Holick, M.F.; Grant, W.B.; Moan, J. Solar radiation and human health. Rep. Prog. Phys. 2011, 74, 066701. [Google Scholar] [CrossRef]
 - Juzeniene, A.; Moan, J. Beneficial effects of UV radiation other than via vitamin D production. Dermato-Endocrinology 2012, 4, 109–117. [Google Scholar] [CrossRef] [PubMed]
 - Lucas, R.M.; Yazar, S.; Young, A.R.; Norval, M.; de Gruijl, F.R.; Takizawa, Y.; Rhodes, L.E.; Sinclair, C.A.; Neale, R.E. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem. Photobiol. Sci. 2019, 18, 641–680. [Google Scholar] [CrossRef] [PubMed]
 - Moan, J.; Porojnicu, A.C.; Dahlback, A. Ultraviolet Radiation and Malignant Melanoma. In Sunlight, Vitamin D and Skin Cancer; Reichrath, J., Ed.; Springer: New York, NY, USA, 2008; pp. 104–116. [Google Scholar]
 - Moshammer, H.; Simic, S.; Haluza, D. UV-Radiation: From Physics to Impacts. Int. J. Environ. Res. Public Health 2017, 14, 200. [Google Scholar] [CrossRef] [PubMed]
 - Taylor, H.R.; West, S.K.; Rosenthal, F.S.; Muñoz, B.; Newland, H.S.; Abbey, H.; Emmett, E.A. Effect of Ultraviolet Radiation on Cataract Formation. N. Engl. J. Med. 1988, 319, 1429–1433. [Google Scholar] [CrossRef] [PubMed]
 - Wacker, M.; Holick, M.F. Sunlight and Vitamin D: A global perspective for health. Dermato-Endocrinology 2013, 5, 51–108. [Google Scholar] [CrossRef] [PubMed]
 - Webb, A.R.; Engelsen, O. Ultraviolet Exposure Scenarios: Risks of Erythema from Recommendations on Cutaneous Vitamin D Synthesis. In Sunlight, Vitamin D and Skin Cancer; Reichrath, J., Ed.; Springer: New York, NY, USA, 2008; pp. 72–85. [Google Scholar]
 - Williamson, C.E.; Neale, P.J.; Hylander, S.; Rose, K.C.; Figueroa, F.L.; Robinson, S.A.; Häder, D.-P.; Wängberg, S.-Å.; Worrest, R.C. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem. Photobiol. Sci. 2019, 18, 717–746. [Google Scholar] [CrossRef] [PubMed]
 - Inn, E.C.Y.; Tanaka, Y. Absorption Coefficient of Ozone in the Ultraviolet and Visible Regions. J. Opt. Soc. Am. 1953, 43, 870–873. [Google Scholar] [CrossRef]
 - Griggs, M. Absorption Coefficients of Ozone in the Ultraviolet and Visible Regions. J. Chem. Phys. 1968, 49, 857–859. [Google Scholar] [CrossRef]
 - Bass, A.M.; Paur, R.J. The Ultraviolet Cross-Sections of Ozone: I. The Measurements. In Proceedings of the Quadrennial Ozone Symposium of the International Ozone Commission of Iamap, Halkidiki, Greece, 3–7 September 1984; Zerefos, C.S., Ghazi, A., Eds.; Springer: Dordrecht, The Netherlands, 1985; pp. 606–610. [Google Scholar]
 - Molina, L.T.; Molina, M.J. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range. J. Geophys. Res. Atmos. 1986, 91, 14501–14508. [Google Scholar] [CrossRef]
 - Bais, A.F.; Zerefos, C.S.; Meleti, C.; Ziomas, I.C.; Tourpali, K. Spectral measurements of solar UVB radiation and its relations to total ozone, SO2, and clouds. J. Geophys. Res. Atmos. 1993, 98, 5199–5204. [Google Scholar] [CrossRef]
 - Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
 - Seckmeyer, G.; Pissulla, D.; Glandorf, M.; Henriques, D.; Johnsen, B.; Webb, A.; Siani, A.-M.; Bais, A.; Kjeldstad, B.; Brogniez, C.; et al. Variability of UV Irradiance in Europe. Photochem. Photobiol. 2008, 84, 172–179. [Google Scholar] [CrossRef] [PubMed]
 - Tiba, C.; Silva Leal, D.S. Enhancement of UV Radiation by Cloud Effect in NE of Brazil. Int. J. Photoenergy 2017, 2017, 8107435. [Google Scholar] [CrossRef]
 - McKenzie, R.; Liley, B.; Kotkamp, M.; Disterhoft, P. Peak UV: Spectral contributions from cloud enhancements. AIP Conf. Proc. 2017, 1810, 110008. [Google Scholar] [CrossRef]
 - Lovengreen, C.; Fuenzalida, H.A.; Videla, L. On the spectral dependency of UV radiation enhancements due to clouds in Valdivia, Chile (39.8°S). J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
 - Parisi, A.V.; Downs, N. Variation of the enhanced biologically damaging solar UV due to clouds. Photochem. Photobiol. Sci. 2004, 3, 643–647. [Google Scholar] [CrossRef]
 - Piacentini, R.D.; Cede, A.; Bárcena, H. Extreme solar total and UV irradiances due to cloud effect measured near the summer solstice at the high-altitude desertic plateau Puna of Atacama (Argentina). J. Atmos. Solar Terr. Phys. 2003, 65, 727–731. [Google Scholar] [CrossRef]
 - Calbó, J.; Pagès, D.; González, J.-A. Empirical studies of cloud effects on UV radiation: A review. Rev. Geophys. 2005, 43. [Google Scholar] [CrossRef]
 - Fragkos, K.; Bais, A.F.; Fountoulakis, I.; Balis, D.; Tourpali, K.; Meleti, C.; Zanis, P. Extreme total column ozone events and effects on UV solar radiation at Thessaloniki, Greece. Theor. Appl. Climatol. 2016, 126, 505–517. [Google Scholar] [CrossRef]
 - McKenzie, R.L.; Paulin, K.J.; Madronich, S. Effects of snow cover on UV irradiance and surface albedo: A case study. J. Geophys. Res. Atmos. 1998, 103, 28785–28792. [Google Scholar] [CrossRef]
 - Cordero, R.R.; Damiani, A.; Ferrer, J.; Jorquera, J.; Tobar, M.; Labbe, F.; Carrasco, J.; Laroze, D. UV Irradiance and Albedo at Union Glacier Camp (Antarctica): A Case Study. PLoS ONE 2014, 9, e90705. [Google Scholar] [CrossRef] [PubMed]
 - Feister, U.; Cabrol, N.; Häder, D. UV Irradiance Enhancements by Scattering of Solar Radiation from Clouds. Atmosphere 2015, 6, 1211–1228. [Google Scholar] [CrossRef]
 - Blumthaler, M.; Ambach, W.; Ellinger, R. Increase in solar UV radiation with altitude. J. Photochem. Photobiol. B Biol. 1997, 39, 130–134. [Google Scholar] [CrossRef]
 - Pfeifer, M.T.; Koepke, P.; Reuder, J. Effects of altitude and aerosol on UV radiation. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
 - Bais, A.F.; McKenzie, R.L.; Bernhard, G.; Aucamp, P.J.; Ilyas, M.; Madronich, S.; Tourpali, K. Ozone depletion and climate change: Impacts on UV radiation. Photochem. Photobiol. Sci. 2015, 14, 19–52. [Google Scholar] [CrossRef]
