The Herbicide Glyphosate and Its Formulations Impact Animal Behavior across Taxa
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Activity
Species | Herbicide/Ingredient Used | Exposure | Concentration | Results | Source |
---|---|---|---|---|---|
Honeybee (A. mellifera) | Herbazed 48% | Sucrose solutions | 0.5 mL/50 mL 1 mL/50 mL 1.5 mL/50 mL | No effect on navigation | [103] |
Honeybee (A. mellifera) | Glyphosate | Distilled water solutions containing glyphosate | 2.5 mg/L 5 mg/L 10 mg/L | Longer to get to the hive | [99] |
Honeybee (A. mellifera) | Glyphosate | Water and sucrose solutions containing glyphosate | 1.2 mg/L 6 mg/L 0.12 mg/L 12 mg/L 24 mg/L | Decrease activity | [100] |
Honeybee (A. mellifera) | Glyphosate | Sucrose solutions containing glyphosate | 2.5 mg/L | Longer time to return to hive | [36] |
Honeybee (A. mellifera) | Glyphosate | Water and sucrose solutions containing glyphosate | 2.5 mg/L, 5 mg/L | No significant difference in activity | [104] |
Honeybee (A. mellifera) | Glyphosate isopropylamine salt (Monsanto Roundup® Original) | Sucrose solutions containing herbicide | 7 μg/bee, 14 μg/bee, 28 μg/bee. | Harder time reaching hive | [98] |
Honeybee (A. mellifera) | Glyphosate | Sucrose solutions containing glyphosate | 50, 100 ng doses | Cause bees to sleep more | [102] |
Honeybee (A. mellifera) | Glyphosate, in the Roundup® | Sucrose solutions containing glyphosate | 5 mg/L, 10 mg/L | Less time to reach the hive | [60] |
Fruit fly (D. melanogaster) | Glyphosate | Continuous Liquid Feeding (CLF). | 10 mM, 30 mM, 50 mM | Decreased locomotor activity | [112] |
Swiss mice | Roundup® | Oral gavages | 250 and 500 mg/kg/day | Total distance traveled and velocity decrease | [105,106] |
CF-1 mice | Glyphosate isopropylamine salt | Saline solutions with glyphosate | 50 mg/kg/day | Less active and traveled a shorter distance | [107] |
Wistar rat | Glyphosate | Water solutions containing glyphosate | 24 and 35 mg glyphosate/kg | Less locomotor activity | [109] |
Sprague Dawley rat | Glyphosate | Saline solutions with glyphosate | 50, 100, or 150 mg glyphosate/kg | Lower locomotor activity | [108] |
Wolf spider (P. milvina; H. helluo)Ground beetle (S. quadriceps) | Glyphosate | Saline solutions with glyphosate | 12 g/L | Lower locomotor activity | [110] |
Madagascar hissing cockroach (G. portentosa) | Roundup® Ready-to-Use III | Food consumption | 13.2 mg of glyphosate | Decrease in activity level | [111] |
Earthworm (O. cyaneum) | Glyphosate | Distilled water solutions containing glyphosate | 166, 332, 498, 664 and 830 g GLY/kg | Very slight avoidance of soil that contained glyphosate | [114] |
Earthworm (L. terrestris) | Glyphosate based Herbicide | Food consumption | 243, 221, 218 mg | Lower levels of activity | [113] |
Salamander (E. wildrae) | Commercially sold Roundup®. | In water | 0.0 mL/L, 0.5 mL/L, 1.0 mL/L, and 2.0 mL/L | Lower burst distance swimming activity and lower movement distance in higher temperatures | [127] |
Rainbow trout larvae (O. mykiss) | Glyphosate based Herbicide | In water | 1.18 ± 0.036 and 1.95± 0.086 μg/L | Increased swimming activity and distance traveled during dark periods | [129] |
Redbelly tilapia (T. zillii) | Glyphosate based Herbicide | In water | 108, 216, 324, 432 and 540 mg/L | Swam erratically and irregularly | [125] |
Livebearer (J. multidentata) | Glyphosate based Herbicide | In water | 0.59 ± 0.07, 0.58 ± 0.14 and 0.56 ± 0.16 mg/L | Lower swimming activity levels | [126] |
Surubim(P. corruscans and P. reticulatum cross-breed) | Roundup® Original | In water | 2.25, 4.5, 7.5, and 15 mg/L | Increase swimming activity levels and ventilatory frequency | [128] |
Carp (C. carpio) | Glyphosate | In water | 5 and 15 mg/L | Decreased activity levels | [120] |
Carp (C. carpio) | Glyphosate | In water | 0, 50, 100 and 150 mL/L | Increased activity levels | [121] |
African catfish (C. gariepinus) | Dizensate (Glyphosate Herbicide) | In water | 9.6 mg/L, 14.4 mg/L, 19.2 mg/L, 21.6 mg/L and 24 mg/L | Loss of reflex, air gulping, and erratic swimming | [122] |
African catfish (C. gariepinus) | Glyphosate | In water | 0.36, 0.48, 0.60, 0.72 and 0.84 mg/L | Loss of equilibrium, increased startle responses, abnormal swimming, and restlessness | [123] |
African catfish (C. gariepinus) | Glyphosate, in the Roundup® | In water | 0.00 mg/L 0.30 mg/L 0.50 mg/L 0.70 mg/L 1.40 mg/L | Loss of equilibrium, increased startle responses, abnormal swimming, and restlessness | [124] |
Zebrafish (D. rerio) | Glyphosate and Roundup® | In water | 0.01 mg/L, 0.065 mg/L, and 0.5 mg/L | Reduced swimming distance at both stages | [115] |
Zebrafish larvae (D. rerio) | Glyphosate | In water | 0.05, 0.1, 0.5, 1, 10, 100, 1000, 10,000 mg/L | Decreased distance swam, number of rotations, mean velocity, and body mobility | [117] |
Zebrafish larvae (D. rerio) | Glyphosate and Roundup® | In water | 0.1, 1, and 10 uM GLY 106- to 104-fold dilution Roundup® | Increase activity levels with Roundup® exposure and decrease with glyphosate exposure | [119] |
Zebrafish larvae (D. rerio) | Glyphosate | In water | 0.01 and 10 uM | Increased in activity level | [118] |
Zebrafish larvae (D. rerio) | Glyphosate | In water | 0.01, 0.1, 0.5, 1, 5, and 10 mg/L | Increased swimming activity levels | [116] |
Marsh frog tadpoles (P. ridibundus) | Roundup® Power 2.0 | In water | 7.6 mg/L, 3.1 mg/L, and 0.7 mg/L | Decrease in activity level at Gosner stage 25 | [130] |
Water flea (D. magna) | Glyphosate | In water | 0, 0.875, 1.75, 3.5, 7, 14, 28, and 56 mg/L); | Lower swimming activity levels | [133] |
Treefrog larvae (B. pardalis) | Glyphosate based Herbicides | Food exposure | 2.40 mg/L, 4.00 mg/L, 1.21 mg/L,1.92 mg/L, 3.34 mg/L | Only ametryn had adverse side effects on the tadpole’s activity | [132] |
South American frog tadpoles (B. faber and L. latrans) | Glyphosate (Roundup Original DI®) + 2,4–D(NORTOX®) | In water | 69, 161, 310, 550, and 1074.5 μg/L | lethargy, convulsions, and rapid bursts of swimming | [131] |
3.2. Foraging and Feeding Behavior
Species | Herbicide/Ingredient Used | Concentration | Results | Source |
---|---|---|---|---|
Zebrafish (D. rerio) | Glyphosate | 0.8 mg/L | Decrease in food consumption | [134] |
Fruit fly (D. melanogaster) | Roundup® | 1, 3.3, 10, 33 g/L | Decrease in food consumption | [135] |
Fruit fly (D. melanogaster) | Roundup® Super Concentrate, Roundup® Ready to Use | 0, 0.5, 1,0, 2.0 g/L, 10 g/L | Flies consumed less of the exposed food, consumed more food after exposed to GBH | [136] |
Spider (A. veniliae) | Glifoglex® 48 | 192 mg/L a.i. | Lower consumption rates for prey exposed to GBH | [137] |
Honeybee (A. mellifera) | Glyphosate formulation not listed | 0, 2.5, 5 mg/L | No difference in food intake | [104] |
Honeybee (A. mellifera) | Glyphosate | 10 ppb, 100 ppb, 1 ppm, 10 ppm | No difference in consumption ratios except for the 10-ppb solution showing they consumed more | [142] |
Honeybee (A. mellifera) | Glyphosate | 2.5 mg/L | Honeybees showed decrease in food consumption | [138] |
Honeybee (A. mellifera) | Glyphosate | 0.1, 1, 10 μg/L | Food consumption increased in the presence of glyphosate | [140] |
Honeybee (A. mellifera) | Credit Extreme® 240 | 1.25, 2.5, 5 ng/bee | Food consumption decreased over a 10-day period for food exposed to differing concentrations of glyphosate | [139] |
Honeybee (A. mellifera) | Glyphosate | 1.5, 7.5 mM | Food consumption did not vary for glyphosate in its isolated form or combined form with AMPA or Ncer | [143] |
Honeybee (A. mellifera) | Glyphosate | 75, 150, 301 a.e. mg/L | Glyphosate exposure did not alter food consumption | [141] |
Broiler hen | Gallup super 360 | 47 mg Gly equivalent/kg body weight/day | No difference between exposure and post exposure to GBH | [144] |
Species | Herbicide/Ingredient Used | Exposure | Concentration | Results | Source |
---|---|---|---|---|---|
Damselfly larvae (C. pulchellum) | Glyphosate and Roundup® | Individuals | 1, 2 mg/L | Increase in food consumption | [147] |
Damselfy larvae (E. cyathigerum) | Glyphosate | 7 days | 2 mg/L | Increase in food consumption | [148] |
Southern hawker dragonfly (A. cyanea) Smooth newt (L. vulgari) | Glyphogan Classic | Mesocosm exposed | 6.5 mg/L | No visible effect | [155,156] |
Wolf spider (P. milvina) | Buccaneer Plus | Testing apparatus exposed | 9 a.e. g/L | Captured more prey than control | [149] |
Pacu (P. mesopotamicus) | Unspecified glyphosate formulation | Fish exposed | 0.2, 0.6, 1.8 ppm | Food consumption decreased exposure | [145] |
Water flea (D. pulex) | Pure glyphosate | Organism exposed | 50 mg/L | Reduced grazing | [153] |
Wolf spider (T. helluo and P. milvina) | Buccaneer Plus | Paper filter discs were exposed with herbicide | 12 mL/m2 | Tigrosa caught prey faster while P. milvina required more lunges to capture prey | [150] |
Three-keeled pond turtle(M. reevesii) | Glyphosate—ammonium | Eggs were exposed | 0, 2, 20, 200, 2000 mg/L | Increase in the amount of time it took to forage | [154] |
Wolf spider (H. cf. bivittata) | Unspecified glyphosate formulation | In a test tube 30 min | 280 mg/L a.i. | Lower consumption rates for specific prey | [151] |
Planarian (G. tigrina) | Roundup ® | GBH 96 h | 1.87, 3.75, 7.5, 15 mg/L a.e. glyphosate | Decrease in consumption rates as concentration increased | [146] |
Agrobiont spider (P. agricola) Ground beetle (P. cupreus) | Roundup ® Biaktiv | Freshly doused paper and paper left to dry for 1 day | No significant difference in predation rates | [152] |
3.3. Anti-Predator Behavior
Species | Herbicide/Ingredient Used | Exposure | Concentration | Results | Source |
---|---|---|---|---|---|
Zebrafish (D. rerio) | Roundup® | Exposed for 30 min | 1.4 μL | After simulated bird attack, fish remained in the central zone compared to control and other tests. | [157] |
Zebrafish (D. rerio) | Roundup® | Exposed from 3–120 h post fertilization | 4.8 μg/L | Exposed fish remained in the area which had a stimulus unlike control; exposed fish displayed hypermobility and more time spent in the central zone | [158] |
Zebrafish (D. rerio) | Glyphosate | Exposed from 3–120 h post fertilization | 4.8 μg/L | After predatory stimulus, fish entered and spent more time in the central zone than the control | [159] |
Zebrafish (D. rerio) | Roundup® | Pre-exposed for 96 h | 3, 5 mg/L | Exposed fish spent more time spent in the top zone of the tank compared to the bottom zone | [160] |
Zebrafish (D. rerio) | Roundup® Ultramax | Embryos were pre-exposed for 72 h | 0, 1, 2, 5 µg a.i./mL | 5 µg a.i./mL led to less time spent at the bottom of the tank when a visual stimulus was encountered, indicating loss of fear | [161] |
Common spiny loach (L. thermalis) | Roundup® | Pre-exposed for 3 h and 15 days; briefly exposed to Roundup® mixed with CC and other mixtures | 0.8 mg/L | Pre-exposure led to an increase in activity in the presence of conspecific alarm cues (cc); unexposed fish did not detect conspecific alarm cues when Roundup®+cc were mixed | [162] |
Wood frog tadpoles (L. sylvaticus) | Roundup® weathermax | Tadpoles were pre-exposed for 1 h; unexposed tadpoles briefly exposed to CC mixed with Roundup® and other mixtures | 0.5 mg a.e./L | Pre-exposure led to no change in behavior in the presence of conspecific cues compared to control; unexposed tadpoles exposed to Roundup® mixed with CC led to no change in behavior compared to control suggesting Roundup® inactivated CC | [163] |
Gulf coast toad tadpoles (I. nebulifer) | Roundup® ready to use | Tadpoles were pre exposed for 7 days | 0.736 mg a.e/L | Mixture of Roundup® and exogenous corticosterone led to more activity compared to individual reagents and control | [164] |
