Neonicotinoid Sunflower Seed Treatment, While Not Detected in Pollen and Nectar, Still Impacts Wild Bees and Crop Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling Design
2.2. Sampling for Pesticide Residue Analysis
2.2.1. Soil
2.2.2. Pollen
2.2.3. Nectar
2.2.4. Bees
2.3. Sampling for Wild Bee Biodiversity
2.4. Sampling for Floral Resources and Crop Yield
2.5. Analytical Methods for Pesticide Detection
2.6. Statistical Analysis
3. Results
3.1. Overview of Pesticide Detection in Samples
3.2. Pesticide Number and Concentration
3.2.1. Number of Pesticides
3.2.2. Pesticide Concentration for All Pesticides
3.2.3. Individual Pesticide Concentration
3.3. Floral Resources and Crop Yield
3.4. Wild Bee Composition
4. Discussion
4.1. Effect of Thiamethoxam Seed Treatment on Bee Abundance and Biodiversity
4.2. Effect of Thiamethoxam Seed Treatment on Seed Yield per Flower Head
4.3. Pesticide Exposure for Bees Extends beyond Materials Applied within the Sunflower Crop
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, R.; Gulya, T.; Light, S.; Bali, K.; Mathesius, K.; Meyer, R.D. Sunflower Hybrid Seed Production in California. 2019. Available online: https://anrcatalog.ucanr.edu/pdf/8638.pdf (accessed on 2 June 2023).
- Bredeson, M.M.; Lundgren, J.G. Thiamethoxam Seed Treatments Have No Impact on Pest Numbers or Yield in Cultivated Sunflowers. J. Econ. Entomol. 2015, 108, 2665–2671. [Google Scholar] [CrossRef] [PubMed]
- Krupke, C.H.; Holland, J.D.; Long, E.Y.; Eitzer, B.D. Planting of Neonicotinoid-Treated Maize Poses Risks for Honey Bees and Other Non-Target Organisms over a Wide Area without Consistent Crop Yield Benefit. J. Appl. Ecol. 2017, 54, 1449–1458. [Google Scholar] [CrossRef] [Green Version]
- Hladik, M.L.; Main, A.R.; Goulson, D. Environmental Risks and Challenges Associated with Neonicotinoid Insecticides. Environ. Sci. Technol. 2018, 52, 3329–3335. [Google Scholar] [CrossRef] [Green Version]
- Buszewski, B.; Bukowska, M.; Ligor, M.; Staneczko-Baranowska, I. A Holistic Study of Neonicotinoids Neuroactive Insecticides—Properties, Applications, Occurrence, and Analysis. Environ. Sci. Pollut. Res. 2019, 26, 34723–34740. [Google Scholar] [CrossRef] [Green Version]
- Lundin, O.; Rundlöf, M.; Smith, H.G.; Fries, I.; Bommarco, R. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps. PLoS ONE 2015, 10, e0136928. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of Pollinators in Changing Landscapes for World Crops. Proc. Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Greenleaf, S.S.; Kremen, C. Wild Bees Enhance Honey Bees’ Pollination of Hybrid Sunflower. Proc. Natl. Acad. Sci. USA 2006, 103, 13890–13895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global Pollinator Declines: Trends, Impacts and Drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee Declines Driven by Combined Stress from Parasites, Pesticides, and Lack of Flowers. Science 2015, 347, 125597. [Google Scholar] [CrossRef]
- Laycock, I.; Cotterell, K.C.; O’Shea-Wheller, T.A.; Cresswell, J.E. Effects of the Neonicotinoid Pesticide Thiamethoxam at Field-Realistic Levels on Microcolonies of Bombus terrestris Worker Bumble Bees. Ecotoxicol. Environ. Saf. 2014, 100, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Papach, A.; Fortini, D.; Grateau, S.; Aupinel, P.; Richard, F.J. Larval Exposure to Thiamethoxam and American Foulbrood: Effects on Mortality and Cognition in the honey bee Apis mellifera. J. Apic. Res. 2017, 56, 475–486. [Google Scholar] [CrossRef]
- Sandrock, C.; Tanadini, M.; Tanadini, L.G.; Fauser-Misslin, A.; Potts, S.G.; Neumann, P. Impact of Chronic Neonicotinoid Exposure on Honeybee Colony Performance and Queen Supersedure. PLoS ONE 2014, 9, e103592. [Google Scholar] [CrossRef] [Green Version]
- Stanley, D.A.; Smith, K.E.; Raine, N.E. Bumblebee Learning and Memory Is Impaired by Chronic Exposure to a Neonicotinoid Pesticide. Sci. Rep. 2015, 5, 16508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, H.; Overmyer, J.; Feken, M.; Ruddle, N.; Vaughan, S.; Scorgie, E.; Bocksch, S.; Hill, M. Thiamethoxam: Long-Term Effects Following Honey Bee Colony-Level Exposure and Implications for Risk Assessment. Sci. Total Environ. 2019, 654, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Tesovnik, T.; Zorc, M.; Ristanić, M.; Glavinić, U.; Stevanović, J.; Narat, M.; Stanimirović, Z. Exposure of Honey Bee Larvae to Thiamethoxam and Its Interaction with Nosema ceranae Infection in Adult Honey Bees. Environ. Pollut. 2020, 256, 113443. [Google Scholar] [CrossRef]
- Coulon, M.; Dalmon, A.; Di Prisco, G.; Prado, A.; Arban, F.; Dubois, E.; Ribière-Chabert, M.; Alaux, C.; Thiéry, R.; Le Conte, Y. Interactions between Thiamethoxam and Deformed Wing Virus Can Drastically Impair Flight Behavior of Honey Bees. Front. Microbiol. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Potts, R.; Clarke, R.M.; Oldfield, S.E.; Wood, L.K.; Hempel de Ibarra, N.; Cresswell, J.E. The Effect of Dietary Neonicotinoid Pesticides on Non-Flight Thermogenesis in Worker Bumble Bees (Bombus terrestris). J. Insect Physiol. 2018, 104, 33–39. [Google Scholar] [CrossRef]
- Tosi, S.; Démares, F.J.; Nicolson, S.W.; Medrzycki, P.; Pirk, C.W.W.; Human, H. Effects of a Neonicotinoid Pesticide on Thermoregulation of African Honey Bees (Apis mellifera scutellata). J. Insect Physiol. 2016, 93–94, 56–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosi, S.; Nieh, J.C. A Common Neonicotinoid Pesticide, Thiamethoxam, Alters Honey Bee Activity, Motor Functions, and Movement to Light. Sci. Rep. 2017, 7, 15132. [Google Scholar] [CrossRef] [Green Version]
- Tosi, S.; Burgio, G.; Nieh, J.C. A Common Neonicotinoid Pesticide, Thiamethoxam, Impairs Honey Bee Flight Ability. Sci. Rep. 2017, 7, 1201. [Google Scholar] [CrossRef] [Green Version]
- Stanley, D.A.; Garratt, M.P.D.; Wickens, J.B.; Wickens, V.J.; Potts, S.G.; Raine, N.E. Neonicotinoid Pesticide Exposure Impairs Crop Pollination Services Provided by Bumblebees. Nature 2015, 528, 548–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopit, A.M.; Pitts-Singer, T.L. Routes of Esticide Exposure in Solitary, Cavity-Nesting Bees. Environ. Entomol. 2018, 47, 499–510. [Google Scholar] [CrossRef]
- Sgolastra, F.; Hinarejos, S.; Pitts-Singer, T.L.; Boyle, N.K.; Joseph, T.; Luckmann, J.; Raine, N.E.; Singh, R.; Williams, N.M.; Bosch, J. Pesticide Exposure Assessment Paradigm for Solitary Bees. Environ. Entomol. 2019, 48, 22–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sgolastra, F.; Medrzycki, P.; Bortolotti, L.; Maini, S.; Porrini, C.; Simon-Delso, N.; Bosch, J. Bees and Pesticide Regulation: Lessons from the Neonicotinoid Experience. Biol. Conserv. 2020, 241, 108356. [Google Scholar] [CrossRef]
- Willis Chan, D.S.; Prosser, R.S.; Rodríguez-Gil, J.L.; Raine, N.E. Assessment of Risk to Hoary Squash Bees (Peponapis Pruinosa) and Other Ground-Nesting Bees from Systemic Insecticides in Agricultural Soil. Sci. Rep. 2019, 9, 11870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rundlöf, M.; Andersson, G.K.S.; Bommarco, R.; Fries, I.; Hederström, V.; Herbertsson, L.; Jonsson, O.; Klatt, B.K.; Pedersen, T.R.; Yourstone, J.; et al. Seed Coating with a Neonicotinoid Insecticide Negatively Affects Wild Bees. Nature 2015, 521, 77–80. [Google Scholar] [CrossRef]
- Parker, F.D.; Tepedino, V.J.; Bohart, G.E. Notes on the Biology of a Common Sunflower Bee, Melissodes (Eumelissodes) Agilis Cresson. N. Y. Entomol. Soc. 1981, 89, 43–52. [Google Scholar]
- Sardiñas, H.S.; Tom, K.; Ponisio, L.C.; Rominger, A.; Kremen, C. Sunflower (Helianthus annuus) Pollination in California’s Central Valley Is Limited by Native Bee Nest Site Location. Ecol. Appl. 2016, 26, 438–447. [Google Scholar] [CrossRef]
- Bonmatin, J.M.; Moineau, I.; Charvet, R.; Fleche, C.; Colin, M.E.; Bengsch, E.R. A LC/APCI-MS/MS Method for Analysis of Imidacloprid in Soils, in Plants, and in Pollens. Anal. Chem. 2003, 75, 2027–2033. [Google Scholar] [CrossRef]
- Stadler, T.; Ginés, D.M.; Buteler, M. Long-Term Toxicity Assessment of Imidacloprid to Evaluate Side Effects on Honey Bees Exposed to Treated Sunflower in Argentina. Bull. Insectology 2003, 56, 77–81. [Google Scholar]
- Tasei, J.N.; Ripault, G.; Rivault, E. Hazards of Imidacloprid Seed Coating to Bombus Terrestris (Hymenoptera: Apidae) When Applied to Sunflower. J. Econ. Entomol. 2001, 94, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Bredeson, M.M.; Lundgren, J.G. Thiamethoxam Seed Treatments Reduce Foliar Predator and Pollinator Populations in Sunflowers (Helianthus annuus), and Extra-Floral Nectaries as a Route of Exposure for Seed Treatments to Affect the Predator, Coleomegilla Maculata (Coleoptera: Coccinellida. Crop Prot. 2018, 106, 86–92. [Google Scholar] [CrossRef]
- Lambert, M.; Packer, M. How Gendered Language Leads Scientists Astray. Washington Post 2019. Available online: https://www.washingtonpost.com/outlook/2019/06/10/how-gendered-language-leads-scientists-astray/ (accessed on 2 June 2023).
- Gary, N.E.; Lorenzen, K. A Method for Collecting the Honey-Sac Contents from Honeybees. J. Apic. Res. 1976, 15, 73–79. [Google Scholar] [CrossRef]
- Chiu, C.H.; Wang, Y.T.; Walther, B.A.; Chao, A. An Improved Nonparametric Lower Bound of Species Richness via a Modified Good-Turing Frequency Formula. Biometrics 2014, 70, 671–682. [Google Scholar] [CrossRef]
- Chao, A.; Wang, Y.T.; Jost, L. Entropy and the Species Accumulation Curve: A Novel Entropy Estimator via Discovery Rates of New Species. Methods Ecol. Evol. 2013, 4, 1091–1100. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Main, A.R.; Hladik, M.L.; Webb, E.B.; Goyne, K.W.; Mengel, D. Beyond Neonicotinoids–Wild Pollinators Are Exposed to a Range of Pesticides While Foraging in Agroecosystems. Sci. Total Environ. 2020, 742, 140436. [Google Scholar] [CrossRef]
- Hladik, M.L.; Vandever, M.; Smalling, K.L. Exposure of Native Bees Foraging in an Agricultural Landscape to Current-Use Pesticides. Sci. Total Environ. 2016, 542, 469–477. [Google Scholar] [CrossRef]
- Hladik, M.L.; McWayne, M.M. Methods of Analysis—Determination of Pesticides in Sediment Using Gas Chromatography/Mass Spectrometry: U.S. Geological Survey Techniques and Methods 5–C3, 18p. 2012. Available online: http://Pubs.Usgs.Gov/Tm/Tm5c3 (accessed on 2 June 2023).
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Hladik, M.L.; Ward, L.T. Pesticide Concentrations in Bees and Other Matrices Collected from Sunflower Fields (with and without a Neonicotinoid Seed Treatment) near Sacramento; Geological Survey Data Release: Berkeley, CA, USA, 2022. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Team, N. R: A Language and Environment for Statistical Computing; Version 3.6.6; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019; ISBN 9781544336473. [Google Scholar]
- Lenth, R. Emmeans: Estimated Marginal Means. Available online: https://cran.r-project.org/package=emmeans (accessed on 2 June 2023).
- Potts, S.G.; Vulliamy, B.; Dafni, A.; Ne’eman, G.; Willmer, P. Linking Bees and Flowers: How Do Floral Communities Structure Pollinator Communities? Ecology 2003, 84, 2628–2642. [Google Scholar] [CrossRef] [Green Version]
- Potts, S.G.; Vulliamy, B.; Roberts, S.; O’Toole, C.; Dafni, A.; Ne’eman, G.; Willmer, P.G. Nectar Resource Diversity Organises Flower-Visitor Community Structure. Entomol. Soc. Appl. 2004, 113, 103–107. [Google Scholar] [CrossRef]
- Kessler, S.C.; Tiedeken, E.J.; Simcock, K.L.; Derveau, S.; Mitchell, J.; Softley, S.; Stout, J.C.; Wright, G.A. Bees Prefer Foods Containing Neonicotinoid Pesticides. Nature 2015, 521, 74–76. [Google Scholar] [CrossRef] [Green Version]
- Vannette, R.L. The Floral Microbiome: Plant, Pollinator, and Microbial Perspectives. Annu. Rev. Ecol. Evol. Syst. 2020, 51, 363–386. [Google Scholar] [CrossRef]
- Barber, N.A.; Soper Gorden, N.L. How Do Belowground Organisms Influence Plant–Pollinator Interactions? J. Plant Ecol. 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Inouye, D.W. Resource Partitioning in Bumblebees: Experimental Studies of Foraging Behavior. Ecology 1978, 59, 672–678. [Google Scholar] [CrossRef]
- Ward, L.T.; Hladik, M.L.; Guzman, A.; Winsemius, S.; Bautista, A.; Kremen, C.; Mills, N.J. Pesticide Exposure of Wild Bees and Honey Bees Foraging from Field Border Flowers in Intensively Managed Agriculture Areas. Sci. Total Environ. 2022, 831, 154697. [Google Scholar] [CrossRef] [PubMed]
- Rand, E.E.D.; Smit, S.; Beukes, M.; Apostolides, Z.; Pirk, C.W.W.; Nicolson, S.W. Detoxification Mechanisms of Honey Bees (Apis Mellifera) Resulting in Tolerance of Dietary Nicotine. Sci. Rep. 2015, 5, 11779. [Google Scholar] [CrossRef] [Green Version]
- Gierer, F.; Vaughan, S.; Slater, M.; Thompson, H.M.; Elmore, S.; Girling, R.D. A Review of the Factors That Influence Pesticide Residues in Pollen and Nectar: Future Research Requirements for Optimising the Estimation of Pollinator Exposure. Environ. Pollut. 2019, 249, 236–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, E.Y.; Krupke, C.H. Non-Cultivated Plants Present a Season-Long Route of Pesticide Exposure for Honey Bees. Nat. Commun. 2016, 7, 11629. [Google Scholar] [CrossRef]
- David, A.; Botías, C.; Abdul-Sada, A.; Nicholls, E.; Rotheray, E.L.; Hill, E.M.; Goulson, D. Widespread Contamination of Wildflower and Bee-Collected Pollen with Complex Mixtures of Neonicotinoids and Fungicides Commonly Applied to Crops. Environ. Int. 2016, 88, 169–178. [Google Scholar] [CrossRef] [PubMed]
- McArt, S.H.; Fersch, A.A.; Milano, N.J.; Truitt, L.L.; Böröczky, K. High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Sci. Rep. 2017, 7, 46554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silmon-Delso, N.; San Martin, G.; Bruneau, E.; Delcourt, C.; Hautier, L. The challenges of prediciting pesticide exposure of honey bees at the landscape level. Sci. Rep. 2017, 7, 3801. [Google Scholar] [CrossRef] [Green Version]
- Graham, K.K.; Milbrath, M.O.; Zhang, Y.; Baert, N.; McArt, S.; Isaacs, R. Pesticide risk to managed bees during blueberry pollination in primarily driven by off-farm exposures. Sci. Rep. 2022, 12, 7189. [Google Scholar] [CrossRef] [PubMed]
- Iverson, A.; Hale, C.; Richardson, L.; Miller, O.; McArt, S. Synergistic Effects of Three Sterol Biosynthesis Inhibiting Fungicides on the Toxicity of a Pyrethroid and Neonicotinoid Insecticide to Bumble Bees. Apidologie 2019, 50, 733–744. [Google Scholar] [CrossRef]
- Mao, W.; Schuler, M.A.; Berenbaum, M.R. Disruption of Quercetin Metabolism by Fungicide Affects Energy Production in Honey Bees (Apis Mellifera). Proc. Natl. Acad. Sci. USA 2017, 114, 2538–2543. [Google Scholar] [CrossRef] [Green Version]
- Bernauer, O.M.; Gaines-Day, H.R.; Steffan, S.A. Colonies of Bumble Bees (Bombus impatiens) Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure. Insects 2015, 6, 478–488. [Google Scholar] [CrossRef] [Green Version]
- USEPA Ecotox Database: United States Environmental Protection Agency. Available online: http://cfpub.epa.gov/ecotox/quick_query.htm (accessed on 2 June 2023).
- von der Ohe, P.C.; de Zwart, D. Toxic Units (TU) Indicators. In Encyclopedia of Aquatic Ecotoxicology; Ferard, J.-F., Blaise, C., Eds.; Springer Science + Business Media: Dordrecht, The Netherlands, 2013; pp. 1161–1170. ISBN 9789400757042. [Google Scholar]
- Tsvetkov, N.; Samson-Robert, O.; Sood, K.; Patel, H.S.; Malena, D.A.; Gajiwala, P.H.; Maciukiewicz, P.; Fournier, V.; Zayed, A. Chronic Exposure to Neonicotinoids Reduces Honey Bee Health near Corn Crops. Science 2017, 356, 1395–1397. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ward, L.T.; Hladik, M.L.; Guzman, A.; Bautista, A.; Mills, N.J. Neonicotinoid Sunflower Seed Treatment, While Not Detected in Pollen and Nectar, Still Impacts Wild Bees and Crop Yield. Agrochemicals 2023, 2, 279-295. https://doi.org/10.3390/agrochemicals2020018
Ward LT, Hladik ML, Guzman A, Bautista A, Mills NJ. Neonicotinoid Sunflower Seed Treatment, While Not Detected in Pollen and Nectar, Still Impacts Wild Bees and Crop Yield. Agrochemicals. 2023; 2(2):279-295. https://doi.org/10.3390/agrochemicals2020018
Chicago/Turabian StyleWard, Laura T., Michelle L. Hladik, Aidee Guzman, Ariana Bautista, and Nicholas J. Mills. 2023. "Neonicotinoid Sunflower Seed Treatment, While Not Detected in Pollen and Nectar, Still Impacts Wild Bees and Crop Yield" Agrochemicals 2, no. 2: 279-295. https://doi.org/10.3390/agrochemicals2020018
APA StyleWard, L. T., Hladik, M. L., Guzman, A., Bautista, A., & Mills, N. J. (2023). Neonicotinoid Sunflower Seed Treatment, While Not Detected in Pollen and Nectar, Still Impacts Wild Bees and Crop Yield. Agrochemicals, 2(2), 279-295. https://doi.org/10.3390/agrochemicals2020018