 - Solomon, S.; Garcia, R.R.; Rowland, F.S.; Wuebbles, D.J. On the depletion of Antarctic ozone. Nature 1986, 321, 755–758. [Google Scholar] [CrossRef]
 - Fan, S.-M.; Jacob, D.J. Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols. Nature 1992, 359, 522–524. [Google Scholar] [CrossRef]
 - McConnell, J.C.; Henderson, G.S.; Barrie, L.; Bottenheim, J.; Niki, H.; Langford, C.H.; Templeton, E.M.J. Photochemical bromine production implicated in Arctic boundary-layer ozone depletion. Nature 1992, 355, 150–152. [Google Scholar] [CrossRef]
 - Kerr, J.B.; McElroy, C.T. Evidence for Large Upward Trends of Ultraviolet-B Radiation Linked to Ozone Depletion. Science 1993, 262, 1032. [Google Scholar] [CrossRef]
 - Madronich, S.; McKenzie, R.L.; Björn, L.O.; Caldwell, M.M. Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J. Photochem. Photobiol. B Biol. 1998, 46, 5–19. [Google Scholar] [CrossRef]
 - Morgenstern, O.; Braesicke, P.; Hurwitz, M.M.; O’Connor, F.M.; Bushell, A.C.; Johnson, C.E.; Pyle, J.A. The World Avoided by the Montreal Protocol. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
 - Newman, P.A.; McKenzie, R. UV impacts avoided by the Montreal Protocol. Photochem. Photobiol. Sci. 2011, 10, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
 - McKenzie, R.; Bernhard, G.; Liley, B.; Disterhoft, P.; Rhodes, S.; Bais, A.; Morgenstern, O.; Newman, P.; Oman, L.; Brogniez, C.; et al. Success of Montreal Protocol Demonstrated by Comparing High-Quality UV Measurements with “World Avoided” Calculations from Two Chemistry-Climate Models. Sci. Rep. 2019, 9, 12332. [Google Scholar] [CrossRef] [PubMed]
 - Weber, M.; Coldewey-Egbers, M.; Fioletov, V.E.; Frith, S.M.; Wild, J.D.; Burrows, J.P.; Long, C.S.; Loyola, D. Total ozone trends from 1979 to 2016 derived from five merged observational datasets—the emergence into ozone recovery. Atmos. Chem. Phys. 2018, 18, 2097–2117. [Google Scholar] [CrossRef]
 - Solomon, S.; Ivy, D.J.; Kinnison, D.; Mills, M.J.; Neely, R.R.; Schmidt, A. Emergence of healing in the Antarctic ozone layer. Science 2016, 353, 269. [Google Scholar] [CrossRef] [PubMed]
 - Zerefos, C.; Kapsomenakis, J.; Eleftheratos, K.; Tourpali, K.; Petropavlovskikh, I.; Hubert, D.; Godin-Beekmann, S.; Steinbrecht, W.; Frith, S.; Sofieva, V.; et al. Representativeness of single lidar stations for zonally averaged ozone profiles, their trends and attribution to proxies. Atmos. Chem. Phys. 2018, 18, 6427–6440. [Google Scholar] [CrossRef]
 - Ball, W.T.; Alsing, J.; Mortlock, D.J.; Staehelin, J.; Haigh, J.D.; Peter, T.; Tummon, F.; Stübi, R.; Stenke, A.; Anderson, J.; et al. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery. Atmos. Chem. Phys. 2018, 18, 1379–1394. [Google Scholar] [CrossRef]
 - Stone, K.A.; Solomon, S.; Kinnison, D.E. On the Identification of Ozone Recovery. Geophys. Res. Lett. 2018, 45, 5158–5165. [Google Scholar] [CrossRef]
 - Eleftheratos, K.; Kazadzis, S.; Zerefos, C.S.; Tourpali, K.; Meleti, C.; Balis, D.; Zyrichidou, I.; Lakkala, K.; Feister, U.; Koskela, T.; et al. Ozone and Spectroradiometric UV Changes in the Past 20 Years over High Latitudes. Atmosphere-Ocean 2015, 53, 117–125. [Google Scholar] [CrossRef]
 - Fountoulakis, I.; Zerefos, C.S.; Bais, A.F.; Kapsomenakis, J.; Koukouli, M.-E.; Ohkawara, N.; Fioletov, V.; De Backer, H.; Lakkala, K.; Karppinen, T.; et al. Twenty-five years of spectral UV-B measurements over Canada, Europe and Japan: Trends and effects from changes in ozone, aerosols, clouds, and surface reflectivity. Comptes Rendus Geosci. 2018, 350, 393–402. [Google Scholar] [CrossRef]
 - Zerefos, C.S.; Tourpali, K.; Eleftheratos, K.; Kazadzis, S.; Meleti, C.; Feister, U.; Koskela, T.; Heikkilä, A. Evidence of a possible turning point in solar UV-B over Canada, Europe and Japan. Atmos. Chem. Phys. 2012, 12, 2469–2477. [Google Scholar] [CrossRef]
 - De Bock, V.; De Backer, H.; Van Malderen, R.; Mangold, A.; Delcloo, A. Relations between erythemal UV dose, global solar radiation, total ozone column and aerosol optical depth at Uccle, Belgium. Atmos. Chem. Phys. 2014, 14, 12251–12270. [Google Scholar] [CrossRef]
 - Liu, H.; Hu, B.; Zhang, L.; Zhao, X.J.; Shang, K.Z.; Wang, Y.S.; Wang, J. Ultraviolet radiation over China: Spatial distribution and trends. Renew. Sustain. Energy Rev. 2017, 76, 1371–1383. [Google Scholar] [CrossRef]
 - Smedley, A.R.D.; Rimmer, J.S.; Moore, D.; Toumi, R.; Webb, A.R. Total ozone and surface UV trends in the United Kingdom: 1979–2008. Int. J. Climatol. 2012, 32, 338–346. [Google Scholar] [CrossRef]
 - Bernhard, G. Trends of solar ultraviolet irradiance at Barrow, Alaska, and the effect of measurement uncertainties on trend detection. Atmos. Chem. Phys. 2011, 11, 13029–13045. [Google Scholar] [CrossRef]
 - Hunter, N.; Rendell, R.J.; Higlett, M.P.; O’Hagan, J.B.; Haylock, R.G.E. Relationship between erythema effective UV radiant exposure, total ozone, cloud cover and aerosols in southern England, UK. Atmos. Chem. Phys. 2019, 19, 683–699. [Google Scholar] [CrossRef]
 - Fountoulakis, I.; Bais, A.F.; Tourpali, K.; Fragkos, K.; Misios, S. Projected changes in solar UV radiation in the Arctic and sub-Arctic Oceans: Effects from changes in reflectivity, ice transmittance, clouds, and ozone. J. Geophys. Res. Atmos. 2014, 119, 8073–8090. [Google Scholar] [CrossRef]
 - Fountoulakis, I.; Bais, A.F. Projected changes in erythemal and vitamin D effective irradiance over northern-hemisphere high latitudes. Photochem. Photobiol. Sci. 2015, 14, 1251–1264. [Google Scholar] [CrossRef]
 - Bernhard, G.; Booth, C.R.; Ehramjian, J.C.; Stone, R.; Dutton, E.G. Ultraviolet and visible radiation at Barrow, Alaska: Climatology and influencing factors on the basis of version 2 National Science Foundation network data. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