Blue Ridge two-lined salamander (E. wilderae) | Roundup® ready to use | Exposed for 5 h. | 0.73, 1.46, 2.92 µg a.e./L. | Ambient temperatures + glyphosate led to a lower frequency of refuge as the concentration increased; reduction in burst speed (speed and distance away from a predator) occurred during exposure | [127] |
Damselfly larvae (E. cyathigerum) | Roundup® | Pre-exposed for 24 h | 1.5 mg/L | Exposure led to more activity in the presence of predator cues compared to the control; survival rate from altered anti-predator behavior did not have a significant change on survival from predation | [165] |
Damselfy (C. pulchellum) | Roundup® and glyphosate | Pre-exposed for 7 days | 1, 2 mg/L | Exposure to glyphosate and Roundup® led to a decrease in escape swimming speed with 2 mg /L of Roundup® inducing the slowest escape speed | [147] |
Wolf spider (P. Milvina) | Buccaneer Plus | Semicircles were sprayed with herbicide and placed in testing apparatus. | 2.5% | Exposure led to less time moving when exposed to S quadriceps cues but not to H. Helluo | [166] |
Agile frog (R. dalmanita) | Glyphogan classic | 21 days of exposure | 0, 2, 6.5 mg a.e./L | Increase in concentration led to a decline in activity in the presence of predators, except for newts which were similar to the control (no predator); hiding occurred more often at higher concentrations, except for newts and the control | [167] |
Marsh frog tadpoles (P. ridibundus) | Roundup® power 2.0 | Embryos were exposed for 96 h | 0.7 mg a.e./L, 3.1 mg a.e./L and 7.6 mg a.e./L | Exposure had no effect on anti-predator behavior | [130] |
3.4. Reproductive and Maternal Behavior
Animal | Behavior | Exposure | Test Used | Outcome | Source |
---|---|---|---|---|---|
Swiss mice, male and female | Courtship | In food: glyphosate 250 mg/kg and 500 mg/kg | Copulation, fertility, and fecundity rates |
| [106] |
Mozambique tilapia (O. mossambicus), male and female | Courtship | 5 ppm, 8 ppm and 10 ppm of glyphosate | Color pattern, chasing distance of males, chasing occurrences, size of territory |
| [179] |
Planarian (G. tigrina) male and female | Fertility | Borosilicate glass beakers: Roundup® Original 1.87, 3.75, 7.5 and 15 mg a.e./L | Fertility and Fecundity rates |
| [146] |
Rainbow trout (O. mykiss) | Fertility and fecundity | 360 and 420 g/L Glyphosate | Fertility and Fecundity rates |
| [129] |
Earthworm (L. terrestris and A. caliginosa) | Fertility and fecundity | Unspecified concentration of GBH | Fertility and fecundity rates |
| [168] |
Male wolf spider (P. milvina) | Courtship behavior | Roundup® II Original diluted to 12 g/L | Olfactometer experiment and pitfall experiment |
| [174] |
Livebearer (J. multidentata), male and female | Courtship behavior | Roundup®: 5, 10, 20, 35, 60, and 100 mg/L | Number of persecutions, copulation attempts, number of copulations, and mating success |
| [178] |
BALB/c mouse, male and female | Courtship behavior | Roundup® Transorb: 50 mg/kg of glyphosate | Open-field test, elevated plus-maze test, and forced swim test |
| [173] |
Wolf spider (P. agrestis) | Courtship behavior | 15 mL/L of Roundup® and 3 mL/L of Nurelle D | Two-choice olfactometer and Y-maze set-up |
| [175] |
Ant (C. obscurior) | Fertility | fed with 75% honey-water mix- ture containing 3 μg/g thiacloprid, 100 μg/g glyphosate or 3 μg/g thiacloprid+ 100 μg/g glyphosate | Egg production, pupae production |
| [177] |
Many fish species from embryo to adult | Courtship | Many different concentrations of glyphosate | Many different tests done from each paper |
| [38] |
Agrobiont spider (P. agricola), ground beetle (P. cupreus) | Courtship | Roundup® Biaktiv Diluted to 1 part GBH and 25 parts water (1:25) = 14.4 g/L | Predation, locomotion, Avoidance, defence, and mating |
| [152] |
Wistar rat, male and female | Fertility | MAGNUM SUPER II, 2 mg/kg/day or 200 mg/kg/day | Fertility rates |
| [170] |
Fruit fly (D. melanogaster) | Fertility | Roundup® Super Concentrate: 0.5, 1.0, and 2.0 g/L and Roundup® Ready to Use: 1.0, 2.0, and 4.0 g/L | Ovary size, number of mature oocytes, body weight of females |
| [181] |
Mosquito (C. quinquefasciatus) | Fertility | Roundup® super concentrate: 0.5 and 1 g/liter | Oviposition experiment, egg viability experiment, and triple-choice oviposition experiment |
| [186] |
Wistar rat, male and female | Courtship | Roundup® Transorb: 50 and 150 mg/kg | Observations on male and female sexual behavior |
| [171] |
Wistar rat PND 90 and adult | Courtship | Roundup® Transorb: 0.25 mL/ 100 g of body weight between 7 and 8 am from GD18 to PND5 | Sexual partner preference score, sexual behavior |
| [172] |
Japanese medaka (O. latipes) | Courtship | Embryos exposed to 0.5 mg/L glyphosate, 0.5 mg/L and 5 mg/L Roundup® for 15 days | Fecundity and fertilization efficiency |
| [169] |
Zebrafish (D. rerio) | Fertility | 1 ppm and 5 ppm glyphosate for 96 h temperatures: 28.5 °C, 29 °C, 29.5 °C, and 30 °C |
| [180] | |
Fruit fly (D. melanogaster) | Courtship | Roundup® sprayed on GMO corn and then fed to fruit fly | Portion mated (females) and courtship rate (males) |
| [61] |
Wolf spider (P. milvina) | Courtship | Hi-Yield® Kilzall 5.040 μL/cm2 | Body shakes and leg raises |
| [176] |
Species | Exposure | Behavior | Outcome | Source |
---|---|---|---|---|
Swiss mice, male and female | In food: glyphosate 250 mg/kg and 500 mg/kg | Nest building |
| [106] |
Sprague Dawley Rat, male and female | Vanilla wafer cookie: Glyphosate: 5 mg kg−1 d−1 and Roundup® Plus: 5 mgkg−1d−1 | Maternal behavior |
| [182] |
Wistar rat, male and female | Glifloglex®: 0.65 g/L and 1.30 g/L | Maternal Behavior |
| [185] |
Wistar rat, male and female | 50 mg/kg per day of GBH | Maternal behavior |
| [183] |
Wistar rats, male and female | Roundup® Transorb: 50 and 150 mg/kg of GLY-BH | Pup retrieval, percentage of dams that retrieved all pups, total number of pups retrieved for each dam, grooming of the pups, fullmaternal behavior, nest building, maternal aggressive behavior |
| [184] |
Cricket (G. lineaticeps) | Roundup®: 5 mg GLY/L of water and glyphosate: 5 mg/L of water | Choice oviposition experiment and no-choice oviposition Experiment |
| [187] |
3.5. Learning, Memory, and Cognition
Animal | Exposure | Specific Behavior | Behavior Test Used | Behavioral Outcomes | Source |
---|---|---|---|---|---|
Rat pups PND 28–35 | Glyphosate 35 mg/kg 70 mg/kg every 2 days PND 7–27 | Spatial learning | Morris water maze test | Learning less at days 3 and 4 | [192] |
Honeybee (A. mellifera) | Glyphosate PESTANAL 2.5 mg/L 5 mg/L 10 mg/L | Spatial learning | Homeward flight path | Proportion direct second trial > first trial in controls (3/15 vs. 12/15) but not exposed bees (8/16 vs. 11/16) Proportion with indirect on the first trial →direct on second decreased with concentration but not significant | [99] |
Honeybee (A. mellifera) | Roundup® or glyphosate 0.12 mg/L (1.2 ng/bee) 0.24 mg/L (2.4 ng/bee) 2 weeks of sucrose solution | Aversive stimulus learning, visual learning | Associative learning task: 2-color choice paired with shock | No effect | [100] |
Honeybee (A. mellifera) young bees | Glyphosate | Associative olfactory learning | Training: olfactory stimulus paired with reward, vs. unpaired | 5 days old: no effect 9 days old: impaired 14 days old: no effect | [138] |
Bumblebee (B. terrestris) | Roundup® Gold 0.1 uL once before training | Associative visual learning | 10-color choice paired with sucrose reward or aversive solution | Untreated bees increased performance during each of the five bouts. Treated bees failed to learn between 3 and 4, or 4 and 5 and performed significantly worse than controls during 4 and 5 | [189] |
Associative visual learning | 2-color choice | No effect | |||
Associative olfactory learning | 10-odor choice | No effect | |||
Honeybee (A. mellifera) | Glyphosate 2.5 mg/L 5 mg/L Daily, 15 days | Associative olfactory learning | Proboscis extension response (PER) | Sucrose sensitivity, elemental and non-elemental learning impaired | [104] |
Honeybee (A. mellifera) adult foragers | Glyphosate 375 ng 1500 ng Single dose or divided over three days | Associative olfactory learning | PER | No effect | [190] |
Honeybee (A. mellifera) | Roundup®, unspecified formulation 0.72 g/L 3.6 g/L = recommended dose7.2 g/L 3 h/day, 11 days | Associative olfactory learning | PER | %PER lower in bees exposed to paired sucrose and odor during 2nd and 3rd conditioning sessions for ½ RC and 2 RC but not 1 RC | [98] |
Honeybee (A. mellifera) | ED50 = 10 mg/L, ED25 = 5 mg/L dissolved Roundup® granules in saturated sucrose solution administered 2 h before testing | Spatial learning | Simple maze completion time | >10× longer for ED50 and >6× longer for ED25 bees to complete | [60] |
Complex maze | Even greater differences in completion time and course corrections (though control bees did make course corrections, exposure increased >10× | ||||
Mosquito (A. aegypti) fourth-instar larvae (5–8 days from hatching) | Glyphosate from hatching | Non-associative visual learning | Habituation to shadow | Decreased by doses <5% of lethal dose 50 μg/L—no effect, normal habituation 100 μg/L—intermediate 210 μg and 2 mg/L—almost no habituation | [188] |
Animal | Exposure | Specific Learning/Memory Behavior | Behavior Test Used | Behavioral Outcomes | Source |
---|---|---|---|---|---|
Swiss mice male 1 month | GBH, unspecified formulation 250 or 500 mg/kg/day: acute (once); subchronic (daily for 6 weeks); chronic (daily for 12 weeks) | Recognition memory | Novel object recognition | Chronic and subchronic—reduced discrimination Acute—similar average discrimination ability (NS), more variation | [195] |
Spatial working memory | Y-maze | Chronic—reduced spontaneous alternation Subchronic—no effectAcute—no effect | |||
Aversive stimulus memory | Passive avoidance task | Short-term memory (2 h): chronic—500 mg/kg reduced latency subchronic and acute—250 mg/kg reduced latency Long-term memory (24 h): chronic and subchronic—250 and 500 mg/kg reduced latency acute—500 mg/kg reduced latency | |||
Swiss mice male and female offspring 60+ days | GBH, unspecified formulation 250 or 500 mg/kg/day: maternal gestation and lactation | Working memory | Y-maze | Lower alternation in a dose dependent manner | [106] |
Recognition memory | Novel object recognition test | Reduced ratio of time with novel object in a dose-dependent manner Lower discrimination index | |||
Aversion avoidance memory | Passive avoidance test | Short-term memory (2 h): decreased latency at 500 mg/kg Long-term memory (24 h): decreased latency at 250 and 500 mg/kg | |||
Mice male 4 weeks | Glifloglex® 4 mg/day 3X/wk, 50 mg/kg/day: intranasal | Recognition memory | Novel object recognition test | Short-term (6 h): impaired Long-term (24 h): not impaired (recovered) | [107] |
Swiss mice male and female 3 months | Roundup®, unspecified formulation 0.075% w/v: Drinking water | Recognition memory | Novel object recognition test | No differences for males or females | [193] |
Spatial memory | Water maze | No difference for males or females | |||
Rats male and female adults | Glifloglex® 0.65 g/L (NOAEL; 100 mg/kg/day) 1.3 g/L (200 mg/kg/day) gestation and lactation | Recognition memory | Novel object recognition test | Females—no significant effect; high variation among exposed females during familiarization phase Males—impaired | [196] |
Rat pups PND 28–35 | Glyphosate 35 mg/kg 70 mg/kg every 2 days PND 7–27 | Recognition memory | Novel object recognition test | Decrease in time spent with novel object at both concentrations | [192] |
Spatial memory | Morris water maze test | Lower in rats exposed to either concentration | |||
