Previous Issue
Volume 3, March
 
 

J. Exp. Theor. Anal., Volume 3, Issue 2 (June 2025) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
25 pages, 9856 KiB  
Article
Design Guidelines for Material Extrusion of Metals (MEX/M)
by Karim Asami, Mehar Prakash Reddy Medapati, Titus Rakow, Tim Röver and Claus Emmelmann
J. Exp. Theor. Anal. 2025, 3(2), 15; https://doi.org/10.3390/jeta3020015 - 28 May 2025
Viewed by 37
Abstract
This study introduced a systematic framework to develop practical design guidelines specifically for filament-based material extrusion of metals (MEX/M), an additive manufacturing (AM) process defined by ISO/ASTM 52900. MEX/M provides a cost-efficient alternative to conventional manufacturing methods, which is particularly valuable for rapid [...] Read more.
This study introduced a systematic framework to develop practical design guidelines specifically for filament-based material extrusion of metals (MEX/M), an additive manufacturing (AM) process defined by ISO/ASTM 52900. MEX/M provides a cost-efficient alternative to conventional manufacturing methods, which is particularly valuable for rapid prototyping. Although AM offers significant design flexibility, the MEX/M process imposes distinct geometric and process constraints requiring targeted optimization. The research formulates and validates design guidelines tailored for the MEX/M using an austenitic steel 316L (1.4404) alloy filament. The feedstock consists of a uniform blend of 316L stainless steel powder and polymeric binder embedded within a thermoplastic matrix, extruded and deposited layer by layer. Benchmark parts were fabricated to examine geometric feasibility, such as minimum printable wall thickness, feature inclination angles, borehole precision, overhang stability, and achievable resolution of horizontal and vertical gaps. After fabrication, the as-built (green-state) components undergo a two-step thermal post-processing treatment involving binder removal (debinding), followed by sintering at elevated temperatures to reach densification. Geometric accuracy was quantitatively assessed through a 3D scan by comparing the manufactured parts to their original CAD models, allowing the identification of deformation patterns and shrinkage rates. Finally, the practical utility of the developed guidelines was demonstrated by successfully manufacturing an impeller designed according to the established geometric constraints. These design guidelines apply specifically to the machine and filament type utilized in this study. Full article
Show Figures

Figure 1

21 pages, 3249 KiB  
Article
Precision and Stability in Hydrostatic Transmissions with Robust H Control Under Parametric Uncertainties
by Santosh Kr. Mishra, Gyan Wrat, Prabhat Ranjan, Joseph T. Jose and Jayanta Das
J. Exp. Theor. Anal. 2025, 3(2), 14; https://doi.org/10.3390/jeta3020014 - 13 May 2025
Viewed by 258
Abstract
Hydrostatic transmissions are essential in applications demanding variable torque and speed, such as mining and agricultural machinery, due to their compact design, high power-to-weight ratio, and efficient variable speed control. Despite these advantages, their inherent nonlinearities and susceptibility to parametric uncertainties pose significant [...] Read more.
Hydrostatic transmissions are essential in applications demanding variable torque and speed, such as mining and agricultural machinery, due to their compact design, high power-to-weight ratio, and efficient variable speed control. Despite these advantages, their inherent nonlinearities and susceptibility to parametric uncertainties pose significant challenges for precise motion control. This study presents a comparative analysis of classical PID and robust H-infinity controllers for regulating the speed of hydraulic motors under varying torsional loads. A linearized uncertain system model is developed using upper Linear Fractional Transformations (LFTs) to capture key parametric uncertainties. A simplified H-infinity controller is designed to robustly manage system dynamics, particularly addressing phase lags induced by uncertain loads. Simulation results demonstrate that the H-infinity controller offers superior performance over the PID controller in terms of stability, disturbance rejection, and robustness to load fluctuations. This work contributes a practically viable robust control solution for improving the reliability and precision of electro-hydraulic systems, particularly in demanding, real-world environments. Full article
Show Figures