 - Bais, A.F.; Bernhard, G.; McKenzie, R.L.; Aucamp, P.J.; Young, P.J.; Ilyas, M.; Jöckel, P.; Deushi, M. Ozone–climate interactions and effects on solar ultraviolet radiation. Photochem. Photobiol. Sci. 2019, 18, 602–640. [Google Scholar] [CrossRef]
 - Raptis, I.-P.; Kazadzis, S.; Eleftheratos, K.; Amiridis, V.; Fountoulakis, I. Single Scattering Albedo’s Spectral Dependence Effect on UV Irradiance. Atmosphere 2018, 9, 364. [Google Scholar] [CrossRef]
 - Fang, X.; Pyle, J.A.; Chipperfield, M.P.; Daniel, J.S.; Park, S.; Prinn, R.G. Challenges for the recovery of the ozone layer. Nat. Geosci. 2019, 12, 592–596. [Google Scholar] [CrossRef]
 - Rigby, M.; Park, S.; Saito, T.; Western, L.M.; Redington, A.L.; Fang, X.; Henne, S.; Manning, A.J.; Prinn, R.G.; Dutton, G.S.; et al. Increase in CFC-11 emissions from eastern China based on atmospheric observations. Nature 2019, 569, 546–550. [Google Scholar] [CrossRef] [PubMed]
 - Li, F.; Stolarski, R.S.; Newman, P.A. Stratospheric ozone in the post-CFC era. Atmos. Chem. Phys. 2009, 9, 2207–2213. [Google Scholar] [CrossRef]
 - Manney, G.L.; Santee, M.L.; Rex, M.; Livesey, N.J.; Pitts, M.C.; Veefkind, P.; Nash, E.R.; Wohltmann, I.; Lehmann, R.; Froidevaux, L.; et al. Unprecedented Arctic ozone loss in 2011. Nature 2011, 478, 469–475. [Google Scholar] [CrossRef]
 - Zhang, J.; Tian, W.; Xie, F.; Chipperfield, M.P.; Feng, W.; Son, S.-W.; Abraham, N.L.; Archibald, A.T.; Bekki, S.; Butchart, N.; et al. Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nat. Commun. 2018, 9, 206. [Google Scholar] [CrossRef]
 - Dhomse, S.S.; Kinnison, D.; Chipperfield, M.P.; Salawitch, R.J.; Cionni, I.; Hegglin, M.I.; Abraham, N.L.; Akiyoshi, H.; Archibald, A.T.; Bednarz, E.M.; et al. Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmos. Chem. Phys. 2018, 18, 8409–8438. [Google Scholar] [CrossRef]
 - Hegglin, M.I.; Shepherd, T.G. Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nat. Geosci. 2009, 2, 687–691. [Google Scholar] [CrossRef]
 - Tourpali, K.; Bais, A.F.; Kazantzidis, A.; Zerefos, C.S.; Akiyoshi, H.; Austin, J.; Brühl, C.; Butchart, N.; Chipperfield, M.P.; Dameris, M.; et al. Clear sky UV simulations for the 21st century based on ozone and temperature projections from Chemistry-Climate Models. Atmos. Chem. Phys. 2009, 9, 1165–1172. [Google Scholar] [CrossRef]
 - Bernhard, G.; Dahlback, A.; Fioletov, V.; Heikkilä, A.; Johnsen, B.; Koskela, T.; Lakkala, K.; Svendby, T. High levels of ultraviolet radiation observed by ground-based instruments below the 2011 Arctic ozone hole. Atmos. Chem. Phys. 2013, 13, 10573–10590. [Google Scholar] [CrossRef]
 - Petkov, B.H.; Vitale, V.; Tomasi, C.; Siani, A.M.; Seckmeyer, G.; Webb, A.R.; Smedley, A.R.D.; Casale, G.R.; Werner, R.; Lanconelli, C.; et al. Response of the ozone column over Europe to the 2011 Arctic ozone depletion event according to ground-based observations and assessment of the consequent variations in surface UV irradiance. Atmos. Environ. 2014, 85, 169–178. [Google Scholar] [CrossRef]
 - Siani, A.M.; Casale, G.R.; Galliani, A. Investigation on a low ozone episode at the end of November 2000 and its effect on ultraviolet radiation. Opt. Eng. 2002, 41, 3082–3089. [Google Scholar] [CrossRef]
 - Lamy, K.; Portafaix, T.; Josse, B.; Brogniez, C.; Godin-Beekmann, S.; Bencherif, H.; Revell, L.; Akiyoshi, H.; Bekki, S.; Hegglin, M.I.; et al. Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative. Atmos. Chem. Phys. 2019, 19, 10087–10110. [Google Scholar] [CrossRef]
 - Lindfors, A.V.; Kujanpää, J.; Kalakoski, N.; Heikkilä, A.; Lakkala, K.; Mielonen, T.; Sneep, M.; Krotkov, N.A.; Arola, A.; Tamminen, J. The TROPOMI surface UV algorithm. Atmos. Meas. Tech. 2018, 11, 997–1008. [Google Scholar] [CrossRef]
 - Tanskanen, A.; Krotkov, N.A.; Herman, J.R.; Arola, A. Surface ultraviolet irradiance from OMI. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1267–1271. [Google Scholar] [CrossRef]
 - Zempila, M.M.; van Geffen, J.H.G.M.; Taylor, M.; Fountoulakis, I.; Koukouli, M.E.; van Weele, M.; van der Ronald, J.A.; Bais, A.; Meleti, C.; Balis, D. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece. Atmos. Chem. Phys. 2017, 17, 7157–7174. [Google Scholar] [CrossRef]
 - Herman, J.R. Global increase in UV irradiance during the past 30 years (1979–2008) estimated from satellite data. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
 - Torres, O.; Ahn, C.; Chen, Z. Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations. Atmos. Meas. Tech. 2013, 6, 3257–3270. [Google Scholar] [CrossRef]
 - Arola, A.; Kazadzis, S.; Lindfors, A.; Krotkov, N.; Kujanpää, J.; Tamminen, J.; Bais, A.; di Sarra, A.; Villaplana, J.M.; Brogniez, C.; et al. A new approach to correct for absorbing aerosols in OMI UV. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
 - Cadet, J.-M.; Bencherif, H.; Portafaix, T.; Lamy, K.; Ncongwane, K.; Coetzee, G.J.R.; Wright, C.Y. Comparison of Ground-Based and Satellite-Derived Solar UV Index Levels at Six South African Sites. Int. J. Environ. Res. Public Health 2017, 14, 1384. [Google Scholar] [CrossRef]
 - Wagner, J.E.; Angelini, F.; Arola, A.; Blumthaler, M.; Fitzka, M.; Gobbi, G.P.; Kift, R.; Kreuter, A.; Rieder, H.E.; Simic, S.; et al. Comparison of surface UV irradiance in mountainous regions derived from satellite observations and model calculations with ground-based measurements. Meteorol. Z. 2010, 19, 481–490. [Google Scholar] [CrossRef]
 - Bernhard, G.; Arola, A.; Dahlback, A.; Fioletov, V.; Heikkilä, A.; Johnsen, B.; Koskela, T.; Lakkala, K.; Svendby, T.; Tamminen, J. Comparison of OMI UV observations with ground-based measurements at high northern latitudes. Atmos. Chem. Phys. 2015, 15, 7391–7412. [Google Scholar] [CrossRef]
 - Kazadzis, S.; Bais, A.; Arola, A.; Krotkov, N.; Kouremeti, N.; Meleti, C. Ozone Monitoring Instrument spectral UV irradiance products: Comparison with ground based measurements at an urban environment. Atmos. Chem. Phys. 2009, 9, 585–594. [Google Scholar] [CrossRef]