Bumblebee (B. terrestris) | Roundup® Gold 0.1 uL once before training | Associative Visual memory | 10-color choice paired with sucrose or aversive solution | Whether treated before learning bout 1 or after learning bout 5, exposed bees performed significantly and much worse than control bees | [189] |
Associative Visual memory | 2-color choice | No effect | |||
Associative Olfactory memory | 10-odor choice | No effect | |||
Honeybee (A. mellifera) | Glyphosate 2.5 mg/L 5 mg/L Daily, 15 days | Associative olfactory memory | Proboscis extension response (PER) | Short-term memory decreased | [104] |
Honeybee (A. mellifera) adult foragers | Glyphosate 375 ng 1500 ng Single dose or divided over three days | Associative Olfactory learning | PER | memory retrieval at 14 min or 24 h after conditioning did impair memory retention patterns—unexposed bees were more likely to have successful long term than medium term memory, while exposed bees were more likely to have successful medium term memory. | [190] |
Honeybee (A. mellifera) | Roundup®, unspecified formulation 0.72 g/L 3.6 g/L = recommended dose 7.2 g/L 3 h/day, 11 days | Associative Olfactory learning | PER | % PER lower for all exposed bees in memory trials 1–5, but only significant for 1/2RC in all trials and in T1, T4, and T5 for 1RC | [98] |
Honeybee (A. mellifera) | ED50 = 10 mg/L, ED25= 5 mg/L dissolved Roundup® granules in saturated sucrose solution administered 2 h before testing | Spatial memory | Simple maze completion time- | 24 h after exposure, times were lower than at 2 h, but still 5–8.5X longer than controls Simple maze course corrections—control bees 0, ED25 1.3, ED50 2.35 | [60] |
Complex maze | Substantially and significantly after 24 h | ||||
Zebrafish (D. rerio) 3-day larvae adults | Glyphosate Roundup® 96 h 0.01 mg/L 0.065 mg/L and 0.5 mg/L | Aversion avoidance memory | Dark/light association | Impaired by 0.5 mg/L Roundup®; other concentrations not significant Glyphosate alone not significant | [115] |
Livebearer (J. multidentata) | Roundup® Original Roundup® Transorb Roundup® WG 96 h 0.5 mg/L | Long-term memory | Avoidance inhibition test | All fish spent more time in the light area in testing than training RWG: less time in light area in testing | [126] |
Three–keeled pond turtle (M. reevesii) | Glyphosate ammonium eggs 2, 20, 200 or 2000 mg/L | Spatial learning | Maze | Longer time to cross maze; dose-dependent | [154] |
Human | Accidental exposure | Parkinsonism | Mental exam | Short-term memory loss | [199] |
Human | Occupational exposure | Benton visual retention test | Impaired visual memory | [191] | |
Human | Unknown exposure amount | Encephalopathy | Neuropsychological test | Day 2—memory problems Day 12—overall test score 22/30, 0/3 word recall, impaired memory and executive function 3 years—neuropsychological tests 28/30, ⅔ word recall, improvements in memory and executive functioning | [197] |
Human | Commercial formulation Unknown amount | Hippocampal infarction | IQ and memory tests | At admission—memory normal Several hours—memory deficit, short-term memory loss, including of suicide attempt Day 9—short-term recall deficits 3 weeks—partial improvement; IQ = 70, verbal memory 52, general memory 64, delayed memory; 65 indicates retrograde and anterograde amnesia. 2 months—verbal memory 74, general memory 84, delayed memory 86 6 months—memory impairments remain. | [95] |
Human | Chronic occupational exposure | Parkinsonism | No short-term memory loss | [75] | |
Human | Unknown amount | Encephalopathy | Short-term memory impairment, retrograde and anterograde amnesia | [198] |
3.6. Social Behaviors
Animal | Exposure | Specific Behavior | Behavior Test Used | Behavioral Outcomes | Source |
---|---|---|---|---|---|
Zebrafish (D. rerio) | Glyphosate and AMPA (0.1, 1, or 10 µM) or mix of both (1 µM) for 7 days | Locomotor activity and anxiety | Distance moved during alternating light and dark periods, Dark/light preference | Hyperactivity of zebrafish exposed to glyphosate but not AMPA or the mixture No effect on anxiety-like responses | [118] |
Mice | Roundup® Transorb 25, 50, or 100 mg/kg; | Generalized behavior and anxiety | Open field, elevated plus maze, tail suspension | Decreased locomotion in female mice No effect on anxiety but reduced exploration in male mice Increased immobility time both males and females | [201] |
Zebrafish(D. rerio) | Roundup® UltraMax 0, 1, 2 and 5 µg a.i./mL; 72 h | Escape-like response, anxiety/stress, social behavior | Visual stimulus response, nearest neighbor distance and inter-individual | Exposed larvae did not exhibit evasion behavior | [161] |
Rat | ZappQI620 Syngenta; 50 mg/kg/day | Social behavior, ASD | Open field, social play behavior test, homing behavior test, hole board test | Reduced number of ultrasonic vocalizations in pups Decreased social interaction time in pups and deficit in olfactory discrimination Increased stereotyped behavior | [183] |
Rat | Roundup® Transorb; 50 and 150 mg/kg | Play fighting behavior | Intruder play fighting test | Pinning behavior impaired in both male and females offspring | [171] |
Zebrafish (D. rerio) | Glyphosate 1 ppm and 5 ppm for 96 h at 28.5, 29, 29.5, or 30 °C | Circadian rhythm and anxiety | Locomotor test, novel diving tank test | Disruptions in circadian rhythm Fish spent more time at the bottom of the tank with more erratic movements | [206] |
Mice | GBH, unspecified formulation (0.039% w/v) | Social behavior, ASD | Three-chamber test, novel object recognition | Deficits in social interaction in offspring ASD-like cognitive impairment | [208] |
Mice | Roundup®; lifelong exposure to low doses (0.075% w/v) | Social behavior | Open field, social approach test | Reduced time spent exploring the stranger mouse and increased repetitive behavior No effect on anxiety or locomotion | [193] |
Mice | Glifloglex®; 2 mg/nostrils/day | Anxiety | Plus maze | Increased thigmotaxis and higher anxiety | [107] |
Mice | Roundup® Original | depression | Forced swim test | Increased immobility time and decreased climbing activity | [207] |
Livebearer (J. multidentata) | Roundup® Original, Roundup® Transorb, and Roundup® WG | Aggression, anxiety, social behavior | Open field, proximity to own reflection in a mirror | More time spent in proximity to the mirror More time spent in central area of open field | [126] |
Mice | Glyphosate 0.3 mg/kg daily per oral | Anxiety, locomotor activity | Open field, social interaction, and marble-burying | More frequent crossing of lines in open field Increased marble burying behavior No effect on social behavior | [194] |
Mice | Zamba® 50 mg/kg | Anxiety, depression | Elevated plus maze Forced swim test | Fewer open arm entries and less time spent in open arm Increased immobility time | [204] |
Mice | Roundup® 500 mg/kg/day | Anxiety, depression | Open field, elevated plus maze, tail suspension, splash test | Increased anxiogenic and depressive behavior after subchronic and chronic exposure Dose-dependent increase in immobility time and decrease in grooming time | [105] |
Mice | Roundup® 250 or 500 mg/kg/day | Anxiety, depression | Open field, elevated plus maze, tail suspension, splash test | Decreased time spent in center of open field after subchronic and chronic exposure Increased immobility time after chronic exposure Decreased grooming time after both subchronic and chronic exposure | [202] |
Mice | Roundup® 250 or 500 mg/kg/day | Anxiety, social behavior | Three-chamber sociability test | More time spent with inanimate object Fewer visits made to conspecific | [106] |
Mice | Roundup® 250 or 500 mg/kg/day | Anxiety | Open field, elevated plus maze | Increased anxiogenic and depressive behavior after subchronic and chronic exposure | [203] |
Zebrafish (D. rerio) | Roundup® or glyphosate (0.01, 0.065, and 0.5 mg/L | Aggression | Proximity to own reflection in a mirror | Reduced time spent in proximity to the mirror Decreased number of entries into the mirror contact zone | [115] |
Human | Acute glyphosate exposure | Parkinsonism | Parkinsonism syndrome that resolved after treatment | [214] | |
Human | Ambient pesticides including glyphosate | ASD | Increased risk for ASD after prenatal exposure Increased risk for ASD with comorbid intellectual disability after exposure during infancy | [79] |
4. Discussion
4.1. Mechanisms of GBH-Induced Behavioral Impairments
4.2. Further Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef] [Green Version]
- Data from Two Sets of Testing Conducted by Arnesco Labs and Discussed in Murphy, D & Rowlands, H. 16 November 2016. Glyphosate: Unsafe on Any Plate. Available online: https://detoxproject.org/wp-content/uploads/2022/08/Final-Report.pdf (accessed on 12 May 2023).
- Based on Data Sets from The Detox Project. Available online: https://detoxproject.org/wp-content/uploads/2016/10/anresco_reports_food_testing_2016.pdf (accessed on 12 May 2023).
- Bøhn, T.; Millstone, E. The introduction of thousands of tonnes of glyphosate in the food chain—An evaluation of glyphosate tolerant soybeans. Foods 2019, 8, 669. [Google Scholar] [CrossRef] [Green Version]
- Torretta, V.; Katsoyiannis, I.A.; Viotti, P.; Rada, E.C. Critical review of the effects of glyphosate exposure to the environment and humans through the food supply chain. Sustainability 2018, 10, 950. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Kasten, F.; Sierra-Diaz, E.; Chavez, H.G.; Lucano, A.A.P.; Cremades, R.; Pinto, E.S. Seasonal urinary levels of glyphosate in children from agricultural communities. Dose-Response 2021, 19, 15593258211053184. [Google Scholar] [CrossRef] [PubMed]
- Anadón, A.; Martínez-Larrañaga, M.R.; Martínez, M.A.; Castellano, V.J.; Martínez, M.; Martin, M.T.; Nozal, M.J.; Bernal, J.L. Toxicokinetics of glyphosate and its metabolite aminomethyl phosphonic acid in rats. Toxicol. Lett. 2009, 190, 91–95. [Google Scholar] [CrossRef]
- Contardo-Jara, V.; Klingelmann, E.; Wiegand, C. Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes. Environ. Pollut. 2009, 157, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Krüger, M.; Schrödl, W.; Pedersen, I.B.; Shehata, A.A. Detection of glyphosate in malformed piglets. J. Environ. Anal. Toxicol. 2014, 4, 230. [Google Scholar] [CrossRef]
- Kongtip, P.; Nankongnab, N.; Phupancharoensuk, R.; Palarach, C.; Sujirarat, D.; Sangprasert, S.; Sermsuk, M.; Sawattrakool, N.; Woskie, S.R. Glyphosate and paraquat in maternal and fetal serums in Thai women. J. Agromedicine 2017, 22, 282–289. [Google Scholar] [CrossRef]
- Gillezeau, C.; van Gerwen, M.; Shaffer, R.M.; Rana, I.; Zhang, L.; Sheppard, L.; Taioli, E. The evidence of human exposure to glyphosate: A review. Environ. Health 2019, 18, 2. [Google Scholar] [CrossRef] [Green Version]
- Niemann, L.; Sieke, C.; Pfeil, R.; Solecki, R. A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. J. Verbrauch. Lebensm. 2015, 10, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Fagan, J.; Bohlen, L.; Patton, S.; Klein, K. Organic diet intervention significantly reduces urinary glyphosate levels in US children and adults. Environ. Res. 2020, 189, 109898. [Google Scholar] [CrossRef] [PubMed]
- Vicini, J.L.; Jensen, P.K.; Young, B.M.; Swarthout, J.T. Residues of glyphosate in food and dietary exposure. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5226–5257. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 2015, 13, 107. [Google Scholar] [CrossRef]
- CCME (Canadian Council of Ministers of the Environment). Available online: https://ccme.ca/en/res/glyphosate-en-canadian-water-quality-guidelines-for-the-protection-of-aquatic-life.pdf (accessed on 12 May 2023).
