Bacterial Zoonotic Diseases and Male Reproduction
Abstract
:Simple Summary
Abstract
1. Introduction
2. Physiology of Male Reproductive System
3. Hypothalamic–Pituitary–Gonadal Axis in Male Reproductive Function Control
4. Pathogenesis of Bacterial Zoonotic Diseases
Stage | Description |
---|---|
Exposure | Humans are exposed to the bacteria through direct contact with infected animals, consumption of contaminated food or water, or contact with contaminated soil or surfaces. |
Adherence | The bacteria adhere to and colonize the host’s mucosal surfaces, such as the respiratory or gastrointestinal tract. |
Invasion | The bacteria invade host cells or tissues, using a variety of mechanisms such as secretion of virulence factors, inducing host cell uptake, or direct penetration. |
Multiplication | The bacteria multiply rapidly in host tissues, often leading to tissue damage and inflammation. |
Spread | The bacteria may spread to other tissues or organs through the bloodstream or lymphatic system. |
Clinical symptoms | The host develops clinical symptoms, which can range from mild to severe and may include fever, chills, diarrhea, respiratory symptoms, or systemic illness. |
5. Bacterial Zoonosis and Their Effect on Male Reproduction
5.1. Leptospirosis on Male Reproductive Function
5.2. Anthrax on Male Reproductive Function
5.3. Brucellosis on Male Reproduction
5.4. Pasteurella Multocida and Male Reproduction
5.5. Bartonellosis and Male Reproduction
5.6. Yersiniosis and Male Reproduction
5.7. Q Fever and Male Reproduction
5.8. Staphylococcus and Male Reproduction
5.9. Tuberculosis and Male Reproduction
5.10. Campylobacteriosis and Male Reproduction
5.11. Escherichia coli (Shiga (Vero) Toxin-Producing (E. coli) (STEC)) and Male Reproduction
5.12. Listeriosis and Male Reproduction
6. Bacterial Zoonotic Infections on Male Reproductive Function: Identified Mechanisms
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deshpande, P.S.; Gupta, A.S. Causes and prevalence of factors causing infertility in a public health facility. J. Hum. Reprod. Sci. 2019, 12, 287–293. [Google Scholar] [CrossRef]
- Henkel, R. Long-term consequences of sexually transmitted infections on men’s sexual function: A systematic review. Arab J. Urol. 2021, 19, 411–418. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, K.; Yao, Y.; Li, J.; Deng, S. Bacterial infections affect male fertility: A focus on the oxidative stress-autophagy axis. Front. Cell Dev. Biol. 2021, 9, e1005523. [Google Scholar] [CrossRef]
- Okeleji, O.L.; Ajayi, L.O.; Odeyemi, A.N.; Amos, V.; Ajayi, H.O.; Akinyemi, A.O.; Nzekwe, C.S.; Adeyemi, J.W.; Ajayi, A.F. Viral zoonotic diseases of public health importance and their effect on male reproduction. Zoonotic Dis. 2022, 2, 291–300. [Google Scholar] [CrossRef]
- Rahman, M.T.; Sobur, M.A.; Islam, M.S.; Ievy, S.; Hossain, M.J.; El Zowalaty, M.E.; Rahman, A.T.; Ashour, H.M. Zoonotic diseases: Etiology, impact, and control. Microorganisms 2020, 8, 1405. [Google Scholar] [CrossRef]
- World Health Organization. Asia Pacific Strategy for Emerging Diseases; WHO Regional Office for the Western Pacific: Manila, PL, USA, 2010; Available online: https://iris.wpro.who.int/bitstream/handle/10665.1/7819/9789290615040_eng.pdf (accessed on 23 August 2023).