 - Zempila, M.-M.; Koukouli, M.-E.; Bais, A.; Fountoulakis, I.; Arola, A.; Kouremeti, N.; Balis, D. OMI/Aura UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece. Atmos. Environ. 2016, 140, 283–297. [Google Scholar] [CrossRef]
 - Zempila, M.M.; Fountoulakis, I.; Taylor, M.; Kazadzis, S.; Arola, A.; Koukouli, M.E.; Bais, A.; Meleti, C.; Balis, D. Validation of OMI erythemal doses with multi-sensor ground-based measurements in Thessaloniki, Greece. Atmos. Environ. 2018, 183, 106–121. [Google Scholar] [CrossRef]
 - Kazadzis, S.; Bais, A.; Balis, D.; Kouremeti, N.; Zempila, M.; Arola, A.; Giannakaki, E.; Amiridis, V.; Kazantzidis, A. Spatial and temporal UV irradiance and aerosol variability within the area of an OMI satellite pixel. Atmos. Chem. Phys. 2009, 9, 4593–4601. [Google Scholar] [CrossRef]
 - Bernhard, G.; Seckmeyer, G. Uncertainty of measurements of spectral solar UV irradiance. J. Geophys. Res. Atmos. 1999, 104, 14321–14345. [Google Scholar] [CrossRef]
 - Cordero, R.R.; Seckmeyer, G.; Pissulla, D.; DaSilva, L.; Labbe, F. Uncertainty evaluation of spectral UV irradiance measurements. Meas. Sci. Technol. 2008, 19, 045104. [Google Scholar] [CrossRef][Green Version]
 - Garane, K.; Bais, A.F.; Kazadzis, S.; Kazantzidis, A.; Meleti, C. Monitoring of UV spectral irradiance at Thessaloniki (1990–2005): Data re-evaluation and quality control. Ann. Geophys. 2006, 24, 3215–3228. [Google Scholar] [CrossRef]
 - Bais, A.F.; Gardiner, B.G.; Slaper, H.; Blumthaler, M.; Bernhard, G.; McKenzie, R.; Webb, A.R.; Seckmeyer, G.; Kjeldstad, B.; Koskela, T.; et al. SUSPEN intercomparison of ultraviolet spectroradiometers. J. Geophys. Res. Atmos. 2001, 106, 12509–12525. [Google Scholar] [CrossRef]
 - Hülsen, G.; Gröbner, J.; Nevas, S.; Sperfeld, P.; Egli, L.; Porrovecchio, G.; Smid, M. Traceability of solar UV measurements using the Qasume reference spectroradiometer. Appl. Opt. 2016, 55, 7265–7275. [Google Scholar] [CrossRef] [PubMed]
 - Glandorf, M.; Arola, A.; Bais, A.; Seckmeyer, G. Possibilities to detect trends in spectral UV irradiance. Theor. Appl. Climatol. 2005, 81, 33–44. [Google Scholar] [CrossRef]
 - Weatherhead, E.C.; Reinsel, G.C.; Tiao, G.C.; Meng, X.-L.; Choi, D.; Cheang, W.-K.; Keller, T.; DeLuisi, J.; Wuebbles, D.J.; Kerr, J.B.; et al. Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res. Atmos. 1998, 103, 17149–17161. [Google Scholar] [CrossRef]
 - Arola, A.; Lakkala, K.; Bais, A.; Kaurola, J.; Meleti, C.; Taalas, P. Factors affecting short- and long-term changes of spectral UV irradiance at two European stations. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
 - Rundel, R.D. Action spectra and estimation of biologically effective UV radiation. Physiol. Plant. 1983, 58, 360–366. [Google Scholar] [CrossRef]
 - van Dijk, A.; den Outer, P.; van Kranen, H.; Slaper, H. The action spectrum for vitamin D3: Initial skin reaction and prolonged exposure. Photochem. Photobiol. Sci. 2016, 15, 896–909. [Google Scholar] [CrossRef]
 - Webb, A.R.; Slaper, H.; Koepke, P.; Schmalwieser, A.W. Know Your Standard: Clarifying the CIE Erythema Action Spectrum. Photochem. Photobiol. 2011, 87, 483–486. [Google Scholar] [CrossRef]
 - Vanicek, K.; Frei, T.; Litynska, Z.; Schmalwieser, A. UV-Index for the Public; European Union: Brussels, Belgium, 2000. [Google Scholar]
 - Mckinlay, A.F.; Diffey, B.L. A reference action spectrum for ultraviolet induced erythema in human skin. CIE J. 1987, 6, 17–22. [Google Scholar]
 - Diémoz, H.; Siani, A.M.; Casale, G.R.; di Sarra, A.; Serpillo, B.; Petkov, B.; Scaglione, S.; Bonino, A.; Facta, S.; Fedele, F.; et al. First national intercomparison of solar ultraviolet radiometers in Italy. Atmos. Meas. Tech. 2011, 4, 1689–1703. [Google Scholar] [CrossRef]
 - Schmalwieser, A.W.; Gröbner, J.; Blumthaler, M.; Klotz, B.; De Backer, H.; Bolsée, D.; Werner, R.; Tomsic, D.; Metelka, L.; Eriksen, P.; et al. UV Index monitoring in Europe. Photochem. Photobiol. Sci. 2017, 16, 1349–1370. [Google Scholar] [CrossRef]
 - Bilbao, J.; Román, R.; de Miguel, A.; Mateos, D. Long-term solar erythemal UV irradiance data reconstruction in Spain using a semiempirical method. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
 - Herman, J.; DeLand, M.T.; Huang, L.K.; Labow, G.; Larko, D.; Lloyd, S.A.; Mao, J.; Qin, W.; Weaver, C. A net decrease in the Earth’s cloud, aerosol, and surface 340 nm reflectivity during the past 33 yr (1979–2011). Atmos. Chem. Phys. 2013, 13, 8505–8524. [Google Scholar] [CrossRef]
 - Bais, A.F.; Zerefos, C.S.; McElroy, C.T. Solar UVB measurements with the double- and single-monochromator Brewer ozone spectrophotometers. Geophys. Res. Lett. 1996, 23, 833–836. [Google Scholar] [CrossRef]
 - Zerefos, C.S.; Balis, D.S.; Bais, A.F.; Gillotay, D.; Simon, P.C.; Mayer, B.; Seckmeyer, G. Variability of UV-B at four stations in Europe. Geophys. Res. Lett. 1997, 24, 1363–1366. [Google Scholar] [CrossRef]
 - Lakkala, K.; Kyrö, E.; Turunen, T. Spectral UV Measurements at Sodankylä during 1990–2001. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
 - Bartlett, L.M.; Webb, A.R. Changes in ultraviolet radiation in the 1990s: Spectral measurements from Reading, England. J. Geophys. Res. Atmos. 2000, 105, 4889–4893. [Google Scholar] [CrossRef]
 - Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
 - Heikkilä, A.; Kaurola, J.; Lakkala, K.; Karhu, J.M.; Kyrö, E.; Koskela, T.; Engelsen, O.; Slaper, H.; Seckmeyer, G. European UV DataBase (EUVDB) as a repository and quality analyser for solar spectral UV irradiance monitored in Sodankylä. Geosci. Instrum. Method Data Syst. 2016, 5, 333–345. [Google Scholar] [CrossRef]
 - Available online: http://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-radio/noontime-flux/penticton/ (accessed on 1 September 2019).