- Silva, V.; Mol, H.G.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils—A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef]
- Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag. Sci. 2012, 68, 16–30. [Google Scholar] [CrossRef]
- Hébert, M.P.; Fugère, V.; Gonzalez, A. The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds. Front. Ecol. Environ. 2019, 17, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.G.; Wojtaszek, B.F.; Staznik, B.; Chartrand, D.T.; Stephenson, G.R. Chemical and biomonitoring to assess potential acute effects of Vision herbicide on native amphibian larvae in forest wetlands. Environ. Toxicol. Chem. 2004, 23, 843–849. [Google Scholar] [CrossRef]
- Rendón-von Osten, J.; Dzul-Caamal, R. Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: A survey in Hopelchén, Campeche, Mexico. Int. J. Environ. Res. Public Health 2017, 14, 595. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Pacenka, S.; Wu, J.; Richards, B.K.; Steenhuis, T.; Simpson, K.; Hay, A.G. Detection of glyphosate residues in companion animal feeds. Environ. Pollut. 2018, 243, 1113–1118. [Google Scholar] [CrossRef]
- El Agrebi, N.; Tosi, S.; Wilmart, O.; Scippo, M.L.; de Graaf, D.C.; Saegerman, C. Honeybee and consumer’s exposure and risk characterisation to glyphosate-based herbicide (GBH) and its degradation product (AMPA): Residues in beebread, wax, and honey. Sci. Total Environ. 2020, 704, 135312. [Google Scholar] [CrossRef]
- Poulsen, M.E.; Andersen, J.H.; Petersen, A.; Jensen, B.H. Results from the Danish monitoring programme for pesticide residues from the period 2004–2011. Food Control 2017, 74, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Richard, S.; Moslemi, S.; Sipahutar, H.; Benachour, N.; Seralini, G.E. Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ. Health Perspect. 2005, 113, 716–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesnage, R.; Bernay, B.; Séralini, G.E. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 2013, 313, 122–128. [Google Scholar] [CrossRef]
- Perego, M.C.; Caloni, F.; Cortinovis, C.; Schutz, L.F.; Albonico, M.; Tsuzukibashi, D.; Spicer, L.J. Influence of a Roundup formulation on glyphosate effects on steroidogenesis and proliferation of bovine granulosa cells in vitro. Chemosphere 2017, 188, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Martins-Gomes, C.; Silva, T.L.; Andreani, T.; Silva, A.M. Glyphosate vs. glyphosate-based herbicides exposure: A review on their toxicity. J. Xenobiot. 2022, 12, 21–40. [Google Scholar] [CrossRef]
- Gill, J.P.K.; Sethi, N.; Mohan, A.; Datta, S.; Girdhar, M. Glyphosate toxicity for animals. Environ. Chem. Lett. 2018, 16, 401–426. [Google Scholar] [CrossRef]
- Mostafalou, S.; Abdollahi, M. Pesticides: An update of human exposure and toxicity. Arch. Toxicol. 2017, 91, 549–599. [Google Scholar] [CrossRef]
- Richmond, M.E. Glyphosate: A review of its global use, environmental impact, and potential health effects on humans and other species. J. Environ. Stud. Sci. 2018, 8, 416–434. [Google Scholar] [CrossRef]
- Agostini, L.P.; Dettogni, R.S.; Dos Reis, R.S.; Stur, E.; Dos Santos, E.V.; Ventorim, D.P.; Garcia, F.M.; Cardoso, R.C.; Graceli, J.B.; Louro, I.D. Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. Sci. Total Environ. 2020, 705, 135808. [Google Scholar] [CrossRef]
- de Brito Rodrigues, L.; de Oliveira, R.; Abe, F.R.; Brito, L.B.; Moura, D.S.; Valadares, M.C.; Grisolia, C.K.; de Oliveira, D.P.; de Oliveira, G.A.R. Ecotoxicological assessment of glyphosate-based herbicides: Effects on different organisms. Environ. Toxicol. Chem. 2017, 36, 1755–1763. [Google Scholar] [CrossRef]
- Lares, B.A.; Vignatti, A.M.; Echaniz, S.A.; Gutiérrez, M.F. Effects of glyphosate on cladocera: A synthetic review. Aquat. Toxicol. 2022, 249, 106232. [Google Scholar] [CrossRef] [PubMed]
- Battisti, L.; Potrich, M.; Sampaio, A.R.; de Castilhos Ghisi, N.; Costa-Maia, F.M.; Abati, R.; dos Reis Martinez, C.B.; Sofia, S.H. Is glyphosate toxic to bees? A meta-analytical review. Sci. Total Environ. 2021, 767, 145397. [Google Scholar] [CrossRef]
- Farina, W.M.; Balbuena, M.S.; Herbert, L.T.; Goñalons, C.M.; Vázquez, D.E. Effects of the herbicide glyphosate on honey bee sensory and cognitive abilities: Individual impairments with implications for the hive. Insects 2019, 10, 354. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.; Li, G.; Liu, Z.; Wang, H.; Guo, X.; Xu, B. Effects of glyphosate exposure on honeybees. Environ. Toxicol. Pharmacol. 2022, 90, 103792. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.R.; Moraes, J.S.; Martins, C.M.G. Effects of the herbicide glyphosate on fish from embryos to adults: A review addressing behavior patterns and mechanisms behind them. Aquat. Toxicol. 2022, 251, 106281. [Google Scholar] [CrossRef] [PubMed]
- Wagner, N.; Reichenbecher, W.; Teichmann, H.; Tappeser, B.; Lötters, S. Questions concerning the potential impact of glyphosate-based herbicides on amphibians. Environ. Toxicol. Chem. 2013, 32, 1688–1700. [Google Scholar] [CrossRef]
- López, S.L.; Aiassa, D.; Benítez-Leite, S.; Lajmanovich, R.; Manas, F.; Poletta, G.; Sánchez, N.; Simoniello, M.F.; Carrasco, A.E. Pesticides used in South American GMO-based agriculture: A review of their effects on humans and animal models. Adv. Mol. Toxicol. 2012, 6, 41–75. [Google Scholar] [CrossRef]
- Disner, G.R.; Falcão, M.A.P.; Andrade-Barros, A.I.; Leite dos Santos, N.V.; Soares, A.B.S.; Marcolino-Souza, M.; Gomes, K.S.; Lima, C.; Lopes-Ferreira, M. The toxic effects of glyphosate, chlorpyrifos, abamectin, and 2,4-D on animal models: A systematic review of Brazilian studies. Integr. Environ. Assess. Manag. 2021, 17, 507–520. [Google Scholar] [CrossRef]
- Annett, R.; Habibi, H.R.; Hontela, A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J. Appl. Toxicol. 2014, 34, 458–479. [Google Scholar] [CrossRef]
- Tsui, M.T.; Chu, L.M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere 2003, 52, 1189–1197. [Google Scholar] [CrossRef]
- Milesi, M.M.; Lorenz, V.; Durando, M.; Rossetti, M.F.; Varayoud, J. Glyphosate herbicide: Reproductive outcomes and multigenerational effects. Front. Endocrinol. 2021, 12, 672532. [Google Scholar] [CrossRef]
- Mink, P.J.; Mandel, J.S.; Sceurman, B.K.; Lundin, J.I. Epidemiologic studies of glyphosate and cancer: A review. Regul. Toxicol. Pharmacol. 2012, 63, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Davoren, M.J.; Schiestl, R.H. Glyphosate-based herbicides and cancer risk: A post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis 2018, 39, 1207–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Rana, I.; Shaffer, R.M.; Taioli, E.; Sheppard, L. Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. Mutat. Res. Rev. Mutat. Res. 2019, 781, 186–206. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.L.; Watson, R.E.; DeSesso, J.M. Developmental and reproductive outcomes in humans and animals after glyphosate exposure: A critical analysis. J. Toxicol. Environ. Health Part B Crit. Rev. 2012, 15, 39–96. [Google Scholar] [CrossRef]
- Belle, R.; Marc, J.; Morales, J.; Cormier, P.; Mulner-Lorillon, O. Letter to the editor: Toxicity of Roundup and glyphosate. J. Toxicol. Environ. Health Part B Crit. Rev. 2012, 15, 233–237. [Google Scholar] [CrossRef]
- de Araújo-Ramos, A.T.; Passoni, M.T.; Romano, M.A.; Romano, R.M.; Martino-Andrade, A.J. Controversies on endocrine and reproductive effects of glyphosate and glyphosate-based herbicides: A mini-review. Front. Endocrinol. 2021, 12, 627210. [Google Scholar] [CrossRef]
- Madani, N.A.; Carpenter, D.O. Effects of glyphosate and glyphosate-based herbicides like Roundup™ on the mammalian nervous system: A review. Environ. Res. 2022, 214, 113933. [Google Scholar] [CrossRef]
- Roberts, J.R.; Dawley, E.H.; Reigart, J.R. Children’s low-level pesticide exposure and associations with autism and ADHD: A review. Pediatr. Res. 2019, 85, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Biosca-Brull, J.; Pérez-Fernández, C.; Mora, S.; Carrillo, B.; Pinos, H.; Conejo, N.M.; Collado, P.; Arias, J.L.; Martín-Sánchez, F.; Sánchez-Santed, F.; et al. Relationship between autism spectrum disorder and pesticides: A systematic review of human and preclinical models. Int. J. Environ. Res. Public Health 2021, 18, 5190. [Google Scholar] [CrossRef]
- Miani, A.; Imbriani, G.; De Filippis, G.; De Giorgi, D.; Peccarisi, L.; Colangelo, M.; Pulimeno, M.; Castellone, M.D.; Nicolardi, G.; Logroscino, G.; et al. Autism spectrum disorder and prenatal or early life exposure to pesticides: A short review. Int. J. Environ. Res. Public Health 2021, 18, 10991. [Google Scholar] [CrossRef]
- He, X.; Tu, Y.; Song, Y.; Yang, G.; You, M. The relationship between pesticide exposure during critical neurodevelopment and autism spectrum disorder: A narrative review. Environ. Res. 2022, 203, 111902. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, K.; Khan, S.; Patrikar, M.; Markad, A.; Kumar, N.; Choudhari, A.; Sagar, P.; Indurkar, S. Exposure risk and environmental impacts of glyphosate: Highlights on the toxicity of herbicide co-formulants. Environ. Chall. 2021, 4, 100149. [Google Scholar] [CrossRef]
- Turkmen, R.; Dogan, I. Determination of acute oral toxicity of glyphosate isopropylamine salt in rats. Environ. Sci. Pollut. Res. Int. 2020, 27, 19298–19303. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, L.; Moore, L.J.; Rodgers, J.H., Jr.; Bowerman, W.W.; Yarrow, G.K.; Chao, W.Y. Comparative toxicity of two glyphosate formulations (original formulation of Roundup® and Roundup WeatherMAX®) to six North American larval anurans. Environ. Toxicol. Chem. 2011, 30, 2756–2761. [Google Scholar] [CrossRef]
- Folmar, L.C.; Sanders, H.O.; Julin, A.M. Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Arch. Environ. Contam. Toxicol. 1979, 8, 269–278. [Google Scholar] [CrossRef]
- Zgurzynski, M.I.; Lushington, G.H. Glyphosate impact on Apis mellifera navigation: A combined behavioral and chemoinformatics study. EC Pharmacol. Toxicol. 2019, 7, 806–824. [Google Scholar]
- Talyn, B.; Lemon, R.; Badoella, M.; Melchiorre, D.; Villalobos, M.; Elias, R.; Muller, K.; Santos, M.; Melchiorre, E. Roundup®, but Not Roundup-Ready® Corn, Increases Mortality of Drosophila melanogaster. Toxics 2019, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Parlapiano, I.; Biandolino, F.; Grattagliano, A.; Ruscito, A.; Libralato, G.; Prato, E. Effects of commercial formulations of glyphosate on marine crustaceans and implications for risk assessment under temperature changes. Ecotoxicol. Environ. Saf. 2021, 213, 112068. [Google Scholar] [CrossRef]
- Perry, M.J.; Mandrioli, D.; Belpoggi, F.; Manservisi, F.; Panzacchi, S.; Irwin, C. Historical evidence of glyphosate exposure from a US agricultural cohort. Environ. Health 2019, 18, 42. [Google Scholar] [CrossRef] [Green Version]
- Jayasumana, C.; Gunatilake, S.; Siribaddana, S. Simultaneous exposure to multiple heavy metals and glyphosate may contribute to Sri Lankan agricultural nephropathy. BMC Nephrol. 2015, 16, 103. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.; Piccoli, C.; Cremonese, C.; Freire, C. Thyroid and reproductive hormones in relation to pesticide use in an agricultural population in Southern Brazil. Environ. Res. 2019, 173, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Abell, A.; Ernst, E.; Bonde, J.P. Semen quality and sexual hormones in greenhouse workers. Scand. J. Work Environ. Health 2000, 26, 492–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Cock, J.; Westveer, K.; Heederik, D.; te Velde, E.; van Kooij, R. Time to pregnancy and occupational exposure to pesticides in fruit growers in The Netherlands. Occup. Environ. Med. 1994, 51, 693–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanin, L.H.; Carrasquilla, G.; Solomon, K.R.; Cole, D.C.; Marshall, E.J.P. Regional differences in time to pregnancy among fertile women from five Colombian regions with different use of glyphosate. J. Toxicol. Environ. Health Part A 2009, 72, 949–960. [Google Scholar] [CrossRef]