- Bari, C.D.; Venkateswaran, N.; Fastl, C.; Gabriël, S.; Grace, D.; Havelaar, A.H.; Devleesschauwer, B. The global burden of neglected zoonotic diseases: Current state of evidence. One Health 2023, 17, e100595. [Google Scholar] [CrossRef]
- Asante, J.; Noreddin, A.; El Zowalaty, M.E. Systematic review of important bacterial zoonoses in Africa in the last decade in light of the ‘One Health’ concept. Pathogens 2019, 8, 50. [Google Scholar] [CrossRef]
- Haider, N.; Rothman-Ostrow, P.; Osman, A.Y.; Arruda Liã, B.; Macfarlane-Berry, L.; Elton, L.; Kock, R.A. COVID-19—Zoonosis or emerging infectious disease? Front. Public Health 2020, 8, 763. [Google Scholar] [CrossRef]
- Cantas, L.; Suer, K. Review: The important bacterial zoonoses in “One Health” concept. Front. Public Health 2014, 2, 144. [Google Scholar] [CrossRef]
- Ghasemzadeh, I.; Namazi, S.H. Review of bacterial and viral zoonotic infections transmitted by dogs. J. Med. Life 2015, 8, 1–5, PMID: 28316698PMCID: PMC5319273. [Google Scholar]
- Schaeffer, A.J. Aetiopathology and pathogenesis of urogenital infections. Andrologia 1998, 30, 3–6. [Google Scholar] [CrossRef]
- Sasikumar, S.; Dakshayani, D.; Sarasa, D. An investigation of DNA fragmentation and morphological changes caused by bacteria and fungi in human spermatozoa. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 84–96. [Google Scholar] [CrossRef]
- Elmulla, K.; Köhn, F.; Dandal, M.; Beheiry, A.H.E.; Schiefer, H.; Weidner, W.; Schill, W. In vitro effect of Escherichia coli on human sperm acrosome reaction. Arch. Androl. 1996, 37, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Rana, K.; Thaper, D.; Vander, H.; Prabha, V. Pseudomonas aeruginosa: A risk factor for fertility in male mice. Reprod. Biol. 2018, 18, 450–455. [Google Scholar] [CrossRef]
- Oghbaei, H.; Yeganeh Rastgar Rezaei, S.; Nikanfar, S.; Zarezadeh, R.; Sadegi, M.; Latifi, Z.; Nouri, M.; Fattahi, A.; Ahmadi, Y.; Bleisinger, N. Effects of bacteria on male fertility: Spermatogenesis and sperm function. Life Sci. 2020, 256, 117891. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Pacey, A.; Eley, A. Chlamydia trachomatis-induced death of human spermatozoa is caused primarily by lipopolysaccharide. J. Med. Microbiol. 2003, 52, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Rose, B.I.; Scott, B.L. Sperm motility, morphology, hyperactivation, and ionophore-induced acrosome reactions after overnight incubation with mycoplasmas. Fertil. Steril. 1994, 61, 341–348. [Google Scholar] [CrossRef]
- Gurung, P.; Yetiskul, E.; Jialal, I. Physiology, Male Reproductive System. StatPearls. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538429/ (accessed on 15 January 2024).
- Al-Agha, O.M.; Axiotis, C.A. An in-depth look at Leydig cell tumor of the testis. Arch. Pathol. Lab. Med. 2007, 131, 311–317. [Google Scholar] [CrossRef]
- O’Donnell, L.; Stanton, P.; de Kretser, D.M. Endocrinology of the Male Reproductive system and Spermatogenesis. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; 2017. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279031/ (accessed on 17 August 2023).
- Griswold, M.D. The central role of Sertoli cells in spermatogenesis. Semin. Cell Dev. Biol. 1998, 9, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Foster, R.A. Male reproductive system. In Pathologic Basis of Veterinary Disease; Elsevier: Philadelphia, PA, USA, 2017; pp. 1194–1222.e1. [Google Scholar] [CrossRef]
- Wong, W.J.; Khan, Y.S. Histology, Sertoli Cell. StatPearls. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560631/ (accessed on 18 August 2023).
- Houda, A.; Nyaz, S.; Mohamed Sobhy, B.; Hussein Bosilah, A.; Romeo, M.; Peter Michael, J.; Mohamad Eid, H. Seminiferous Tubules and Spermatogenesis; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Mawhinney, M.; Mariotti, A. Physiology, pathology and pharmacology of the male reproductive system. Periodontol. 2000 2013, 61, 232–251. [Google Scholar] [CrossRef]
- Sharma, R.; Agarwal, A. Spermatogenesis: An overview. In Sperm Chromatin; Zini, A., Agarwal, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Suede, S.H.; Malik, A.; Sapra, A. Histology, Spermatogenesis. StatPearls. 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553142/ (accessed on 18 August 2023).