 - Available online: http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/index.html (accessed on 1 September 2019).
 - Siani, A.M.; Frasca, F.; Scarlatti, F.; Religi, A.; Diémoz, H.; Casale, G.R.; Pedone, M.; Savastiouk, V. Examination on total ozone column retrievals by Brewer spectrophotometry using different processing software. Atmos. Meas. Tech. 2018, 11, 5105–5123. [Google Scholar] [CrossRef]
 - Kerr, J.B.; Evans, W.F.J.; Asbridge, I.A. Recalibration of Dobson Field Spectrophotometers with a Travelling Brewer Spectrophotometer Standard. In Proceedings of the Quadrennial Ozone Symposium of the International Ozone Commission of Iamap, Halkidiki, Greece, 3–7 September 1984; Springer: Dordrecht, The Netherlands, 1985; pp. 381–386. [Google Scholar]
 - Slaper, H.; Reinen, H.A.J.M.; Blumthaler, M.; Huber, M.; Kuik, F. Comparing ground-level spectrally resolved solar UV measurements using various instruments: A technique resolving effects of wavelength shift and slit width. Geophys. Res. Lett. 1995, 22, 2721–2724. [Google Scholar] [CrossRef]
 - Bergstrom, R.W.; Pilewskie, P.; Russell, P.B.; Redemann, J.; Bond, T.C.; Quinn, P.K.; Sierau, B. Spectral absorption properties of atmospheric aerosols. Atmos. Chem. Phys. 2007, 7, 5937–5943. [Google Scholar] [CrossRef]
 - McKenzie, R.L.; Weinreis, C.; Johnston, P.V.; Liley, B.; Shiona, H.; Kotkamp, M.; Smale, D.; Takegawa, N.; Kondo, Y. Effects of urban pollution on UV spectral irradiances. Atmos. Chem. Phys. 2008, 8, 5683–5697. [Google Scholar] [CrossRef]
 - Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef]
 - Anderson, G.P.; Clough, S.A.; Kneizys, F.X.; Chetwynd, J.H.; Shettle, E.P. AFGL Atmospheric Constituent Profiles (0–120 km); Optical Physics Division, Air Force Geophysics Laboratory: Hanscom AFB, MA, USA, 1986. [Google Scholar]
 - Buras, R.; Dowling, T.; Emde, C. New secondary-scattering correction in DISORT with increased efficiency for forward scattering. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 2028–2034. [Google Scholar] [CrossRef]
 - Diémoz, H.; Campanelli, M.; Estellés, V. One Year of Measurements with a POM-02 Sky Radiometer at an Alpine EuroSkyRad Station. J. Meteorol. Soc. Jpn. Ser. II 2014, 92, 1–16. [Google Scholar] [CrossRef]
 - Campanelli, M.; Siani, A.M.; di Sarra, A.; Iannarelli, A.M.; Sanò, P.; Diémoz, H.; Casasanta, G.; Cacciani, M.; Tofful, L.; Dietrich, S. Aerosol optical characteristics in the urban area of Rome, Italy, and their impact on the UV index. Atmos. Meas. Tech. Discuss. 2019, 2019, 1–23. [Google Scholar] [CrossRef]
 - Schaap, M.; Timmermans, R.M.A.; Koelemeijer, R.B.A.; de Leeuw, G.; Builtjes, P.J.H. Evaluation of MODIS aerosol optical thickness over Europe using sun photometer observations. Atmos. Environ. 2008, 42, 2187–2197. [Google Scholar] [CrossRef]
 - Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
 - Hall, D.K.; Riggs, G.A.; Salomonson, V.V. MODIS/Terra Snow Cover 5-Min L2 Swath 500 m, 5th ed.; Distributed Active Archive Center, NASA National Snow and Ice Data Center: Boulder, CO, USA, 2006. [Google Scholar] [CrossRef]
 - Diémoz, H.; Egli, L.; Gröbner, J.; Siani, A.M.; Diotri, F. Solar ultraviolet irradiance measurements in Aosta (Italy): An analysis of short- and middle-term spectral variability. AIP Conf. Proc. 2013, 1531, 856–859. [Google Scholar] [CrossRef]
 - Liu, J.; Schaaf, C.; Strahler, A.; Jiao, Z.; Shuai, Y.; Zhang, Q.; Roman, M.; Augustine, J.A.; Dutton, E.G. Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo retrieval algorithm: Dependence of albedo on solar zenith angle. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
 - Stroeve, J.C.; Box, J.E.; Haran, T. Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet. Remote Sens. Environ. 2006, 105, 155–171. [Google Scholar] [CrossRef]
 - Chengcai, L.; Lau, A.K.; Jietai, M.; Chu, D.A. Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2650–2658. [Google Scholar] [CrossRef]
 - Holzwarth, V.; Laschewski, G. Aerosols in forecasts of the UV index: A comparison of different approaches. AIP Conf. Proc. 2013, 1531, 772–775. [Google Scholar] [CrossRef]
 - Levelt, P.F.; Oord, G.H.J.v.d.; Dobber, M.R.; Malkki, A.; Huib, V.; Johan de, V.; Stammes, P.; Lundell, J.O.V.; Saari, H. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
 - Hovila, J.; Arola, A.; Tamminen, J. OMI/Aura Surface UVB Irradiance and Erythemal Dose Daily L3 Global Gridded 1.0 Degree × 1.0 Degree V3; NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2013.