- Parvez, S.; Gerona, R.R.; Proctor, C.; Friesen, M.; Ashby, J.L.; Reiter, J.L.; Lui, Z.; Winchester, P.D. Glyphosate exposure in pregnancy and shortened gestational length: A prospective Indiana birth cohort study. Environ. Health 2018, 17, 23. [Google Scholar] [CrossRef]
- Winchester, P.; Proctor, C.; Ying, J. County-level pesticide use and risk of shortened gestation and preterm birth. Acta paediatr. 2016, 105, e107–e115. [Google Scholar] [CrossRef] [Green Version]
- Garry, V.F.; Harkins, M.E.; Erickson, L.L.; Long-Simpson, L.K.; Holland, S.E.; Burroughs, B.L. Birth defects, season of conception, and sex of children born to pesticide applicators living in the Red River Valley of Minnesota, USA. Environ. Health Perspect. 2002, 110 (Suppl. S3), 441–449. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.; Al-Ahmad, A.J. Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol. Lett. 2019, 304, 39–49. [Google Scholar] [CrossRef]
- Pan, L.; Xu, M.; Yang, D.; Wang, B.; Zhao, Q.; Ding, E.M.; Zhu, B. The association between coronary artery disease and glyphosate exposure found in pesticide factory workers. J. Public Health Emerg. 2017, 1, 4. [Google Scholar] [CrossRef]
- Mills, P.J.; Caussy, C.; Loomba, R. Glyphosate excretion is associated with steatohepatitis and advanced liver fibrosis in patients with fatty liver disease. Clin. Gastroenterol. Hepatol. 2020, 18, 741–743. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Fan, X.N.; Tan, Y.Y.; Cheng, Q.; Chen, S.D. Parkinsonism after chronic occupational exposure to glyphosate. Park. Relat. Disord. 2011, 17, 486–487. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, M.; Huss, A.; van der Mark, M.; Nijssen, P.C.G.; Mulleners, W.M.; Sas, A.M.G.; van Laar, T.; de Snoo, G.R.; Kromhout, H.; Vermeulen, R.C. Environmental exposure to pesticides and the risk of Parkinson’s disease in the Netherlands. Environ. Int. 2017, 107, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Caballero, M.; Amiri, S.; Denney, J.T.; Monsivais, P.; Hystad, P.; Amram, O. Estimated residential exposure to agricultural chemicals and premature mortality by Parkinson’s disease in Washington state. Int. J. Environ. Res. Public Health 2018, 15, 2885. [Google Scholar] [CrossRef] [Green Version]
- Shaw, W. Elevated urinary glyphosate and clostridia metabolites with altered dopamine metabolism in triplets with autistic spectrum disorder or suspected seizure disorder: A case study. Integr. Med. 2017, 16, 50–57. [Google Scholar]
- Von Ehrenstein, O.S.; Ling, C.; Cui, X.; Cockburn, M.; Park, A.S.; Yu, F.; Wu, J.; Ritz, B. Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: Population based case-control study. BMJ 2019, 364, l962. [Google Scholar] [CrossRef] [Green Version]
- Anifandis, G.; Amiridis, G.; Dafopoulos, K.; Daponte, A.; Dovolou, E.; Gavriil, E.; Gorgogietas, V.; Kachpani, E.; Mamuris, Z.; Messini, C.I.; et al. The in vitro impact of the herbicide roundup on human sperm motility and sperm mitochondria. Toxics 2017, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Bolognesi, C.; Carrasquilla, G.; Volpi, S.; Solomon, K.R.; Marshall, E.J.P. Biomonitoring of genotoxic risk in agricultural workers from five Colombian regions: Association to occupational exposure to glyphosate. J. Toxicol. Environ. Health Part A 2009, 72, 986–997. [Google Scholar] [CrossRef]
- Woźniak, E.; Sicińska, P.; Michałowicz, J.; Woźniak, K.; Reszka, E.; Huras, B.; Zakrzewski, J.; Bukowska, B. The mechanism of DNA damage induced by Roundup 360 PLUS, glyphosate and AMPA in human peripheral blood mononuclear cells-genotoxic risk assessement. Food Chem. Toxicol. 2018, 120, 510–522. [Google Scholar] [CrossRef]
- Nagy, K.; Argaw Tessema, R.; Szász, I.; Smeirat, T.; Al Rajo, A.; Ádám, B. Micronucleus formation induced by glyphosate and glyphosate-based herbicides in human peripheral white blood cells. Front. Public Health 2021, 9, 639143. [Google Scholar] [CrossRef]
- Sritana, N.; Suriyo, T.; Kanitwithayanun, J.; Songvasin, B.H.; Thiantanawat, A.; Satayavivad, J. Glyphosate induces growth of estrogen receptor alpha positive cholangiocarcinoma cells via non-genomic estrogen receptor/ERK1/2 signaling pathway. Food Chem. Toxicol. 2018, 118, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Santovito, A.; Ruberto, S.; Gendusa, C.; Cervella, P. In vitro evaluation of genomic damage induced by glyphosate on human lymphocytes. Environ. Sci. Pollut. Res. Int. 2018, 25, 34693–34700. [Google Scholar] [CrossRef] [PubMed]
- Thongprakaisang, S.; Thiantanawat, A.; Rangkadilok, N.; Suriyo, T.; Satayavivad, J. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem. Toxicol. 2013, 59, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Stur, E.; Aristizabal-Pachon, A.F.; Peronni, K.C.; Agostini, L.P.; Waigel, S.; Chariker, J.; Miller, D.M.; Thomas, S.D.; Rezzoug, F.; Detogni, R.S.; et al. Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS ONE 2019, 14, e0219610. [Google Scholar] [CrossRef] [Green Version]
- De Roos, A.; Zahm, S.H.; Cantor, K.P.; Weisenburger, D.D.; Holmes, F.F.; Burmeister, L.F.; Blair, A. Integrative assessment of multiple pesticides as risk factors for non-Hodgkin’s lymphoma among men. Occup. Environ. Med. 2003, 60, e11. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, M.; Hardell, L.; Carlberg, M.; Akerman, M. Pesticide exposure as risk factor for non-Hodgkin lymphoma including histopathological subgroup analysis. Int. J. Cancer 2008, 123, 1657–1663. [Google Scholar] [CrossRef]
- Vazquez, M.A.; Maturano, E.; Etchegoyen, A.; Difilippo, F.S.; Maclean, B. Association between cancer and environmental exposure to glyphosate. Int. J. Clin. Med. 2017, 8, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Lee, J.H.; Hong, C.K.; Cho, K.W.; Park, Y.H.; Kim, Y.W.; Hwang, S.Y. Heart rate–corrected QT interval predicts mortality in glyphosate-surfactant herbicide–poisoned patients. Am. J. Emerg. Med. 2014, 32, 203–207. [Google Scholar] [CrossRef]
- Lee, H.L.; Chen, K.W.; Chi, C.H.; Huang, J.J.; Tsai, L.M. Clinical presentations and prognostic factors of a glyphosate—Surfactant herbicide intoxication a review of 131 cases. Acad. Emerg. Med. 2000, 7, 906–910. [Google Scholar] [CrossRef]
- Roberts, D.M.; Buckley, N.A.; Mohamed, F.; Eddleston, M.; Goldstein, D.A.; Mehrsheikh, A.; Bleeke, M.S.; Dawson, A.H. A prospective observational study of the clinical toxicology of glyphosate-containing herbicides in adults with acute self-poisoning. Clin. Toxicol. 2010, 48, 129–136. [Google Scholar] [CrossRef]
- Lee, J.W.; Choi, Y.J.; Park, S.; Gil, H.W.; Song, H.Y.; Hong, S.Y. Serum S100 protein could predict altered consciousness in glyphosate or glufosinate poisoning patients. Clin. Toxicol. 2017, 55, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Nishiyori, Y.; Nishida, M.; Shioda, K.; Suda, S.; Kato, S. Unilateral hippocampal infarction associated with an attempted suicide: A case report. J. Med. Case Rep. 2014, 8, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clotfelter, E.D.; Bell, A.M.; Levering, K.R. The role of animal behaviour in the study of endocrine-disrupting chemicals. Anim. Behav. 2004, 68, 665–676. [Google Scholar] [CrossRef]
- Zala, S.M.; Penn, D.J. Abnormal behaviours induced by chemical pollution: A review of the evidence and new challenges. Anim. Behav. 2004, 68, 649–664. [Google Scholar] [CrossRef]
- Luo, Q.H.; Gao, J.; Guo, Y.; Liu, C.; Ma, Y.Z.; Zhou, Z.Y.; Dai, P.L.; Hou, C.S.; Wu, Y.Y.; Diao, Q.Y. Effects of a commercially formulated glyphosate solutions at recommended concentrations on honeybee (Apis mellifera L.) behaviours. Sci. Rep. 2021, 11, 2115. [Google Scholar] [CrossRef] [PubMed]
- Balbuena, M.S.; Tison, L.; Hahn, M.L.; Greggers, U.; Menzel, R.; Farina, W.M. Effects of sublethal doses of glyphosate on honeybee navigation. J. Exp. Biol. 2015, 218, 2799–2805. [Google Scholar] [CrossRef] [Green Version]
- Delkash-Roudsari, S.; Chicas-Mosier, A.M.; Goldansaz, S.H.; Talebi-Jahromi, K.; Ashouri, A.; Abramson, C.I. Assessment of lethal and sublethal effects of imidacloprid, ethion, and glyphosate on aversive conditioning, motility, and lifespan in honey bees (Apis mellifera L.). Ecotoxicol. Environ. Saf. 2020, 204, 111108. [Google Scholar] [CrossRef]
- Séralini, G.E.; Clair, E.; Mesnage, R.; Gress, S.; Defarge, N.; Malatesta, M.; Hennequin, D.; de Vendômois, J.S. Republished study: Long-term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Environ. Sci. Eur. 2014, 26, 14. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, D.E.; Balbuena, M.S.; Chaves, F.; Gora, J.; Menzel, R.; Farina, W.M. Sleep in honey bees is affected by the herbicide glyphosate. Sci. Rep. 2020, 10, 10516. [Google Scholar] [CrossRef]
- Abou-Shaara, H.F.; Abuzeid, M.A. Effects of two herbicides on healthy and Nosema infected honey bee workers. Arthropods 2018, 7, 31–41. [Google Scholar]
- Herbert, L.T.; Vázquez, D.E.; Arenas, A.; Farina, W.M. Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. J. Exp. Biol. 2014, 217, 3457–3464. [Google Scholar] [CrossRef] [Green Version]
- Ait Bali, Y.; Ba-Mhamed, S.; Bennis, M. Behavioral and Immunohistochemical Study of the Effects of Subchronic and Chronic Exposure to Glyphosate in Mice. Front. Behav. Neurosci. 2017, 11, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ait Bali, Y.; Ba-M’hamed, S.; Gambarotta, G.; Sassoè-Pognetto, M.; Giustetto, M.; Bennis, M. Pre- and postnatal exposure to glyphosate-based herbicide causes behavioral and cognitive impairments in adult mice: Evidence of cortical and hippocampal dysfunction. Arch. Toxicol. 2020, 94, 1703–1723. [Google Scholar] [CrossRef] [PubMed]
- Baier, C.J.; Gallegos, C.E.; Raisman-Vozari, R.; Minetti, A. Behavioral impairments following repeated intranasal glyphosate-based herbicide administration in mice. Neurotoxicol. Teratol. 2017, 64, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Plata, I.; Giordano, M.; Díaz-Muñoz, M.; Rodríguez, V.M. The herbicide glyphosate causes behavioral changes and alterations in dopaminergic markers in male Sprague-Dawley rat. Neurotoxicology 2015, 46, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Coullery, R.; Pacchioni, A.M.; Rosso, S.B. Exposure to glyphosate during pregnancy induces neurobehavioral alterations and downregulation of Wnt5a-CaMKII pathway. Reprod. Toxicol. 2020, 96, 390–398. [Google Scholar] [CrossRef]
- Evans, S.C.; Shaw, E.M.; Rypstra, A.L. Exposure to a glyphosate-based herbicide affects agrobiont predatory arthropod behaviour and long-term survival. Ecotoxicology 2010, 19, 1249–1257. [Google Scholar] [CrossRef]
- Kanabar, M.; Bauer, S.; Ezedum, Z.M.; Dwyer, I.P.; Moore, W.S.; Rodriguez, G.; Mall, A.; Littleton, A.T.; Yudell, M.; Kanabar, J.; et al. Roundup negatively impacts the behavior and nerve function of the Madagascar hissing cockroach (Gromphadorhina portentosa). Environ. Sci. Pollut. Res. Int. 2021, 28, 32933–32944. [Google Scholar] [CrossRef]
- Soares, J.J.; Gonçalves, M.B.; Gayer, M.C.; Bianchini, M.C.; Caurio, A.C.; Soares, S.J.; Puntel, R.L.; Roehrs, R.; Denardin, E.L.G. Continuous liquid feeding: New method to study pesticides toxicity in Drosophila melanogaster. Anal. Biochem. 2017, 537, 60–62. [Google Scholar] [CrossRef]
- Zaller, J.G.; Weber, M.; Maderthaner, M.; Gruber, E.; Takács, E.; Mörtl, M.; Klátyik, S.; Győri, J.; Römbke, J.; Leisch, F.; et al. Effects of glyphosate-based herbicides and their active ingredients on earthworms, water infiltration and glyphosate leaching are influenced by soil properties. Environ. Sci. Eur. 2021, 33, 51. [Google Scholar] [CrossRef]
- Salvio, C.; Menone, M.L.; Rafael, S.; Iturburu, F.G.; Manetti, P.L. Survival, reproduction, avoidance behavior and oxidative stress biomarkers in the Earthworm Octolasion cyaneum exposed to glyphosate. Bull. Environ. Contam. Toxicol. 2016, 96, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Bridi, D.; Altenhofen, S.; Gonzalez, J.B.; Reolon, G.K.; Bonan, C.D. Glyphosate and Roundup® alter morphology and behavior in zebrafish. Toxicology 2017, 392, 32–39. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, J.; Kuang, X.; Li, S.; Li, X.; Chen, D.; Zhao, X.; Feng, X. Biological impacts of glyphosate on morphology, embryo biomechanics and larval behavior in zebrafish (Danio rerio). Chemosphere 2017, 181, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Forner-Piquer, I.; Faucherre, A.; Byram, J.; Blaquiere, M.; de Bock, F.; Gamet-Payrastre, L.; Ellero-Simatos, S.; Audinat, E.; Jopling, C.; Marchi, N. Differential impact of dose-range glyphosate on locomotor behavior, neuronal activity, glio-cerebrovascular structures, and transcript regulations in zebrafish larvae. Chemosphere 2021, 267, 128986. [Google Scholar] [CrossRef] [PubMed]
- Ivantsova, E.; Wengrovitz, A.S.; Souders, C.L.; Martyniuk, C.J. Developmental and behavioral toxicity assessment of glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) in zebrafish embryos/larvae. Environ. Toxicol. Pharmacol. 2022, 93, 103873. [Google Scholar] [CrossRef]
- Lacroix, R.; Ibhazehibo, K.; Kaushik, G.; Kurrasch, D. Exposure to glyphosate or roundup during zebrafish embryogenesis differentially affects metabolism and swimming behaviours. bioRxiv 2022. [Google Scholar] [CrossRef]
- Chen, J.; Rao, C.; Yuan, R.; Sun, D.; Guo, S.; Li, L.; Yang, S.; Qian, D.; Lu, R.; Cao, X. Long-term exposure to polyethylene microplastics and glyphosate interferes with the behavior, intestinal microbial homeostasis, and metabolites of the common carp (Cyprinus carpio L.). Sci. Total. Environ. 2022, 814, 152681. [Google Scholar] [CrossRef]
- Yalsuyi, A.M.; Vajargah, M.F.; Hajimoradloo, A.; Galangash, M.M.; Prokić, M.D.; Faggio, C. Evaluation of behavioral changes and tissue damages in common carp (Cyprinus carpio) after exposure to the herbicide glyphosate. Vet. Sci. 2021, 8, 218. [Google Scholar] [CrossRef]
- Akinsorotan, A.M.; Zelibe, S.A.A.; Olele, N.F. Acute toxicity and behavioural changes on African catfish (Clarias gariepinus) exposed to dizensate (Glyphosate herbicide). Int. J. Sci. Eng. Res. 2013, 4, 1189–1193. [Google Scholar]
- Isaac, A.O.; Joshua, O.S.; Jehu, A. Behavioural and some physiological assessment of glyphosate and paraquat toxicity to juveniles of African catfish, Clarias gariepinus. Pak. J. Zool. 2017, 49, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Uchenna, U.B.; Uka, A.; Obiahu, O.H. The impact of sub-lethal concentrations of glyphosate on growth and haematology of African catfish under aquatic ecological micro-climate. Environ. Chem. Ecotoxicol. 2022, 4, 164–170. [Google Scholar] [CrossRef]
- Nwani, C.D.; Ibiam, U.A.; Ibiam, O.U.; Nworie, O.; Onyishi, G.; Atama, C. Investigation on acute toxicity and behavioral changes in Tilapia zillii due to glyphosate-based herbicide, forceup. J. Anim. Plant Sci. 2013, 23, 888–892. [Google Scholar]
- Sánchez, J.A.A.; Barros, D.M.; de Los Angeles Bistoni, M.; Ballesteros, M.L.; Roggio, M.A.; Martins, C.G.M. Glyphosate-based herbicides affect behavioural patterns of the livebearer Jenynsia multidentata. Environ. Sci. Pollut. Res. Int. 2021, 28, 29958–29970. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, J.S.; Cecala, K.K. Interactive effects of temperature and glyphosate on the behavior of blue ridge two-lined salamanders (Eurycea wilderae). Environ. Toxicol. Chem. 2016, 35, 2297–2303. [Google Scholar] [CrossRef] [PubMed]
- Sinhorin, V.D.G.; Sinhorin, A.P.; Teixeira, J.M.S.; Miléski, K.M.L.; Hansen, P.C.; Moeller, P.R.; Moreira, P.S.A.; Baviera, A.M.; Loro, V.L. Metabolic and behavior changes in surubim acutely exposed to a glyphosate-based herbicide. Arch. Environ. Contam. Toxicol. 2014, 67, 659–667. [Google Scholar] [CrossRef]
- Le Du-Carrée, J.; Saliou, F.; Cachot, J.; Morin, T.; Danion, M. Developmental effect of parental or direct chronic exposure to environmental concentration of glyphosate on the larvae of rainbow trout, Oncorhynchus mykiss. Aquat. Toxicol. 2021, 237, 105894. [Google Scholar] [CrossRef]
- Bolis, A.; Gazzola, A.; Pellitteri-Rosa, D.; Colombo, A.; Bonfanti, P.; Bellati, A. Exposure during embryonic development to Roundup® Power 2.0 affects lateralization, level of activity and growth, but not defensive behaviour of marsh frog tadpoles. Environ. Pollut. 2020, 263, 114395. [Google Scholar] [CrossRef]
- Pavan, F.A.; Samojeden, C.G.; Rutkoski, C.F.; Folador, A.; Da Fré, S.P.; Müller, C.; Hartmann, P.A.; Hartmann, M.T. Morphological, behavioral and genotoxic effects of glyphosate and 2,4-D mixture in tadpoles of two native species of South American amphibians. Environ. Toxicol. Pharmacol. 2021, 85, 103637. [Google Scholar] [CrossRef]
- Moutinho, M.F.; de Almeida, E.A.; Espíndola, E.L.G.; Daam, M.A.; Schiesari, L. Herbicides employed in sugarcane plantations have lethal and sublethal effects to larval Boana pardalis (Amphibia, Hylidae). Ecotoxicology 2020, 29, 1043–1051. [Google Scholar] [CrossRef]
- Hansen, L.R.; Roslev, P. Behavioral responses of juvenile Daphnia magna after exposure to glyphosate and glyphosate-copper complexes. Aquat. Toxicol. 2016, 179, 36–43. [Google Scholar] [CrossRef]
- Alvarado-Suárez, G.B.; Silva-Briano, M.; Arzate-Cárdenas, M.A.; Carbajal-Hernández, A.L.; Yáñez-Rivera, B.; Rico-Mártinez, R. Feeding behavior of early life stages of the zebrafish Danio rerio is altered by exposure to glyphosate. Environ. Sci. Pollut. Res. 2022, 29, 85172–85184. [Google Scholar] [CrossRef] [PubMed]
- Strilbytska, O.M.; Semaniuk, U.V.; Strutynska, T.R.; Burdyliuk, N.I.; Tsiumpala, S.; Bubalo, V.; Lushchak, O. Herbicide Roundup shows toxic effects in nontarget organism Drosophila. Arch. Insect Biochem. Physiol. 2022, 110, e21893. [Google Scholar] [CrossRef]
- Elias, R.; Talyn, B.; Melchiorre, E. Dietary behavior of Drosophila melanogaster fed with genetically-modified corn or Roundup®. J. Xenobiot. 2021, 11, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Benamú, M.A.; Schneider, M.I.; Sánchez, N.E. Effects of the herbicide glyphosate on biological attributes of Alpaida veniliae (Araneae, Araneidae), in laboratory. Chemosphere 2010, 78, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Mengoni Goñalons, C.; Farina, W.M. Impaired associative learning after chronic exposure to pesticides in young adult honey bees. J. Exp. Biol. 2018, 221, jeb176644. [Google Scholar] [CrossRef] [Green Version]
- Helmer, S.H.; Kerbaol, A.; Aras, P.; Jumarie, C.; Boily, M. Effects of realistic doses of atrazine, metolachlor, and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera). Environ. Sci. Pollut. Res. 2015, 22, 8010–8021. [Google Scholar] [CrossRef]
- Almasri, H.; Tavares, D.A.; Pioz, M.; Sené, D.; Tchamitchian, S.; Cousin, M.; Brunet, J.L.; Belzunces, L.P. Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicol. Environ. Saf. 2020, 203, 111013. [Google Scholar] [CrossRef]
- Thompson, H.M.; Levine, S.L.; Doering, J.; Norman, S.; Manson, P.; Sutton, P.; von Mérey, G. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example. Integr. Environ. Assess. Manag. 2014, 10, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.H.; Wu, W.Y.; Berenbaum, M.R. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food. Sci. Rep. 2017, 7, 15924. [Google Scholar] [CrossRef] [Green Version]
- Blot, N.; Veillat, L.; Rouzé, R.; Delatte, H. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLoS ONE 2019, 14, e0215466. [Google Scholar] [CrossRef] [Green Version]
- Fréville, M.; Estienne, A.; Ramé, C.; Lefort, G.; Chahnamian, M.; Staub, C.; Venturi, E.; Lemarchand, J.; Maximin, E.; Hondelatte, A.; et al. Chronic dietary exposure to a glyphosate-based herbicide results in total or partial reversibility of plasma oxidative stress, cecal microbiota abundance and short-chain fatty acid composition in broiler hens. Front. Physiol. 2022, 13, 974688. [Google Scholar] [CrossRef]
- Giaquinto, P.C.; de Sá, M.B.; Sugihara, V.S.; Gonçalves, B.B.; Delício, H.C.; Barki, A. Effects of glyphosate-based herbicide sub-lethal concentrations on fish feeding behavior. Bull. Environ. Contam. Toxicol. 2017, 98, 460–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Córdova López, A.M.; Sarmento, R.A.; de Souza Saraiva, A.; Pereira, R.R.; Soares, A.M.V.M.; Pestana, J.L.T. Exposure to Roundup® affects behaviour, head regeneration and reproduction of the freshwater planarian Girardia tigrina. Sci. Total Environ. 2019, 675, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Janssens, L.; Stoks, R. Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae. Aquat. Toxicol. 2017, 193, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Janssens, L.; Stoks, R. Synergistic effects between pesticide stress and predator cues: Conflicting results from life history and physiology in the damselfly Enallagma cyathigerum. Aquat. Toxicol. 2013, 132–133, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Behrend, J.E.; Rypstra, A.L. Contact with a glyphosate-based herbicide has long-term effects on the activity and foraging of an agrobiont wolf spider. Chemosphere 2018, 194, 714–721. [Google Scholar] [CrossRef]
- Rittman, S.; Wrinn, K.M.; Evans, S.C.; Webb, A.W.; Rypstra, A.L. Glyphosate-based herbicide has contrasting effects on prey capture by two co-occurring wolf spider species. J. Chem. Ecol. 2013, 39, 1247–1253. [Google Scholar] [CrossRef]
- Lacava, M.; García, L.F.; Viera, C.; Michalko, R. The pest-specific effects of glyphosate on functional response of a wolf spider. Chemosphere 2021, 262, 127785. [Google Scholar] [CrossRef]
- Michalková, V.; Pekár, S. How glyphosate altered the behaviour of agrobiont spiders (Araneae: Lycosidae) and beetles (Coleoptera: Carabidae). Biol. Control 2009, 51, 444–449. [Google Scholar] [CrossRef]
- Bengtsson, G.; Hansson, L.A.; Montenegro, K. Reduced grazing rates in Daphnia pulex caused by contaminants: Implications for trophic cascades. Environ. Toxicol. Chem. 2004, 23, 2641–2648. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Wang, J.; Ye, M.; Dang, W.; Lu, H. Effects of glyphosate-ammonium exposure on embryonic development, hatchling locomotor performance and learning ability in the three-keeled pond turtle, Asian J. Ecotoxicol. 2019, 6, 128–135. [Google Scholar] [CrossRef]
- Ujszegi, J.; Gál, Z.; Mikó, Z.; Hettyey, A. No observable effect of a glyphosate-based herbicide on two top predators of temporal water bodies. Environ. Toxicol. Chem. 2015, 34, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Ujszegi, J.; Gál, Z.; Mikó, Z.; Hettyey, A. No effect of a glyphosate-based herbicide on larval dragonflies (Aeshna cyanea) and adult newts (Lissotriton vulgaris) in a laboratory-based experiment. Acta Zool. Acad. Sci. Hung. 2016, 62, 355–367. [Google Scholar] [CrossRef]
- Pompermaier, A.; Kirsten, K.; Soares, S.M.; Fortuna, M.; Kalichak, F.; Idalencio, R.; Koakoski, G.; Barreto, R.E.; Barcellos, L.J.G. Waterborne agrichemicals compromise the anti-predatory behavior of zebrafish. Environ. Sci. Pollut. Res. 2020, 27, 38559–38567. [Google Scholar] [CrossRef] [PubMed]
- Pompermaier, A.; Varela, A.C.C.; Mozzato, M.T.; Soares, S.M.; Fortuna, M.; Alves, C.; Tamagno, W.A.; Barcellos, L.J.G. Impaired initial development and behavior in zebrafish exposed to environmentally relevant concentrations of widely used pesticides. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 257, 109328. [Google Scholar] [CrossRef]
- Pompermaier, A.; Tamagno, W.A.; Alves, C.; Barcellos, L.J.G. Persistent and transgenerational effects of pesticide residues in zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 262, 109461. [Google Scholar] [CrossRef]
- da Costa Chaulet, F.; de Alcantara Barcellos, H.H.; Fior, D.; Pompermaier, A.; Koakoski, G.; da Rosa, J.G.S.; Fagundes, M.; Barcellos, L.J.G. Glyphosate- and Fipronil-Based Agrochemicals and Their Mixtures Change Zebrafish Behavior. Arch. Environ. Contam. Toxicol. 2019, 77, 443–451. [Google Scholar] [CrossRef]
- Lanzarin, G.A.B.; Venâncio, C.A.S.; Monteiro, S.M.; Félix, L.M. Behavioural toxicity of environmental relevant concentrations of a glyphosate commercial formulation—RoundUp® UltraMax—During zebrafish embryogenesis. Chemosphere 2020, 253, 126636. [Google Scholar] [CrossRef]
- Tapkir, S.D.; Kharat, S.S.; Kumkar, P.; Gosavi, S.M. Impact, recovery and carryover effect of Roundup® on predator recognition in common spiny loach, Lepidocephalichthys thermalis. Ecotoxicology 2019, 28, 189–200. [Google Scholar] [CrossRef]
- Moore, H.; Chivers, D.P.; Ferrari, M.C.O. Sub-lethal effects of RoundupTM on tadpole anti-predator responses. Ecotoxicol. Environ. Saf. 2015, 111, 281–285. [Google Scholar] [CrossRef]
- Gabor, C.R.; Perkins, H.R.; Heitmann, A.T.; Forsburg, Z.R.; Aspbury, A.S. RoundupTM With Corticosterone Functions as an Infodisruptor to Antipredator Response in Tadpoles. Front. Ecol. Evol. 2019, 7, 114. [Google Scholar] [CrossRef] [Green Version]
- Janssens, L.; Stoks, R. How does a pesticide pulse increase vulnerability to predation? Combined effects on behavioral antipredator traits and escape swimming. Aquat. Toxicol. 2012, 110–111, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Wrinn, K.M.; Evans, S.C.; Rypstra, A.L. Predator cues and an herbicide affect activity and emigration in an agrobiont wolf spider. Chemosphere 2012, 87, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Mikó, Z.; Ujszegi, J.; Gál, Z.; Hettyey, A. Effects of a glyphosate-based herbicide and predation threat on the behaviour of agile frog tadpoles. Ecotoxicol. Environ. Saf. 2017, 140, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Gaupp-Berghausen, M.; Hofer, M.; Rewald, B.; Zaller, J.G. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Sci. Rep. 2015, 5, 12886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.M.; Vera, M.K.M.; Bhandari, R.K. Developmental and epigenetic effects of Roundup and glyphosate exposure on Japanese medaka (Oryzias latipes). Aquat. Toxicol. 2019, 210, 215–226. [Google Scholar] [CrossRef]
- Milesi, M.M.; Lorenz, V.; Pacini, G.; Repetti, M.R.; Demonte, L.D.; Varayoud, J.; Luque, E.H. Perinatal exposure to a glyphosate-based herbicide impairs female reproductive outcomes and induces second-generation adverse effects in Wistar rats. Arch. Toxicol. 2018, 92, 2629–2643. [Google Scholar] [CrossRef]
- Ricci, E.L.; Ribeiro, M.O.; Fukushima, A.R.; Sandini, T.M.; Rocha, P.R.D.; Waziry, P.A.F.W.; Bernardi, M.M.; Spinosa, H.d.S. Perinatal exposure to an aromatase inhibitor glyphosate-base herbicide reduced male and female social behavior in juvenile age and the sexual behavior at adult female rat. Braz. J. Vet. Res. Anim. Sci. 2022, 59, e186467. [Google Scholar] [CrossRef]
- Romano, M.A.; Romano, R.M.; Santos, L.D.; Wisniewski, P.; Campos, D.A.; de Souza, P.B.; Viau, P.; Bernardi, M.M.; Nunes, M.T.; de Oliveira, C.A. Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression. Arch. Toxicol. 2011, 86, 663–673. [Google Scholar] [CrossRef]
- Joaquim, A.D.O.; Macrini, D.J.; Ricci, E.L.; Rodrigues, P.A.; Spinosa, H.D.S.; Suffredini, I.B.; Bernarndi, M.M. Effects of exposure to glyphosate in male and female mice behavior in pubertal period. Braz. J. Vet. Res. Anim. Sci. 2014, 51, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Griesinger, L.M.; Evans, S.C.; Rypstra, A.L. Effects of a glyphosate-based herbicide on mate location in a wolf spider that inhabits agroecosystems. Chemosphere 2011, 84, 1461–1466. [Google Scholar] [CrossRef] [PubMed]
- Leccia, F.; Kysilková, K.; Kolářová, M.; Hamouzová, K.; Líznarová, E.; Korenko, S. Disruption of the chemical communication of the European agrobiont ground-dwelling spider Pardosa agrestis by pesticides. J. Appl. Entomol. 2015, 140, 609–616. [Google Scholar] [CrossRef]
- Ward, W.; Heinly, B.; Preston, J.; Johnson, C.; Sweger, A.; Persons, M. Lethal and sublethal effects of five common herbicides on the wolf spider, Pardosa milvina (Araneae: Lycosidae). Ecotoxicology 2022, 31, 1565–1582. [Google Scholar] [CrossRef] [PubMed]
- Leponiemi, M.; Schultner, E.; Dickel, F.; Freitak, D. Chronic sublethal pesticide exposure affects brood production, morphology and endosymbionts, but not immunity in the ant, Cardiocondyla obscurior. Ecol. Entomol. 2021, 47, 273–283. [Google Scholar] [CrossRef]
- Hued, A.C.; Oberhofer, S.; de los Ángeles Bistoni, M. Exposure to a Commercial Glyphosate Formulation (Roundup®) Alters Normal Gill and Liver Histology and Affects Male Sexual Activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Arch. Environ. Contam. Toxicol. 2011, 62, 107–117. [Google Scholar] [CrossRef]
- Sandun, K.; Bandara, N.; Amarasinghe, U.S. Effect of glyphosate-based herbicide, Roundup™ on territory deference of male Oreochromis mossambicus (Osteichthyes, Cichlidae) associated with mating behaviour. Sri Lanka J. Aquat. Sci. 2015, 20, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sulukan, E.; Baran, A.; Kankaynar, M.; Kızıltan, T.; Bolat, İ.; Yıldırım, S.; Ceyhun, H.A.; Ceyhun, S.B. Global warming and glyphosate toxicity (II): Offspring zebrafish modelling with behavioral, morphological and immunohistochemical approaches. Sci. Total Environ. 2023, 856, 158903. [Google Scholar] [CrossRef]
- Muller, K.; Herrera, K.; Talyn, B.; Melchiorre, E. Toxicological Effects of Roundup® on Drosophila melanogaster Reproduction. Toxics 2021, 9, 161. [Google Scholar] [CrossRef]
- Dechartres, J.; Pawluski, J.L.; Gueguen, M.; Jablaoui, A.; Maguin, E.; Rhimi, M.; Charlier, T.D. Glyphosate and glyphosate-based herbicide exposure during the peripartum period affects maternal brain plasticity, maternal behaviour and microbiome. J. Neuroendocrinol. 2019, 31, e12731. [Google Scholar] [CrossRef]
- de Oliveira, M.A.L.; Rojas, V.C.T.; de Sá, J.C.; de Novais, C.O.; Silva, M.S.; de Almeida Paula, H.A.; Kirsten, T.B.; Bernardi, M.M.; Pinheiro, L.C.; Giusti-Paiva, A.; et al. Perinatal exposure to glyphosate-based herbicides induced neurodevelopmental behaviors impairments and increased oxidative stress in the prefrontal cortex and hippocampus in offspring. Int. J. Dev. Neurosci. 2022, 82, 528–538. [Google Scholar] [CrossRef]
- Rocha, P.R.D.A.; Ribeiro, M.O.; Sandini, T.M.; Camargo, E.L.R.A.; Bernardi, M.M.; Spinosa, H.D.S. Perinatal glyphosate-based herbicide impaired maternal behavior by reducing the striatal dopaminergic activity and delayed the offspring reflex development. Atas Saúde Ambient. 2019, 7, 130–156. [Google Scholar]
- Gallegos, C.E.; Bartos, M.; Bras, C.; Gumilar, F.; Antonelli, M.C.; Minetti, A. Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring. Neurotoxicology 2016, 53, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Nikbakhtzadeh, M.R.; Fuentes, Y. Deterrent Effects of Glyphosate on Oviposition and Larval Development of Culex quinquefasciatus. J. Am. Mosq. Control Assoc. 2022, 38, 198–207. [Google Scholar] [CrossRef]
- Stahlschmidt, Z.R.; Vo, C. Spatial bet hedging, thermal trade-offs and glyphosate: Crickets integrate multivariate information during oviposition. Anim. Behav. 2022, 185, 105–112. [Google Scholar] [CrossRef]
- Baglan, H.; Lazzari, C.R.; Guerrieri, F.J. Glyphosate impairs learning in Aedes aegypti mosquito larvae at field-realistic doses. J. Exp. Biol. 2018, 221, jeb187518. [Google Scholar] [CrossRef] [Green Version]
- Helander, M.; Lehtonen, T.K.; Saikkonen, K.; Despains, L.; Nyckees, D.; Antinoja, A.; Solvi, C.; Loukola, O.J. Field-realistic acute exposure to glyphosate-based herbicide impairs fine-color discrimination in bumblebees. Sci. Total Environ. 2023, 857, 159298. [Google Scholar] [CrossRef]
- Hernández, J.; Riveros, A.J.; Amaya-Márquez, M. Sublethal doses of glyphosate impair olfactory memory retention, but not learning in the honey bee (Apis mellifera scutellata). J. Insect Conserv. 2021, 25, 683–694. [Google Scholar] [CrossRef]
- Fuhrimann, S.; Farnham, A.; Staudacher, P.; Atuhaire, A.; Manfioletti, T.; Niwagaba, C.B.; Namirembe, S.; Mugweri, J.; Winkler, M.S.; Portengen, L.; et al. Exposure to multiple pesticides and neurobehavioral outcomes among smallholder farmers in Uganda. Environ. Int. 2021, 152, 106477. [Google Scholar] [CrossRef]
- Luna, S.; Neila, L.P.; Vena, R.; Borgatello, C.; Rosso, S.B. Glyphosate exposure induces synaptic impairment in hippocampal neurons and cognitive deficits in developing rats. Arch. Toxicol. 2021, 95, 2137–2150. [Google Scholar] [CrossRef]
- Del Castilo, I.; Neumann, A.S.; Lemos, F.S.; De Bastiani, M.A.; Oliveira, F.L.; Zimmer, E.R.; Rêgo, A.M.; Hardoim, C.C.P.; Antunes, L.C.M.; Lara, F.A.; et al. Lifelong Exposure to a Low-Dose of the Glyphosate-Based Herbicide RoundUp® Causes Intestinal Damage, Gut Dysbiosis, and Behavioral Changes in Mice. Int. J. Mol. Sci. 2022, 23, 5583. [Google Scholar] [CrossRef]
- de Castro Vieira Carneiro, C.L.; Chaves, E.M.C.; Neves, K.R.T.; Braga, M.D.M.; Assreuy, A.M.S.; de Moraes, M.E.A.; Aragão, G.F. Behavioral and neuroinflammatory changes caused by glyphosate: Base herbicide in mice offspring. Birth Defects Res. 2023, 115, 488–497. [Google Scholar] [CrossRef]
- Ait Bali, Y.A.; Kaikai, N.E.; Ba-M’hamed, S.; Bennis, M. Learning and memory impairments associated to acetylcholinesterase inhibition and oxidative stress following glyphosate based-herbicide exposure in mice. Toxicology 2019, 415, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Gallegos, C.E.; Baier, C.J.; Bartos, M.; Bras, C.; Domínguez, S.; Mónaco, N.; Gumilar, F.; Giménez, M.S.; Minetti, A. Perinatal glyphosate-based herbicide exposure in rats alters brain antioxidant status, glutamate and acetylcholine metabolism and affects recognition memory. Neurotox. Res. 2018, 34, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Park, H.S.; Oh, J.H.; Lee, J.S. Glyphosate-induced encephalopathy: A case report. J. Clin. Neurol. 2019, 15, 132–133. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, S.; Sugisaki, T.; Ryota, Y.; Yoshiteru, S.; Okayasu, H.; Shioda, M.; Suzuki, K.; Yasui-Furukori, N.; Shimoda, K. Transient glyphosate encephalopathy due to a suicide attempt. Neuropsychopharmacol. Rep. 2021, 41, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, E.R.; Leiros da Costa, M.D.; Bacheschi, L.A.; Scaff, M.; Leite, C.C. Parkinsonism after glycine-derivate exposure. Mov. Disord. Off. J. Mov. Disor. Soc. 2001, 16, 565–568. [Google Scholar] [CrossRef]
- Wang, L.; Tang, S.; Wu, S.; Yao, L.; Su, D.; Wang, Y. Maternal Exposure to Pesticides and Risk of Autism Spectrum Disorders in Offspring: A Meta-analysis. J. Autism Dev. Disord. 2022, 52, 1640–1651. [Google Scholar] [CrossRef]
- Joaquim, A.O.; Spinosa, H.S.; Macrini, D.J.; Rodrigues, P.A.; Ricci, E.L.; Artiolli, T.S.; Moreira, N.; Suffredini, I.B.; Bernardi, M.M. Behavioral effects of acute glyphosate exposure in male and female Balb/c mice. Braz. J. Vet. Res. Anim. Sci. 2012, 49, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Ait Bali, Y.; Ba-M’hamed, S.; Elhidar, N.; Nafis, A.; Soraa, N.; Bennis, M. Glyphosate based- herbicide exposure affects gut microbiota, anxiety and depression-like behaviors in mice. Neurotoxicol. Teratol. 2018, 67, 44–49. [Google Scholar] [CrossRef]
- Ait Bali, Y.; Kaikai, N.E.; Ba-M’hamed, S.; Sassoè-Pognetto, M.; Giustetto, M.; Bennis, M. Anxiety and Gene Expression Enhancement in Mice Exposed to Glyphosate-Based Herbicide. Toxics 2022, 10, 226. [Google Scholar] [CrossRef]
- Bicca, D.F.; Spiazzi, C.C.; Ramalho, J.B.; Soares, M.B.; Cibin, F.W.S. A subchronic low-dose exposure of a glyphosate-based herbicide induces depressive and anxious-like behavior in mice: Quercetin therapeutic approach. Environ. Sci. Pollut. Res. Int. 2021, 28, 67394–67403. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Sepúlveda, C.J.; Cáceres-Chacón, M.; Alvelo-Fernández, P.; Haddock-Martínez, H.; Ramos-Sánchez, R.; Martínez-Guzmán, O.; Rivera-López, M.; Sierra-Mercado, D. Effects of glyphosate on locomotion and anxiety-like behavior in rats. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Sulukan, E.; Baran, A.; Şenol, O.; Kankaynar, M.; Yıldırım, S.; Bolat, İ.; Ceyhun, H.A.; Toraman, E.; Ceyhun, S.B. Global warming and glyphosate toxicity (I): Adult zebrafish modelling with behavioural, immunohistochemical and metabolomic approaches. Sci. Total Environ. 2023, 858, 160086. [Google Scholar] [CrossRef] [PubMed]
- Cattani, D.; Cesconetto, P.A.; Tavares, M.K.; Parisotto, E.B.; De Oliveira, P.A.; Rieg, C.E.H.; Leite, M.C.; Prediger, R.D.S.; Wendt, N.C.; Razzera, G.; et al. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress. Toxicology 2017, 387, 67–80. [Google Scholar] [CrossRef]
- Pu, Y.; Yang, J.; Chang, L.; Qu, Y.; Wang, S.; Zhang, K.; Xiong, Z.; Zhang, J.; Tan, Y.; Wang, X.; et al. Maternal glyphosate exposure causes autism-like behaviors in offspring through increased expression of soluble epoxide hydrolase. Proc. Natl. Acad. Sci. USA 2020, 117, 11753–11759. [Google Scholar] [CrossRef]
- Lai, M.C.; Lombardo, M.V.; Baron-Cohen, S. Autism. Lancet 2014, 383, 896–910. [Google Scholar] [CrossRef]
- Becerra, T.A.; von Ehrenstein, O.S.; Heck, J.E.; Olsen, J.; Arah, O.A.; Jeste, S.S.; Rodriguez, M.; Ritz, B. Autism spectrum disorders and race, ethnicity, and nativity: A population-based study. Pediatrics 2014, 134, e63–e71. [Google Scholar] [CrossRef] [Green Version]
- Carter, C.J.; Blizard, R.A. Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products. Neurochem. Int. 2016, 101, 83–109. [Google Scholar] [CrossRef]
- Silva, M.H. Effects of low-dose chlorpyrifos on neurobehavior and potential mechanisms: A review of studies in rodents, zebrafish, and Caenorhabditis elegans. Birth Defects Res. 2020, 112, 445–479. [Google Scholar] [CrossRef]
- Malhotra, R.C.; Ghia, D.K.; Cordato, D.J.; Beran, R.G. Glyphosate-surfactant herbicide-induced reversible encephalopathy. J. Clin. Neurosci. 2010, 17, 1472–1473. [Google Scholar] [CrossRef]
- Zheng, Q.; Yin, J.; Zhu, L.; Jiao, L.; Xu, Z. Reversible Parkinsonism induced by acute exposure glyphosate. Park. Relat. Disord. 2018, 50, 121. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.C.; Fruciano, C.; Marchant, J.; Hildebrand, F.; Forslund, S.; Bork, P.; Engel, P.; Hughes, W.O.H. The gut microbiome is associated with behavioural task in honey bees. Insectes Sociaux 2018, 65, 419–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, D.A.; Denlinger, D.L. Meeting the energetic demands of insect diapause: Nutrient storage and utilization. J. Insect Physiol. 2007, 53, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Mena, F.; Romero, A.; Blasco, J.; Araújo, C.V. Can a mixture of agrochemicals (glyphosate, chlorpyrifos and chlorothalonil) mask the perception of an individual chemical? A hidden trap underlying ecological risk. Ecotoxicol. Environ. Saf. 2022, 230, 113172. [Google Scholar] [CrossRef]
- Motta, E.V.S.; Raymann, K.; Moran, N.A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. USA 2018, 115, 10305–10310. [Google Scholar] [CrossRef] [Green Version]
- Samsel, A.; Seneff, S. Glyphosate, pathways to modern diseases III: Manganese, neurological diseases, and associated pathologies. Surg. Neurol. Int. 2015, 6, 45. [Google Scholar] [CrossRef]
- Mesnage, R.; Teixeira, M.; Mandrioli, D.; Falcioni, L.; Ducarmon, Q.R.; Zwittink, R.D.; Mazzacuva, F.; Caldwell, A.; Halket, J.; Amiel, C.; et al. Use of shotgun metagenomics and metabolomics to evaluate the impact of glyphosate or roundup mon 52276 on the gut microbiota and serum metabolome of sprague-dawley rats. Environ. Health Perspect. 2021, 129, 17005. [Google Scholar] [CrossRef]
- Samsel, A.; Seneff, S. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance. Interdiscip. Toxicol. 2013, 6, 159–184. [Google Scholar] [CrossRef] [Green Version]
- Bertram, M.G.; Martin, J.M.; McCallum, E.S.; Alton, L.A.; Brand, J.A.; Brooks, B.W.; Cerveny, D.; Fick, J.; Ford, A.T.; Hellström, G.; et al. Frontiers in quantifying wildlife behavioural responses to chemical pollution. Biol. Rev. 2022, 97, 1346–1364. [Google Scholar] [CrossRef]
- Thoré, E.S.; Philippe, C.; Brendonck, L.; Pinceel, T. Towards improved fish tests in ecotoxicology-efficient chronic and multi-generational testing with the killifish Nothobranchius furzeri. Chemosphere 2021, 273, 129697. [Google Scholar] [CrossRef]
Exposure Type | Concentration | Source |
---|---|---|
Homeowner-grade Roundup® application recommended concentration | 2% or 20 g glyphosate/L herbicide | MSDS, Roundup Ready to Use® |
Agricultural-grade Roundup® application recommended concentration | up to 6.2% or 62 g glyphosate/L herbicide; or 20.5 oz glyphosate/acre | Roundup Powermax 3® label |
US: acceptable daily intake | 1.75 mg/kg/day | [14] |
EU: acceptable daily intake | 0.5 mg/kg/day | [15] |
EU: acceptable operator exposure level | 0.1 mg/kg/day | [15] |
Australia: acceptable daily intake | 0.3 mg/kg/day | [14] |
Canada: safe for aquatic life | 800 μg/L | [16] |
Agricultural topsoils, Europe | up to 2.05 mg/kg glyphosateup to 1.95 mg/kg AMPA, its major metabolite | [17] |
Surface water | 34–430 μg/L | [18] |
Surface water runoff | up to 5200 μg/L | [19] |
Oversprayed wetlands | 0.33 +/− 0.11 mg/L | [20] |
Groundwater, Hopelchén, Campeche, Mexico | 0.44–1.41 μg/L | [21] |
Companion animal feeds (dog and cat food) | 78.3–2140 μg/kg | [22] |
Bee bread | 0–700 ng/g | [23] |
Honey | up to 163 μg/kg | [14] |
Honey, Kaua’i Hawaii | average 118.3 μg/L | [14] |
Beer, Germany | 0.46–29.74 μg/L | [14] |
Beer, California | 9.1–49.7 μg/L | [14] |
Wine, California | 36.3–51.4 μg/L | [14] |
Soybeans, genetically modified | 9 mg/kg | [4] |
Soybean grains (US; USDA) | 0.265–18.53 mg/kg | [14] |
Soybean grains (US; FDA) | 0.003–10 mg/kg | [14] |
Soy sauce | up to 564 μg/L | [14] |
Chick peas | up to 11 mg/kg | [24] |
Great Value chickpeas | 889 ppb | [2] |
Lentils | up to 9 mg/kg | [24] |
Lentils, Europe | 0.01–11 mg/kg | [14] |
Lentils, HyVee | 535 ppb | [2] |
Green split peas, Good & Gather | 168 ppb | [2] |
Buckwheat, Europe | 0.02–12.7 mg/kg | [14] |
Barley, Europe | 0.02–8.9 mg/kg | [14] |
Barley | up to 1.7 mg/kg | [24] |
Corn (FDA) | 0.002–4.5 mg/kg | [14] |
Wheat, Europe | 0.01–2.9 mg/kg | [14] |
Wheat kernels | up to 1.1 mg/kg | [24] |
Rye, Europe | 0.01–1.8 mg/kg | [14] |
Oat, Europe | 0.68–0.82 mg/kg | [14] |
100% whole wheat bread, Village Hearth | 1150 ppb | [2] |
Oats, Quaker | 535 ppb | [2] |
Cheerios | 1125.3 ppb glyphosate 26.4 ppb AMPA | [2] |
Pita Chips, Stacy’s Simply Naked by Frito-Lay, Pepsi-Co | 812.5 ppb | [2] |
Crackers, Ritz | 270.2 ppb | [2] |
Plant-based protein bar, chocolate, Onnit | 134 ppb | [2] |
Toxicity Measure | LD50/EC50 | Source |
---|---|---|
Acute oral toxicity, Rat | 5000 mg/kg (no deaths) | MSDS for Roundup Powermax 3® |
Wistar rats, 60 ± 10 days old, 24–28 h exposure, acute oral toxicity | males 7203.58–7397.25 mg/kg females 7444.26–7878.50 mg/kg | [57] |
Acute inhalation toxicity, Rat | 2.23 mg/L | MSDS for Roundup Powermax 3® |
Acute dermal toxicity, Rat | 5000 mg/kg (no deaths) | MSDS for Roundup Powermax 3® |
Anurans, Rana catesbeiana and R. clamitans, larval (Gosner stage 25), 96 h static renewal and non-renewal exposure | 0.8–4.6 mg/L | [42] |
Anurans, larval, North America, 96 h static, nonrenewed aqueous exposure | 1.80–4.22 mg/L | [58] |
Onchorynchus mykiss, 96 h | swim ups 1.8 mg/L adults 6.1 mg/L | [42] |
Pimephales promelas, adult, 24 h static aqueous exposure | 1.7 mg/L | [42,59] |
Eisenia fetida, acute (14 days) | glyphosate acid 5600 mg/kg dry soil MON 52276 > 388 mg/kg dry soil | [15] |
Apis mellifera (methodology not specified) | 10 mg/L | [60] |
Drosophila melanogaster, depending on formulation and sex | 48 h 6.02–199 g/L 7 days 2.67–8.97 g/L | [61] |
Acartia tonsa (crustacean), 48 h exposure | 1.77 mg/L | [42,43] |
Marine crustaceans, depending on species, temperature and formulation, 48 or 96 h exposure | 6.57 to >500 mg/L | [62] |
Artemia salina (microcrustacean), early life stage, 48 h exposure in artificial seawater | Roundup Original® 14.19 mg/L Glyphosate AKB 480 37.53 mg/L | [33] |
Aquatic algae, 72 or 96 h exposure | 3.5–55.9 mg/L | [42] |
Google Scholar | Science Direct | Wiley Online Library | |
---|---|---|---|
Glyphosate behavior | 51,100/130/20 | 5613/100/11 | 2752/80/1 |
Roundup® behavior | 58,800/130/7 | 1780/125/5 | 1968/20/0 |
Glyphosate anti-predator behavior | 328/110/14 | 168/29/12 | 101/2/0 |
Roundup® anti-predator behavior | 373/90/16 | 67/19/9 | 93/20/0 |
Glyphosate feeding behavior | 23,000/140/17 | 2119/142/7 | 1379/54/5 |
Glyphosate sexual behavior | 13,600/80/13 | 530/50/13 | 612/60/1 |
Glyphosate courtship | 593/80/7 | 37/37/2 | 18/18/0 |
Glyphosate mating behavior | 5540/80/10 | 658/50/2 | 428/60/1 |
Glyphosate maternal behavior | 4930/70/10 | 446/50/5 | 257/60/3 |
Glyphosate animal activity | 47,700/90/4 | 5637/150/5 | 3529/40/0 |
Roundup® animal activity | 40,900/70/2 | 1762/75/2 | 1629/40/0 |
Glyphosate learning behavior | 18,500/60/32 | 545/50/11 | 512/20/5 |
Glyphosate memory | 9360/60/28 | 607/50/10 | 343/20/3 |
Glyphosate anxiety | 5900/60/28 | 326/50/13 | 167/20/7 |
Taxa | Activity | Feeding | Predator Avoidance | Reproductive Behavior | Learning and Memory | Social Behaviors |
---|---|---|---|---|---|---|
Bees | 9 | 7 | 0 | 0 | 8 | 4 |
Aquatic invertebrates | 0 | 3 | 2 | 0 | 0 | 0 |
Other terrestrial invertebrates | 14 | 9 | 3 | 11 | 1 | 0 |
Fish | 16 | 2 | 6 | 7 | 2 | 5 |
Amphibians and Reptiles | 3 | 1 | 5 | 0 | 1 | 0 |
Birds | 0 | 1 | 0 | 0 | 0 | 0 |
Rodents | 5 | 0 | 0 | 9 | 5 | 15 |
Humans | 0 | 0 | 0 | 0 | 6 | 5 |
Total | 38 | 23 | 14 | 27 | 23 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talyn, B.; Muller, K.; Mercado, C.; Gonzalez, B.; Bartels, K. The Herbicide Glyphosate and Its Formulations Impact Animal Behavior across Taxa. Agrochemicals 2023, 2, 367-408. https://doi.org/10.3390/agrochemicals2030022
Talyn B, Muller K, Mercado C, Gonzalez B, Bartels K. The Herbicide Glyphosate and Its Formulations Impact Animal Behavior across Taxa. Agrochemicals. 2023; 2(3):367-408. https://doi.org/10.3390/agrochemicals2030022
Chicago/Turabian StyleTalyn, Becky, Kelly Muller, Cindy Mercado, Bryan Gonzalez, and Katherine Bartels. 2023. "The Herbicide Glyphosate and Its Formulations Impact Animal Behavior across Taxa" Agrochemicals 2, no. 3: 367-408. https://doi.org/10.3390/agrochemicals2030022
APA StyleTalyn, B., Muller, K., Mercado, C., Gonzalez, B., & Bartels, K. (2023). The Herbicide Glyphosate and Its Formulations Impact Animal Behavior across Taxa. Agrochemicals, 2(3), 367-408. https://doi.org/10.3390/agrochemicals2030022