- de Kretser, D.M.; Loveland, K.L.; Meinhardt, A.; Simorangkir, D.; Wreford, N. Spermatogenesis. Hum. Reprod. 1998, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Garner, D.L.; Hafez, E.S.E. Spermatozoa and seminal plasma. In Reproduction in Farm Animals; Hafez, B.E., Hafez, S., Eds.; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Gervasi, M.G.; Visconti, P.E. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology 2017, 5, 204–218. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, D. The functional anatomy of the human spermatozoon: Relating ultrastructure and function. Mol. Hum. Reprod. 2018, 24, 567–592. [Google Scholar] [CrossRef]
- Khawar, M.; Gao, H.; Li, W. Mechanism of acrosome biogenesis in mammals. Front. Cell Dev. Biol. 2019, 7, 195. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.Y.; Veldhuis, J.D. Hypothalamo-pituitary unit, testis, and male accessory organs. In Yen and Jaffe’s Reproductive Endocrinology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 285–300.e8. [Google Scholar] [CrossRef]
- Marques, P.; Skorupskaite, K.; Rozario, K.S.; Anderson, R.A.; George, J.T. Physiology of GnRH and Gonadotropin Secretion; Endotext. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279070/ (accessed on 18 August 2023).
- Sadiq, N.M.; Tadi, P. Physiology, Pituitary Hormones. StatPearls. 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557556/ (accessed on 18 August 2023).
- Dorfman, R.I.; Menon, K.M.J.; Sharma, D.C.; Joshi, S.; Forchielli, E. Steroid hormone biosynthesis in rat, rabbit and capuchin testis. Ciba Found. Colloq. Endocrinol. 1967, 16, 91. [Google Scholar] [CrossRef]
- Mindnich, R.; Haller, F.; Halbach, F.; Moeller, G.; Angelis, M.H.D.; Adamski, J. Androgen metabolism via 17β-hydroxysteroid dehydrogenase type 3 in mammalian and non-mammalian vertebrates: Comparison of the human and the zebrafish enzyme. J. Mol. Endocrinol. 2005, 35, 305–316. [Google Scholar] [CrossRef]
- Nedresky, D.; Singh, G. Physiology, Luteinizing Hormone. StatPearls. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539692/ (accessed on 18 August 2023).
- Hinson, J.P. Hormonal control of reproduction part i. In The Endocrine System; Churchill Livingstone: London, UK, 2010; pp. 87–98. [Google Scholar] [CrossRef]
- Eldar-Geva, T.; Liberty, G.; Chertin, B.; Farkas, A.; Margalioth, E.J.; Spitz, I.M. Relationships between FSH, inhibin b, anti-mullerian hormone, and testosterone during long-term treatment with the GnRH-agonist histrelin in patients with prostate cancer. Eur. J. Endocrinol. 2010, 162, 177–181. [Google Scholar] [CrossRef]
- Nassar, G.N.; Leslie, S.W. Physiology, Testosterone. StatPearls. 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK526128/ (accessed on 15 January 2024).
- Jones, R.E. Endocrinology, brain, and pituitary gland. Hum. Reprod. Biology. 2014, 3–22. [Google Scholar] [CrossRef]
- Turcu, A.; Smith, J.M.; Auchus, R.; Rainey, W.E. Adrenal androgens and androgen precursors—Definition, synthesis, regulation and physiologic actions. Compr. Physiol. 2014, 4, 1369–1381. [Google Scholar] [CrossRef]
- Johnson, L.R.; Ruhmann-Wennhold, A.; Nelson, D.H. The in vivo effect of ACTH on utilization of reducing energy for pregnenolone synthesis by adrenal mitochondria. Ann. N. Y. Acad. Sci. 1973, 212, 307–318. [Google Scholar] [CrossRef]
- Robert, E.S. Pathogenesis and virulence of zoonotic infections in humans. In The Emergence of Zoonotic Diseases: Understanding the Impact on Animal and Human Health: Workshop Summary; National Academies Press: Washington, DC, USA, 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK98094/ (accessed on 8 August 2023).
- Morwal, H.; Bacterial, S.S. zoonosis—A public health importance. J. Dairy Vet. Anim. Res. 2017, 5, 56–59. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Food Safety. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 15 January 2024).
- Peterson, J.W. Bacterial Pathogenesis. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; Chapter 7. Available online: https://www.ncbi.nlm.nih.gov/books/NBK8526/ (accessed on 15 January 2024).
- Ribet, D.; Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2015, 17, 173–183. [Google Scholar] [CrossRef]
- Adler, B. Pathogenesis of leptospirosis: Cellular and molecular aspects. Vet. Microbiol. 2014, 172, 353–358. [Google Scholar] [CrossRef]
- Al-Khafaji Alwan, M.J. Effects of oxidative stress on the male reproductive tract of mice infected with Brucella melitensis. World J. Pharm. Res. 2017, 6, 186–199. [Google Scholar] [CrossRef]
- Bapir, R.; Ahmed, S.F.; Tahir, S.H.; Salih, A.M.; Kakamad, F.H.; Ahmed, G.S.; Ali, R.K.; Ahmed, S.M.; Sidiq, S.H. Brucella orchitis presenting as a testicular mass mimicking a testicular tumor: A rare case report. Afr. J. Urol. 2023, 29, 5. [Google Scholar] [CrossRef]
- Haake, D.A.; Levett, P.N. Leptospirosis in humans. Curr. Top. Microbiol. Immunol. 2015, 387, 65–97. [Google Scholar] [CrossRef]
- Vincent, A.T.; Schiettekatte, O.; Goarant, C.; Neela, V.K.; Bernet, E.; Thibeaux, R.; Ismail, N.; Mohd Khalid, M.K.; Amran, F.; Masuzawa, T.; et al. Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics. PLoS Neglected Trop. Dis. 2019, 13, e0007270. [Google Scholar] [CrossRef]
- Kastelic, J.P.; Thundathil, J.C. Breeding soundness evaluation and semen analysis for predicting bull fertility. Reprod. Domest. Anim. 2008, 43, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Mughini-Gras, L.; Bonfanti, L.; Natale, A.; Comin, A.; Ferronato, A.; La Greca, E.; Patregnani, T.; Lucchese, L.; Maragon, S. Application of an integrated outbreak management plan for the control of leptospirosis in dairy cattle herds. Epidemiol. Infect. 2014, 142, 1172–1181. [Google Scholar] [CrossRef]
- Magajevski, F.S.; Girio, R.J.S.; Mathias, L.A.; Myashiro, S.; Genovez, M.E.; Scarcelli, E.P. Detection of Leptospira spp. in the semen and urine of bulls serologically reactive to Leptospira interrogans serovar Hardjo. Braz. J. Microbiol. 2005, 36, 43–47. [Google Scholar] [CrossRef]
- Vijayachari, P.; Sugunan, A.P.; Shriram, A.N. Leptospirosis: An emerging global public health problem. J. Biosci. 2008, 33, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; de Vries, S.G.; Ahmed, A.; Visser, B.J.; Nagel, I.M.; Spijker, R.; Grobusch, M.P.; Hartskeerl, R.A.; Goris, M.G.; Leeflang, M.M. Nucleic acid and antigen detection tests for leptospirosis. Cochrane Database Syst. Rev. 2019, 8, CD011871. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Leptospirosis: Fact Sheet for Clinicians. 2022. Available online: https://www.cdc.gov/leptospirosis/pdf/fs-leptospirosis-clinicians-eng-508.pdf (accessed on 18 August 2022).
- Ngetich, W. Review of Anthrax: A Disease of Animals and Humans. Int. J. Agric. Environ. Biores. 2019, 4, 123–134. [Google Scholar]
- Goel, A.K. Anthrax: A disease of biowarfare and public health importance. World J. Clin. Cases 2015, 3, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Scorpio, A.; Blank, T.E.; Day, W.A.; Chabot, D.J. Biological weapons. Cell. Mol. Life Sci. 2006, 63, 2237–2248. [Google Scholar] [CrossRef]
- Catherino, W.H.; Levi, A.; Kao, T.C.; Leondires, M.P.; McKeeby, J.; Segars, J.H. Anthrax vaccine does not affect semen parameters, embryo quality, or pregnancy outcome in couples with a vaccinated male military service member. Fertil. Steril. 2005, 83, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Naumenkova, V.A.; Kalinova, A.V. Changes in Parameters of Fresh and Deconserved Sperm of Stallions after Their Vaccination against Anthrax. Russ. Agric. Sci. 2019, 45, 589–592. [Google Scholar] [CrossRef]
- Nardi Júnior, G.; Megid, J.; Mathias, L.A.; Paulin, L.; Vicente, A.F.; Cortez, A.; Ribeiro, M.G. Performance of microbiological, serological, molecular, and modified seminal plasma methods in the diagnosis of Brucella abortus in semen and serum of bovine bulls. Biology 2017, 48, 6–9. [Google Scholar] [CrossRef]
- Meltzer, E.; Sidi, Y.; Smolen, G.; Banai, M.; Bardenstein, S.; Schwartz, E. Sexually Transmitted Brucellosis in Humans. Clin. Infect. Dis. 2010, 51, e12–e15. [Google Scholar] [CrossRef]
- Tuon, F.F.; Gondolfo, R.B.; Cerchiari, N. Human-to-human transmission of Brucella—A systematic review. Trop. Med. Int. Health 2017, 22, 539–546. [Google Scholar] [CrossRef]
- Alsaif, M.; Dabelah, K.; Girim, H.; Featherstone, R.; Robinson, J.L. Congenital Brucellosis: A Systematic Review of the Literature. Vector-Borne Zoonotic Dis. 2018, 18, 393–403. [Google Scholar] [CrossRef]
- Islam, M.S.; Islam, M.A.; Rahman, M.M.; Islam, K.; Islam, M.M.; Kamal, M.M.; Islam, M.N. Presence of brucella spp. in milk and dairy products: A comprehensive review and its perspectives. J. Food Qual. 2023, 2023, 2932883. [Google Scholar] [CrossRef]
- Baud, D.; Greub, G. Intracellular bacteria and adverse pregnancy outcomes. Clin. Microbiol. Infect. 2017, 17, 1312–1322. [Google Scholar] [CrossRef]
- Megid, J.; Mathias, L.A.; Robles, C. Clinical manifestations of Brucellosis in domestic animals and humans. Open Vet. Sci. J. 2010, 4, 119–126. [Google Scholar] [CrossRef]
- Akınci, E.; Hürrem, B.; Mustafa, A.Ç.; Ayşe, E.; Selim, S.E.; İpek, Z.; Neriman, B.; Ali, A.; Gülüşan, E. A complication of brucellosis: Epididymoorchitis. Int. J. Infect. Dis. 2006, 10, 171–177. [Google Scholar] [CrossRef]
- Ip, C.C.K.; Tumali, K.; Hoh, I.M.; Arunasalam, A. Acute epididymo-orchitis from brucellosis melitensis in Australia. BMJ Case Rep. CP 2019, 12, e230007. [Google Scholar] [CrossRef]
- Kassur, B.; Dziubek, Z. Andrologic studies and sexual potency in chronic human brucellosis. Infection 1980, 8, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Colagar, H.A.; Karimi, F.; Jorsaraei, S.G. Correlation of sperm parameters with semen lipid peroxidation and total antioxidants levels in astheno- and oligoastheno- teratospermic men. Iran. Red Crescent Med. J. 2013, 15, 780–785. [Google Scholar] [CrossRef]
- Karaköse, A.; Yuksel, M.B.; Aydoğdu, O.; Hamidi, A.A. Epididymoorchitis as the first finding in patients with brucellosis. Adv. Urol. 2013, 2013, 765023. [Google Scholar] [CrossRef] [PubMed]
- Piorunek, M.; Brajer-Luftmann, B.; Walkowiak, J. Pasteurella Multocida Infection in Humans. Pathogens 2023, 12, 1210. [Google Scholar] [CrossRef] [PubMed]
- Hasan, J.; Hug, M. Pasteurella Multocida; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557629/ (accessed on 15 January 2024).
- Rehab, E.M.; Hend, M.M.; Amal, S.E. Pathological Studies on Infertility in Bucks as a Sign to Some Bacterial Infection. Int. J. Curr. Res. Biosci. Plant Biol. 2018, 5, 7–33. [Google Scholar] [CrossRef]
- García-Pastor, L.; Blasco, J.M.; Barberán, M. Pasteurellosis as a cause of genital lesions in rams. A descriptive study. Small Rumin. Res. 2009, 87, 111–115. [Google Scholar] [CrossRef]
- Gorga, F.; Galdiero, M.; Buommino, E.; Galdiero, E. Porins and lipopolysaccharide induce apoptosis in human spermatozoa. Clin. Diagn. Lab. Immunol. 2001, 8, 206–208. [Google Scholar] [CrossRef] [PubMed]
- Trefois, Q.; Marot, J.C.; Yildiz, H.; Wieers, G. Fever, bone pain and erectile dysfunction. Where Is Cat? BMJ Case Rep. 2017, 2017, bcr2017221397. [Google Scholar] [CrossRef] [PubMed]
- Mary, D.B. Yersinia enterocolitica. In Reference Module in Food Science; Elsevier: Philadelphia, PA, USA, 2016; Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780081005965009963 (accessed on 15 January 2024).
- Elena, T.; Victoria, N.; Veselin, P. Annuaire de L’universite de Sofia “st. Kliment Ohridski” Faculte de Biologie Livre 1—Zoologie Tome; University Publishing House “St. Kliment Ohridski”: Sofia, Bulgaria, 2011; p. 99. [Google Scholar]
- Maurin, M.; Raoult, D. Q fever. Clin. Microbiol. Rev. 1999, 12, 518–553. [Google Scholar] [CrossRef] [PubMed]
- Kopecny, L.; Katrina, L.B.; Amanda, S.; Jacqueline, M.N. Investigating Coxiella burnetiid infection in a breeding cattery at the centre of a Q fever outbreak. J. Feline Med. Surg. 2013, 15, 1037–1045. [Google Scholar] [CrossRef]
- Kruszewska, D.; Tylewska-Wierzbanowska, S.K. Coxiella burnetii penetration into the reproductive system of male mice, promoting sexual transmission of infection. ASM J. Infect. Immun. 1993, 61, 4188–4195. [Google Scholar] [CrossRef]
- Tylewska-Wierzbanowska, S.; Kruszewska, D. Detection of Coxiella burnetii bacteria in urine and semen with dot-ELISA and IFA as diagnostic methods in rapid recognition of Q fever. Serodiagn. Immunother. Infect. Dis. 1993, 5, 220–223. [Google Scholar] [CrossRef]
- Yatsentyuk, S.P.; Lazareva, E.A.; Gorbacheva, N.S.; Krasnikova, M.S.; Kozlova, A.D. PCR Detection of Coxiella burnetii from bull semen samples used for artificial insemination. Russ. J. Agric. Socio-Econ. Sci. 2019, 8, 664. [Google Scholar] [CrossRef]
- Kruszewska, D.; Tylewska-Wierzbanowska, S. Isolation of Coxiella burnetii from bull semen. Res. Vet. Sci. 1997, 62, 299–300. [Google Scholar] [CrossRef]
- Milazzo, A.; Hall, R.; Storm, P.A.; Harris, R.J.; Winslow, W.; Marmion, B.P. Sexually transmitted Q fever. Clin. Infect. Dis. 2001, 33, 399–402. [Google Scholar] [CrossRef]
- Guatteo, R.; Beaudeau, F.; Berri, M.; Rodolakis, A.; Joly, A.; Rodolakis, A.; Seegers, H. Shedding routes of Coxiella burnetii in dairy cows: Implications for detection and control. Vet. Res. 2006, 37, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, L.D.; Deutscher, M.; Rubin, J.E.; Deneer, H.; Kanthan, R.; Sanche, S.; Blondeau, J.M. Urinary tract infection in a human male patient with Staphylococcus pseudintermedius transmission from the family dog. J. Chemother. 2022, 34, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Ďuračka, M.; Kováčik, A.; Kačániová, M.; Lukáč, N.; Tvrdá, E. Bacteria may deteriorate progressive motility of bovine spermatozoa and biochemical parameters of seminal plasma. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 844–847. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Song, J.; Liu, H.; Bi, W.; Dong, G.; Zhou, T. Characteristic and mechanism of immobilization effect of Staphylococcus aureus on human spermatozoa. Microb. Pathog. 2018, 119, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Une, Y.; Mori, T. Tuberculosis as a zoonosis from a veterinary perspective. Comp. Immunol. Microbiol. Infect. Dis. 2007, 30, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Malik, S. Genital Tuberculosis and its Impact on Male and Female Infertility. US Endocrinol. 2020, 16, 97–103. [Google Scholar] [CrossRef]
- Tzvetkov, D.; Tzvetkova, P. Tuberculosis of Male Genital System—Myth or Reality in 21st Century. Arch. Androl. 2006, 52, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Kulchavenya, E.; Osadchiy, A.; Khomyakov, V. Tuberculosis as a Reason for Male and Female Sexual Dysfunction (Review). Ann. Infect. Dis. 2017, 1, 101. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bhattacharya, S.M.; Bagchi, B.; Chaudhuri, A.R.; Datta, A. Latent Genital Tuberculosis in Male—A Possible Cause of Reproductive Failure. J. Reprod. Med. Gynecol. Obstet. 2020, 5, 057. [Google Scholar] [CrossRef]
- Sole-Balcells, F.; Jimenez-Cruz, F.; de Cabezon, J.S.; Rosello, A.S. Tuberculosis and infertility in men. Eus. Urol. 1977, 3, 129–131. [Google Scholar] [CrossRef]
- Kumar, R. Reproductive tract tuberculosis and male infertility. Indian J. Urol. 2008, 24, 392–395. [Google Scholar] [CrossRef]
- Humphrey, T.; O’Brien, S.; Madsen, M. Campylobacters as zoonotic pathogens: A food production perspective. Int. J. Food Microbiol. 2007, 117, 237–257. [Google Scholar] [CrossRef]
- Vizzier-Thaxton, Y.; Cox, N.A.; Richardson, L.J.; Buhr, R.J.; McDaniel, C.D.; Cosby, D.E.; Wilson, J.L.; Bourassa, D.V.; Ard, M.B. Apparent attachment of Campylobacter and Salmonella to broiler breeder rooster spermatozoa. Poult. Sci. 2016, 85, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Cagnoli, C.; Chiapparrone, M.L.; Cacciato, C.S.; Rodríguez, M.G.; Aller, J.F.; Catena, M.C. Effects of Campylobacter fetus on bull sperm quality. Microb. Pathog. 2020, 149, 104486. [Google Scholar] [CrossRef] [PubMed]
- Bar, T.Z.; Yehuda, R.; Hacham, T.; Krupnik, S.; Bartoov, B. Influence of Campylobacter fetus subsp. fetus on ram sperm cell quality. J. Med. Microbiol. 2008, 57, 1405–1410. [Google Scholar] [CrossRef]
- Sanagawa, M.; Kenzaka, T.; Kato, S.; Yamaoka, I.; Fujimoto, S. Campylobacter jejuni enterocolitis presenting with testicular pain: A case report. World J. Clin. Cases 2020, 8, 3280–3283. [Google Scholar] [CrossRef]
- Wasteson, Y. Zoonotic Escherichia coli. Acta Vet. Scand. Suppl. 2001, 95, 79–84. [Google Scholar] [CrossRef]
- Alharbi, M.G.; Al-Hindi, R.R.; Esmael, A.; Alotibi, I.A.; Azhari, S.A.; Alseghayer, M.S.; Teklemariam, A.D. The “big six”: Hidden emerging foodborne bacterial pathogens. Trop. Med. Infect. Dis. 2022, 7, 356. [Google Scholar] [CrossRef]
- Beutin, L.; Krause, G.; Zimmermann, S.; Kaulfuss, S.; Gleier, K. Characterization of Shiga toxin-producing Escherichia coli strains isolated from human patients in Germany over a 3-year period. J. Clin. Microbiol. 2004, 42, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Bussalleu, E.Y.M.; Sepúlveda, L.; Torner, E.; Pinart, E.; Bonet, S. Effects of different concentrations of enterotoxigenic and verotoxigenic E. coli on boar sperm quality. Anim. Reprod. Sci. 2011, 127, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Fsihi, H.; Steffen, P.; Cossart, P. Listeria monocytogenes. In Principles of Bacterial Pathogenesis; Groisman, E.A., Ed.; Academic Press: Cambridge, MA, USA, 2001; pp. 751–803. ISBN 9780123042200. [Google Scholar]
- Sanui, H.; Yoshida, S.; Himeno, K.; Nomoto, K. Experimental allergic orchitis induced by unilateral intratesticular bacterial infection in guinea-pigs. Immunology 1983, 49, 45–51. [Google Scholar]
- Oyeyemi, M.O.; Ayinmode, A.B.; Adetunji, V.O.; Akin-Taiwo, M.A. The semen characteristics of West African Dwarf bucks infected with Listeria monocytogenes. Bull. Anim. Health Prod. Afr. 2008, 56, 307–313. [Google Scholar] [CrossRef]
- Tohidpour, M.; Shahhosseiny, M.; Mehrabian, S.; Saremi, A. Prevalence of Chlamydia trachomatis and Listeria monocytogenes in Infertile Men and the Effect on Semen Parameters. Jundishapur J. Microbiol. 2020, 13, e97780. [Google Scholar] [CrossRef]
- von Schnakenburg, C.; Hinrichs, B.; Fuchs, J.; Kardorff, R. Post-transplant epididymitis and orchitis following Listeria monocytogenes septicaemia. Pediatr. Transplant. 2000, 4, 156–158. [Google Scholar] [CrossRef] [PubMed]
Bacterial Zoonotic Diseases | Effect on Male Reproduction |
---|---|
Leptospirosis | Leptospires in semen [57,58] |
Brucellosis | Abnormal spermatozoa through ROS generation [52] Sperm abnormalities, orchitis, epididymitis, testicular atrophy and infertility [73] Physical organ dysfunction [76] |
Anthrax | Reduced sperm quality [66] |
Pasteurella multocida | Impairment of scrotal structure, testicular atrophy, and epididymal granuloma [82] Orchitis and low semen quality [83] |
Bartonellosis | Erectile dysfunction [84] |
Yersiniosis | Significant histological changes in the gonads [86] |
Q fever (Coxiella burnetii) | Shed from semen of mice and bulls [91] Sexual transmission [93] |
Staphylococcus | Reduced motility and impaired morphology [97] |
Tuberculosis | Disrupts sexual function [101], impairs sperm quality [100], abnormal sperm function test [102], obstructs genital tracts, and causes infertility [101,103,104] |
Campylobacteriosis | Attaches to spermatozoa in chickens [106] Adheres to sperms in bulls [107] Early acrosome reaction and chromatin damage [108] |
Shiga (Vero) toxin-producing E. coli | Reduced sperm motility and viability in boar [113] |
Listerosis | Orchitis through auto-immune mechanism [115] Decrease in sperm volume, motility, and morphology [116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okeleji, L.O.; Ajayi, L.O.; Odeyemi, A.N.; Amos, V.; Akanbi, B.G.; Onaolapo, M.C.; Olateju, B.S.; Adeyemi, W.J.; Ajayi, A.F. Bacterial Zoonotic Diseases and Male Reproduction. Zoonotic Dis. 2024, 4, 97-113. https://doi.org/10.3390/zoonoticdis4010010
Okeleji LO, Ajayi LO, Odeyemi AN, Amos V, Akanbi BG, Onaolapo MC, Olateju BS, Adeyemi WJ, Ajayi AF. Bacterial Zoonotic Diseases and Male Reproduction. Zoonotic Diseases. 2024; 4(1):97-113. https://doi.org/10.3390/zoonoticdis4010010
Chicago/Turabian StyleOkeleji, Lateef Olabisi, Lydia Oluwatoyin Ajayi, Aduragbemi Noah Odeyemi, Victor Amos, Bosede Grace Akanbi, Moyinoluwa Comfort Onaolapo, Bolade Sylvester Olateju, Wale Johnson Adeyemi, and Ayodeji Folorunsho Ajayi. 2024. "Bacterial Zoonotic Diseases and Male Reproduction" Zoonotic Diseases 4, no. 1: 97-113. https://doi.org/10.3390/zoonoticdis4010010
APA StyleOkeleji, L. O., Ajayi, L. O., Odeyemi, A. N., Amos, V., Akanbi, B. G., Onaolapo, M. C., Olateju, B. S., Adeyemi, W. J., & Ajayi, A. F. (2024). Bacterial Zoonotic Diseases and Male Reproduction. Zoonotic Diseases, 4(1), 97-113. https://doi.org/10.3390/zoonoticdis4010010