 - Bhartia, P.K. OMI/Aura TOMS-Like Ozone and Radiative Cloud Fraction L3 1 Day 0.25 Degree × 0.25 Degree V3; NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2012. [CrossRef]
 - Krzyścin, J.W.; Sobolewski, P.S. Trends in erythemal doses at the Polish Polar Station, Hornsund, Svalbard based on the homogenized measurements (1996–2016) and reconstructed data (1983–1995). Atmos. Chem. Phys. 2018, 18, 1–11. [Google Scholar] [CrossRef]
 - Lakkala, K.; Heikkilä, A.; Kärhä, P.; Ialongo, I.; Karppinen, T.; Karhu, J.M.; Lindfors, A.V.; Meinander, O. 25 years of spectral UV measurements at Sodankylä. AIP Conf. Proc. 2017, 1810, 110006. [Google Scholar] [CrossRef]
 - Svendby, T.; Hansen, G.H.; Bäcklund, A.; Dahlback, A. Monitoring of the Atmospheric Ozone Layer and Natural Ultraviolet Radiation: NILU Annual Report 2018; Norwegian Environment Agency: Oslo, Norway, 2018; p. 39. [Google Scholar]
 - Hooke, R.J.; Higlett, M.P.; Hunter, N.; O’Hagan, J.B. Long term variations in erythema effective solar UV at Chilton, UK, from 1991 to 2015. Photochem. Photobiol. Sci. 2017, 16, 1596–1603. [Google Scholar] [CrossRef]
 - Fitzka, M.; Simic, S.; Hadzimustafic, J. Trends in spectral UV radiation from long-term measurements at Hoher Sonnblick, Austria. Theor. Appl. Climatol. 2012, 110, 585–593. [Google Scholar] [CrossRef]
 - Fountoulakis, I.; Bais, A.F.; Fragkos, K.; Meleti, C.; Tourpali, K.; Zempila, M.M. Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: Effects of changes in aerosols, total ozone and clouds. Atmos. Chem. Phys. 2016, 16, 2493–2505. [Google Scholar] [CrossRef]
 - Aun, M.; Eerme, K.; Ansko, I.; Aun, M. Daily, seasonal, and annual characteristics of UV radiation and its influencing factors in Tõravere, Estonia, 2004–2016. Theor. Appl. Climatol. 2019, 1–11. [Google Scholar] [CrossRef]
 - Czerwińska, A.E.; Krzyścin, J.W.; Jarosławski, J.; Posyniak, M. Effects of urban agglomeration on surface-UV doses: A comparison of Brewer measurements in Warsaw and Belsk, Poland, for the period 2013–2015. Atmos. Chem. Phys. 2016, 16, 13641–13651. [Google Scholar] [CrossRef]
 - Fountoulakis, I.; Natsis, A.; Siomos, N.; Drosoglou, T.; Bais, F.A. Deriving Aerosol Absorption Properties from Solar Ultraviolet Radiation Spectral Measurements at Thessaloniki, Greece. Remote Sens. 2019, 11, 2179. [Google Scholar] [CrossRef]
 - Krzyścin, J.W.; Puchalski, S. Aerosol impact on the surface UV radiation from the ground-based measurements taken at Belsk, Poland, 1980–1996. J. Geophys. Res. Atmos. 1998, 103, 16175–16181. [Google Scholar] [CrossRef]
 - Krzyścin, J.W.; Sobolewski, P.S.; Jarosławski, J.; Podgórski, J.; Rajewska-Więch, B. Erythemal UV observations at Belsk, Poland, in the period 1976–2008: Data homogenization, climatology, and trends. Acta Geophys. 2011, 59, 155–182. [Google Scholar] [CrossRef]
 - Czerwińska, A.E.; Krzyścin, J.W. Climatological aspects of the increase of the skin cancer (melanoma) incidence rate in Europe. Int. J. Climatol. 2019. [Google Scholar] [CrossRef]
 - Herman, J.R.; Bhartia, P.K.; Torres, O.; Hsu, C.; Seftor, C.; Celarier, E. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. J. Geophys. Res. Atmos. 1997, 102, 16911–16922. [Google Scholar] [CrossRef]
 - Torres, O.; Bhartia, P.K.; Herman, J.R.; Ahmad, Z.; Gleason, J. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res. Atmos. 1998, 103, 17099–17110. [Google Scholar] [CrossRef]
 - Blumthaler, M. Solar Radiation of the High Alps. In Plants in Alpine Regions: Cell Physiology of Adaption and Survival Strategies; Lütz, C., Ed.; Springer: Vienna, Austria, 2012; pp. 11–20. [Google Scholar]
 - Schmucki, D.A.; Philipona, R. Ultraviolet radiation in the Alps: The altitude effect. Opt. Eng. 2002, 41, 3090–3095. [Google Scholar] [CrossRef]
 - Schwarz, M.; Baumgartner, D.J.; Pietsch, H.; Blumthaler, M.; Weihs, P.; Rieder, H.E. Influence of low ozone episodes on erythemal UV-B radiation in Austria. Theor. Appl. Climatol. 2018, 133, 319–329. [Google Scholar] [CrossRef]
 - di Sarra, A.; Cacciani, M.; Chamard, P.; Cornwall, C.; DeLuisi, J.J.; Di Iorio, T.; Disterhoft, P.; Fiocco, G.; Fuá, D.; Monteleone, F. Effects of desert dust and ozone on the ultraviolet irradiance at the Mediterranean island of Lampedusa during PAUR II. J. Geophys. Res. Atmos. 2002, 107, 2–14. [Google Scholar] [CrossRef]
 - Lee, J.; Choi, W.J.; Kim, D.R.; Kim, S.-Y.; Song, C.-K.; Hong, J.S.; Hong, Y.; Lee, S. The effect of ozone and aerosols on the surface erythemal UV radiation estimated from OMI measurements. Asia Pac. J. Atmos. Sci. 2013, 49, 271–278. [Google Scholar] [CrossRef]
 - Mok, J.; Krotkov, N.A.; Torres, O.; Jethva, H.; Li, Z.; Kim, J.; Koo, J.H.; Go, S.; Irie, H.; Labow, G.; et al. Comparisons of spectral aerosol single scattering albedo in Seoul, South Korea. Atmos. Meas. Tech. 2018, 11, 2295–2311. [Google Scholar] [CrossRef]
 - Mok, J.; Krotkov, N.A.; Arola, A.; Torres, O.; Jethva, H.; Andrade, M.; Labow, G.; Eck, T.F.; Li, Z.; Dickerson, R.R.; et al. Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin. Sci. Rep. 2016, 6, 36940. [Google Scholar] [CrossRef] [PubMed]
 - Tang, M.; Alexander, J.M.; Kwon, D.; Estillore, A.D.; Laskina, O.; Young, M.A.; Kleiber, P.D.; Grassian, V.H. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth. J. Phys. Chem. A 2016, 120, 4155–4166. [Google Scholar] [CrossRef]
 - Washenfelder, R.A.; Attwood, A.R.; Brock, C.A.; Guo, H.; Xu, L.; Weber, R.J.; Ng, N.L.; Allen, H.M.; Ayres, B.R.; Baumann, K.; et al. Biomass burning dominates brown carbon absorption in the rural southeastern United States. Geophys. Res. Lett. 2015, 42, 653–664. [Google Scholar] [CrossRef]
 - Luomaranta, A.; Aalto, J.; Jylhä, K. Snow cover trends in Finland over 1961–2014 based on gridded snow depth observations. Int. J. Climatol. 2019, 39, 3147–3159. [Google Scholar] [CrossRef]
 - Meloni, D.; Casale, G.R.; Siani, A.M.; Palmieri, S.; Cappellani, F. Solar UV Dose Patterns in Italy. Photochem. Photobiol. 2000, 71, 681–690. [Google Scholar] [CrossRef]
 - Casale, G.R.; Siani, A.M.; Diémoz, H.; Agnesod, G.; Parisi, A.V.; Colosimo, A. Extreme UV index and solar exposures at Plateau Rosà (3500ma.s.l.) in Valle d’Aosta Region, Italy. Sci. Total Environ. 2015, 512–513, 622–630. [Google Scholar] [CrossRef]
 - Siani, A.M.; Casale, G.R.; Diémoz, H.; Agnesod, G.; Kimlin, M.G.; Lang, C.A.; Colosimo, A. Personal UV exposure in high albedo alpine sites. Atmos. Chem. Phys. 2008, 8, 3749–3760. [Google Scholar] [CrossRef]
 - Modenese, A.; Ruggieri, F.P.; Bisegna, F.; Borra, M.; Burattini, C.; Della Vecchia, E.; Grandi, C.; Grasso, A.; Gugliermetti, L.; Manini, M.; et al. Occupational Exposure to Solar UV Radiation of a Group of Fishermen Working in the Italian North Adriatic Sea. Int. J. Environ. Res. Public Health 2019, 16, 3001. [Google Scholar] [CrossRef]
 - Siani, A.M.; Casale, G.R.; Sisto, R.; Colosimo, A.; Lang, C.A.; Kimlin, M.G. Occupational Exposures to Solar Ultraviolet Radiation of Vineyard Workers in Tuscany (Italy). Photochem. Photobiol. 2011, 87, 925–934. [Google Scholar] [CrossRef] [PubMed]
 - Cristofolini, M.; Tasin, L.; Zumiani, G.; Franceschi, S.; Talamini, R.; Piscioli, F.; La Vecchia, C. Risk factors for cutaneous malignant melanoma in a northern italian population. Int. J. Cancer 1987, 39, 150–154. [Google Scholar] [CrossRef] [PubMed]
 - Naldi, L.; Gallus, S.; Imberti, G.L.; Cainelli, T.; Negri, E.; La Vecchia, C.; Italian Group for Epidemiological Research in Dermatology. Sunscreens and cutaneous malignant melanoma: An Italian case-control study. Int. J. Cancer 2000, 86, 879–882. [Google Scholar] [CrossRef]
 - Larese Filon, F.; Buric, M.; Fluehler, C. UV exposure, preventive habits, risk perception, and occupation in NMSC patients: A case-control study in Trieste (NE Italy). Photodermatol. Photoimmunol. Photomed. 2019, 35, 24–30. [Google Scholar] [CrossRef] [PubMed]
 - Bjørnevik, K.; Riise, T.; Casetta, I.; Drulovic, J.; Granieri, E.; Holmøy, T.; Kampman, M.T.; Landtblom, A.-M.; Lauer, K.; Lossius, A.; et al. Sun exposure and multiple sclerosis risk in Norway and Italy: The EnvIMS study. Mult. Scler. J. 2014, 20, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
 - Manara, V.; Brunetti, M.; Celozzi, A.; Maugeri, M.; Sanchez-Lorenzo, A.; Wild, M. Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959–2013). Atmos. Chem. Phys. 2016, 16, 11145–11161. [Google Scholar] [CrossRef]
 - Manara, V.; Bassi, M.; Brunetti, M.; Cagnazzi, B.; Maugeri, M. 1990–2016 surface solar radiation variability and trend over the Piedmont region (northwest Italy). Theor. Appl. Climatol. 2019, 136, 849–862. [Google Scholar] [CrossRef]
 - Corrêa, M.d.P.; Godin-Beekmann, S.; Haeffelin, M.; Bekki, S.; Saiag, P.; Badosa, J.; Jégou, F.; Pazmiño, A.; Mahé, E. Projected changes in clear-sky erythemal and vitamin D effective UV doses for Europe over the period 2006 to 2100. Photochem. Photobiol. Sci. 2013, 12, 1053–1064. [Google Scholar] [CrossRef]
 - Watanabe, S.; Sudo, K.; Nagashima, T.; Takemura, T.; Kawase, H.; Nozawa, T. Future projections of surface UV-B in a changing climate. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
 - Petkov, B.; Vitale, V.; Tomasi, C.; Mazzola, M.; Lanconelli, C.; Lupi, A.; Busetto, M. Variations in total ozone column and biologically effective solar UV exposure doses in Bologna, Italy during the period 2005–2010. Int. J. Biometeorol. 2014, 58, 31–39. [Google Scholar] [CrossRef]
 - Brewer, A.W. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Q. J. R. Meteorol. Soc. 1949, 75, 351–363. [Google Scholar] [CrossRef]
 - Geer, A.J.; Ahlgrimm, M.; Bechtold, P.; Bonavita, M.; Bormann, N.; English, S.; Fielding, M.; Forbes, R.; Hogan, R.; Hólm, E.; et al. Assimilating Observations Sensitive to Cloud and Precipitation; ECMWF: Reading, UK, 2017. [Google Scholar]
 - Marchetti, F.; Esteve, A.R.; Siani, A.M.; Martínez-Lozano, J.A.; Utrillas, M.P. Validation of UV solar radiation data from the Ozone Monitoring Instrument (OMI) with ground based measurements on the Mediterranean coast. Revista de Teledetección 2016, 47, 13–22. [Google Scholar] [CrossRef][Green Version]
 - Balis, D.; Kroon, M.; Koukouli, M.E.; Brinksma, E.J.; Labow, G.; Veefkind, J.P.; McPeters, R.D. Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
 - Ialongo, I.; Casale, G.R.; Siani, A.M. Comparison of total ozone and erythemal UV data from OMI with ground-based measurements at Rome station. Atmos. Chem. Phys. 2008, 8, 3283–3289. [Google Scholar] [CrossRef]
 - Ialongo, I.; Buchard, V.; Brogniez, C.; Casale, G.R.; Siani, A.M. Aerosol Single Scattering Albedo retrieval in the UV range: An application to OMI satellite validation. Atmos. Chem. Phys. 2010, 10, 331–340. [Google Scholar] [CrossRef]
 - Struckmeier, C.; Drewnick, F.; Fachinger, F.; Gobbi, G.P.; Borrmann, S. Atmospheric aerosols in Rome, Italy: Sources, dynamics and spatial variations during two seasons. Atmos. Chem. Phys. 2016, 16, 15277–15299. [Google Scholar] [CrossRef]
 - Gobbi, G.P.; Barnaba, F.; Di Liberto, L.; Bolignano, A.; Lucarelli, F.; Nava, S.; Perrino, C.; Pietrodangelo, A.; Basart, S.; Costabile, F.; et al. An inclusive view of Saharan dust advections to Italy and the Central Mediterranean. Atmos. Environ. 2019, 201, 242–256. [Google Scholar] [CrossRef]
 - Diémoz, H.; Gobbi, G.P.; Magri, T.; Pession, G.; Pittavino, S.; Tombolato, I.K.F.; Campanelli, M.; Barnaba, F. Transport of Po Valley aerosol pollution to the northwestern Alps – Part 2: Long-term impact on air quality. Atmos. Chem. Phys. 2019, 19, 10129–10160. [Google Scholar] [CrossRef]
 - Diémoz, H.; Barnaba, F.; Magri, T.; Pession, G.; Dionisi, D.; Pittavino, S.; Tombolato, I.K.F.; Campanelli, M.; Della Ceca, L.S.; Hervo, M.; et al. Transport of Po Valley aerosol pollution to the northwestern Alps—Part 1: Phenomenology. Atmos. Chem. Phys. 2019, 19, 3065–3095. [Google Scholar] [CrossRef]
 - Kirchhoff, V.W.J.H.; Guarnieri, F.L. Missing ozone at high altitude: Comparison of in situ and satellite data. J. Geophys. Res. Atmos. 2002, 107, ACH 2-1–ACH 2-5. [Google Scholar] [CrossRef]
 - Katragkou, E.; Zanis, P.; Tsikerdekis, A.; Kapsomenakis, J.; Melas, D.; Eskes, H.; Flemming, J.; Huijnen, V.; Inness, A.; Schultz, M.G.; et al. Evaluation of near-surface ozone over Europe from the MACC reanalysis. Geosci. Model Dev. 2015, 8, 2299–2314. [Google Scholar] [CrossRef]
 - Bais, A.F.; Drosoglou, T.; Meleti, C.; Tourpali, K.; Kouremeti, N. Changes in surface shortwave solar irradiance from 1993 to 2011 at Thessaloniki (Greece). Int. J. Climatol. 2013, 33, 2871–2876. [Google Scholar] [CrossRef]
 






| Station(s) | Latitude, Longitude, Altitude (a.s.l.) | Period | Quantity | Trend (Change % Per Decade) | Reference | 
|---|---|---|---|---|---|
| Hornsund, Svalbard, Norway | 77.0° N, 15.6° E, 10 m | 1996–2016 | Daily erythemal dose | 3.5 | [139] | 
| Sodankylä, Finland | 67.4° N, 26.6° E, 180 m | 1990–2014 | Irradiance at 305 nm (SZA = 64°) for April and June | −10 | [140] | 
| Sodankylä, Finland | 67.4° N, 26.6° E, 180 m | 1992–2016 | Noon irradiance at 307.5 nm | −3 | [56] | 
| NILU stations, Norway | Latitudes 60–79° N | 1995–2016 | Daily erythemal dose | −5 to −2 | [141] | 
| Chilton, UK | 51.6° N, 1.3° W, 123 m | 1995–2015 | Daily erythemal dose | −8 * | [142] | 
| Reading, UK | 51.4° N, 0.9° W, 66 m | 1992–2016 | Noon irradiance at 307.5 nm | −12 * | [56] | 
| Uccle, Belgium | 50.8° N, 4.4° E, 100 m | 1991–2013 | Daily erythemal dose | +7 * | [58] | 
| Uccle, Belgium | 50.8° N, 4.4° E, 100 m | 1992–2016 | Noon irradiance at 307.5 nm | 0 | [56] | 
| Hoher Sonnblick, Austria | 47.1° N, 12.9° E, 3106 m | 1997–2011 | Irradiance at 305 nm (SZA = 45–65°) | +5 to +8 (larger for larger SZA) | [143] | 
| Hoher Sonnblick, Austria | 47.1° N, 12.9° E, 3106 m | 1997–2011 | Irradiance at 315 nm (SZA = 45–65°) | +9 * to +14 * (larger for larger SZA) | [143] | 
| Thessaloniki, Greece | 40.6° N, 23.0° E, 60 m | 1994–2014 | Irradiance at 307.5 nm (SZA = 64°) | +5 * | [144] | 
| Thessaloniki, Greece | 40.6° N, 23.0° E, 60 m | 1994–2014 | Irradiance at 350 nm (SZA = 64°) | +3 * | [144] | 
| Thessaloniki, Greece | 40.6° N, 23.0° E, 60 m | 1992–2016 | Noon irradiance at 307.5 nm | +3 * | [56] | 
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fountoulakis, I.; Diémoz, H.; Siani, A.-M.; Laschewski, G.; Filippa, G.; Arola, A.; Bais, A.F.; De Backer, H.; Lakkala, K.; Webb, A.R.; et al. Solar UV Irradiance in a Changing Climate: Trends in Europe and the Significance of Spectral Monitoring in Italy. Environments 2020, 7, 1. https://doi.org/10.3390/environments7010001
Fountoulakis I, Diémoz H, Siani A-M, Laschewski G, Filippa G, Arola A, Bais AF, De Backer H, Lakkala K, Webb AR, et al. Solar UV Irradiance in a Changing Climate: Trends in Europe and the Significance of Spectral Monitoring in Italy. Environments. 2020; 7(1):1. https://doi.org/10.3390/environments7010001
Chicago/Turabian StyleFountoulakis, Ilias, Henri Diémoz, Anna-Maria Siani, Gudrun Laschewski, Gianluca Filippa, Antti Arola, Alkiviadis F. Bais, Hugo De Backer, Kaisa Lakkala, Ann R. Webb, and et al. 2020. "Solar UV Irradiance in a Changing Climate: Trends in Europe and the Significance of Spectral Monitoring in Italy" Environments 7, no. 1: 1. https://doi.org/10.3390/environments7010001
APA StyleFountoulakis, I., Diémoz, H., Siani, A.-M., Laschewski, G., Filippa, G., Arola, A., Bais, A. F., De Backer, H., Lakkala, K., Webb, A. R., De Bock, V., Karppinen, T., Garane, K., Kapsomenakis, J., Koukouli, M.-E., & Zerefos, C. S. (2020). Solar UV Irradiance in a Changing Climate: Trends in Europe and the Significance of Spectral Monitoring in Italy. Environments, 7(1), 1. https://doi.org/10.3390/environments7010001
        