Figure 1

26 pages, 8650 KiB  
Article
Separating the Location and Severity Effects in Frequency-Based Crack Detection Using the Dynamic Stiffness Matrix
by Julian De Los Rios, Sinniah Ilanko, Yusuke Mochida and David Kennedy
J. Exp. Theor. Anal. 2025, 3(2), 13; https://doi.org/10.3390/jeta3020013 - 9 May 2025
Viewed by 180
Abstract
The Dynamic Stiffness Matrix (DSM) of a structure is a frequency-dependent stiffness matrix relating the actions (forces and moments) and displacements (translations and rotations) when the structure vibrates at a given frequency. The DSM may be used to find the natural frequencies, modes, [...] Read more.
The Dynamic Stiffness Matrix (DSM) of a structure is a frequency-dependent stiffness matrix relating the actions (forces and moments) and displacements (translations and rotations) when the structure vibrates at a given frequency. The DSM may be used to find the natural frequencies, modes, and structural response. For many structures, including skeletal frames of prismatic members, exact transcendental expressions for the DSM are readily available. This paper presents a mathematical proof of a linear determinantal relationship between the DSM of a skeletal frame when it is undamaged, cracked, and hinged at the crack location. The rotational stiffness or flexibility of the crack also appears as a linear term. This relationship gives, for the first time, an explicit equation to directly calculate the stiffness of the rotational spring representing a crack from measured natural frequencies for any potential crack location. Numerical examples demonstrate that computing the DSM of the intact and hinged structures gives an efficient solution method for the inverse problem of identifying crack location and severity. This paper also shows that an approximate DSM based on a finite element model can be used in the same way, making this procedure more versatile. Furthermore, new approximate expressions for the natural frequencies of structures with very small or very severe cracks are derived. An interesting relationship between the square of the bending moment in an undamaged beam and the determinant of the DSM of a hinged beam is also derived. This relationship, which can also be inferred from previous work, leads to a better understanding of the effect of crack location in specific vibration modes. Full article
Show Figures

Figure 1

17 pages, 11207 KiB  
Article
Metallic Bipolar Plate Production Through Additive Manufacturing: Contrasting MEX/M and PBF-LB/M Approaches
by Karim Asami, Sebastian Roth, Jan Hünting, Tim Röver and Claus Emmelmann
J. Exp. Theor. Anal. 2025, 3(2), 12; https://doi.org/10.3390/jeta3020012 - 14 Apr 2025
Viewed by 305
Abstract
Additive manufacturing (AM) technologies have witnessed remarkable advancements, offering opportunities to produce complex components across various industries. This paper explores the potential of AM for fabricating bipolar plates (BPPs) in fuel cell or electrolysis cell applications. BPPs play a critical role in the [...] Read more.
Additive manufacturing (AM) technologies have witnessed remarkable advancements, offering opportunities to produce complex components across various industries. This paper explores the potential of AM for fabricating bipolar plates (BPPs) in fuel cell or electrolysis cell applications. BPPs play a critical role in the performance and efficiency of such cells, and conventional manufacturing methods often face limitations, particularly concerning the complexity and customization of geometries. The focus here lies in two specific AM methods: the laser powder bed fusion of metals (PBF-LB/M) and material extrusion of metals (MEX/M). PBF-LB/M, tailored for high-performance applications, enables the creation of highly complex geometries, albeit at increased costs. On the other hand, MEX/M excels in rapid prototyping, facilitating the swift production of diverse geometries for real-world testing. This approach can facilitate the evaluation of geometries suitable for mass production via sinter-based manufacturing processes. The geometric deviations of different BPPs were identified by evaluating 3D scans. The PBF-LB/M method is more suitable for small features, while the MEX/M method has lower deviations for geometrically less complex BPPs. Through this investigation, the limits of the capabilities of these AM methods became clear, knowledge that can potentially enhance the design and production of BPPs, revolutionizing the energy conversion and storage landscape and contributing to the design of additive manufacturing technologies. Full article
Show Figures

Figure 1

25 pages, 5908 KiB  
Article
A Modelica-Based Model for Pneumatic Circuits with a Focus on Energy Efficiency
by Gustavo Koury Costa
J. Exp. Theor. Anal. 2025, 3(2), 11; https://doi.org/10.3390/jeta3020011 - 8 Apr 2025
Viewed by 265
Abstract
This paper presents a new computational library for pneumatic circuits, written in the specialized circuit-oriented language “Modelica”, and executed within an open-source IDE, “OpenModelica”, freely available for downloading on the Internet. The library focuses on the problem of energy efficiency and energy savings [...] Read more.
This paper presents a new computational library for pneumatic circuits, written in the specialized circuit-oriented language “Modelica”, and executed within an open-source IDE, “OpenModelica”, freely available for downloading on the Internet. The library focuses on the problem of energy efficiency and energy savings (two different concepts, that we intend to clarify in the text). The idea is to use the Modelica scripts to simulate typical circuits, known by their energy-efficient designs. We reason that air throttling within valves is one of the great challenges when it comes to energy losses. Also, we argue that compressed air reuse can be seen as a means of increasing efficiency, basically through replacing air throttling with counter-pressure velocity control. A simplified version of the developed Modelica library is made available to the reader in the Appendix A, to be used with new scripts and adapted to different realities. In our view, in many situations, open-code Modelica programs may constitute an alternative to proprietary software, where the mathematical models of components are mostly hidden from the end user. Theoretical experiments are carried out, focusing on energy management. The results show that the Modelica library hereby presented is solid, with great prospects of future development. They also show that energy efficiency in pneumatic circuits, at times, comes with the cost of poorly controlled velocity and pressure at the actuator, which requires a careful analysis by the designer, before an actual implementation. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop