Preventing Laboratory-Acquired Brucellosis in the Era of MALDI-TOF Technology and Molecular Tests: A Narrative Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Brucella: A Highly Transmissible Organism
3. Human Brucellosis, a “Great Imitator”
4. Diagnosing Human Brucellosis
5. Brucella Cultures and Laboratory Safety
6. Brucellar Identification by Traditional Methods
7. Identification by MALDI-TOF Technology
8. Identification by Molecular Methods
9. Post-Exposure Prophylaxis and Other Measures
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pappas, G. The Lanzhou Brucella leak. The largest laboratory accident in the history of infectious diseases? Clin. Infect. Dis. 2022, ciac463. [Google Scholar] [CrossRef] [PubMed]
- Pappas, G.; Panagopoulou, P.; Christou, L.; Akritidis, N. Brucella as a biological weapon. Cell. Mol. Life. Sci. 2006, 63, 2229–2236. [Google Scholar] [CrossRef] [PubMed]
- Ackelsber, J.; Liddicoat, A.; Burke, T.; Szymczak, W.A.; Levi, M.H.; Ostrowsky, B.; Hamula, C.; Patel, G.; Kopetz, V.; Saverimuttu, J.; et al. Brucella exposure risk events in 10 clinical laboratories, New York City, USA, 2015 to 2017. J. Clin. Microbiol. 2020, 58, e01096-19. [Google Scholar] [CrossRef] [PubMed]
- Traxler, R.M.; Lehman, M.W.; Bosserman, E.A.; Guerra, M.A.; Smith, T.L. A literature review of laboratory-acquired brucellosis. J. Clin. Microbiol. 2013, 51, 3055–3062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baddour, M.M.; Alkhalifa, D.H. Evaluation of three polymerase chain reaction techniques for detection of Brucella DNA in peripheral human blood. Can. J. Microbiol. 2008, 54, 352–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Nakkas, A.F.; Wright, S.G.; Mustafa, A.S.; Wilson, S. Single-tube, nested PCR for the diagnosis of human brucellosis in Kuwait. Ann. Trop. Med. Parasitol. 2002, 96, 397–403. [Google Scholar] [CrossRef]
- Yagupsky, P.; Morata, P.; Colmenero, J.D. Laboratory diagnosis of human brucellosis. Clin. Microbiol. Rev. 2019, 33, e00073-19. [Google Scholar] [CrossRef]
- Lista, F.; Reubsaet, F.A.G.; De Santis, R.; Parchen, R.R.; de Jong, A.L.; Kieboom, J.; van der Laaken, A.L.; Voskamp-Visser, I.A.; Fillo, S.; Jansen, H.J.; et al. Reliable identification at the species level of Brucella isolated with MALDI-TOF. BMC Microbiol. 2011, 11, 267. [Google Scholar] [CrossRef] [Green Version]
- Sali, M.; De Maio, F.; Tarantino, M.; Garofolo, G.; Tittarelli, M.; Sacchini, L.; Zilli, K.; Pasquali, P.; Petrucci, P.; Marianelli, C.; et al. Rapid and safe one-step extraction method for the identification of Brucella strains at genus and species level by MALDI-TOF mass spectrometry. PLoS ONE 2018, 13, e0197864. [Google Scholar] [CrossRef]
- Pappas, G.; Akritidis, N.; Bosilkovski, M.; Tsianos, E. Brucellosis. N. Eng. J. Med. 2005, 352, 2325–2336. [Google Scholar] [CrossRef]
- Franco, M.P.; Mulder, M.; Gilman, R.H.; Smits, H.L. Human brucellosis. Lancet Infect. Dis. 2007, 7, 775–786. [Google Scholar] [CrossRef]
- Mesner, O.; Riesenberg, K.; Biliar, N.; Borstein, E.; Bouhnik, L.; Peled, N.; Yagupsky, P. The many faces of human-to-human transmission of brucellosis: Congenital infection and outbreak of nosocomial disease related to an unrecognized clinical case. Clin. Infect. Dis. 2007, 45, e135–e140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noviello, S.; Gallo, R.; Kelly, M.; Limberger, R.J.; DeAngelis, K.; Cain, L.; Wallace, B.; Dumas, N. Laboratory-acquired brucellosis. Emerg. Infect. Dis. 2004, 10, 1848–1850. [Google Scholar] [CrossRef]
- Robichaud, S.; Libman, M.; Behr, M.; Rubin, E. Prevention of laboratory acquired brucellosis. Clin. Infect. Dis. 2004, 38, e119–e122. [Google Scholar]
- Yagupsky, P.; Peled, N.; Riesenberg, K.; Banai, M. Exposure of hospital personnel to Brucella melitensis and occurrence of laboratory-acquired disease in an endemic area. Scand. J. Infect. Dis. 2000, 32, 31–35. [Google Scholar] [PubMed]
- Calfee, W.M.; Wendling, M. The effects of environmental conditions on persistence and inactivation of Brucella suis on building material surfaces. Lett. Appl. Microbiol. 2012, 54, 504–510. [Google Scholar] [CrossRef]
- Yagupsky, P. Detection of Brucella melitensis by BACTEC NR660 blood culture system. J. Clin. Microbiol. 1994, 32, 1889–1901. [Google Scholar] [CrossRef] [Green Version]
- Yagupsky, P. Brucellae growing on Thayer-Martin medium: A source of inadvertent exposure for laboratory personnel in endemic areas. J. Med. Microbiol. 2014, 63, 148–149. [Google Scholar] [CrossRef] [Green Version]
- Ergönül, O.; Celikbas, A.; Tezeren, D.; Güvener, E.; Dokuzoğuz, B. Analysis of risk factors for laboratory-acquired Brucella infections. J. Hosp. Infect. 2004, 56, 223–227. [Google Scholar] [CrossRef]
- Yagupsky, P.; Baron, E.J. Laboratory-exposures to brucellae and implications for bioterrorism. Emerg. Infect. Dis. 2005, 11, 1180–1185. [Google Scholar] [CrossRef]
- Pappas, G.; Papadimitriou, P. Challenges in Brucella bacteremia. Int. J. Antimicrob. Agents. 2007, 30 (Suppl. 1), S29–S31. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Liu, J.; Wang, Y.; Zhang, H.; Chen, C. Evaluation of a hyper-variable octameric oligonucleotide fingerprints assay for identification of and discrimination between wild-type and vaccine strains of Brucella melitensis. Am. J. Vet. Res. 2017, 78, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Shemesh, A.A.; Yagupsky, P. Limitations of the standard agglutination test for detecting patients with Brucella melitensis bacteremia. Vector Borne Zoonotic Dis. 2011, 11, 1599–1601. [Google Scholar] [CrossRef]
- Lucero, N.E.; Corazza, R.; Almuzara, M.N.; Reynes, E.; Escobar, G.I.; Boeri, E.; Ayala, S.M. Human Brucella canis outbreak linked to infection in dogs. Epidemiol. Infect. 2010, 138, 280–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCabe, W.R.; Jackson, G.G. Gram negative bacteremia. Arch. Intern. Med. 1962, 110, 856–864. [Google Scholar] [CrossRef]
- Yagupsky, P.; Peled, N. Use of the Isolator 1.5 microbial tube for detection of Brucella melitensis in synovial fluid. J. Clin. Microbiol. 2002, 40, 3878. [Google Scholar] [CrossRef] [Green Version]
- Fiori, P.L.; Mastrandrea, S.; Rappelli, P.; Cappuccinelli, P. Brucella abortus infection acquired in microbiology laboratories. J. Clin. Microbiol. 2000, 38, 2005–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Aska, A.K.; Chagla, A.H. Laboratory-acquired brucellosis. J. Hosp. Infect. 1989, 14, 69–71. [Google Scholar] [CrossRef]
- Meyer, K.F.; Eddie, B. Laboratory infections due to Brucella. J. Infect. Dis. 1941, 68, 24–32. [Google Scholar]
- Staszkiewicz, J.; Lewis, C.M.; Colville, J.; Zervos, M.; Band, J. Outbreak of Brucella melitensis among microbiology laboratory workers in a community hospital. J. Clin. Microbiol. 1991, 29, 287–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luzzi, G.A.; Brindle, R.; Sockett, P.N.; Solera, J.; Klenerman, P.; Warrell, D.A. Brucellosis: Imported and laboratory-acquired cases, and an overview of treatment trials. Trans. R. Soc. Trop. Med. Hyg. 1993, 87, 138–141. [Google Scholar] [CrossRef]
- Martin-Mazuelos, E.; Nogales, M.C.; Florez, C.; Gomez-Mateos, J.M.; Lozano, F.; Sanchez, A. Outbreak of Brucella melitensis among microbiology laboratory workers. J. Clin. Microbiol. 1994, 32, 2035–2036. [Google Scholar] [CrossRef] [PubMed]
- Grammont-Cupillard, M.; Berthet-Badetti, L.; Dellamonica, P. Brucellosis from sniffing bacteriological cultures. Lancet 1996, 348, 1733–1734. [Google Scholar] [CrossRef]
- Zervos, M.J.; Bostic, G. Exposure to Brucella in the laboratory. Lancet 1997, 349, 651. [Google Scholar] [CrossRef]
- Memish, Z.A.; Mah, M.W. Brucellosis in laboratory workers at a Saudi Arabian hospital. Am. J. Infect. Control 2001, 29, 48–52. [Google Scholar] [CrossRef]
- Yagupsky, P.; Peled, N.; Press, J.; Abramson, O.; Abu-Rashid, M. Comparison of BACTEC 9240 Peds Plus medium and Isolator 1.5 Microbial Tube for detection of Brucella melitensis from blood cultures. J. Clin. Microbiol. 1997, 35, 1382–1384. [Google Scholar] [CrossRef] [Green Version]
- Sagi, M.; Nesher, L.; Yagupsky, P. The Bactec FX blood culture system detects Brucella melitensis bacteremia in adult patients within the routine 1-Week incubation period. J. Clin. Microbiol. 2017, 55, 942–946. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control; National Institutes of Health. Biosafety in Microbiological and Biomedical Laboratories; Publication no. 17-40-508-3; U.S. Government Printing Office: Washington, DC, USA, 1988.
- Shemesh, A.A.; Yagupsky, P. Increasing incidence of human brucellosis in Southern Israel after the cessation of a veterinarian control campaign. J. Air Water Borne Dis. 2013, 2, 112. [Google Scholar]
- Elsaghir, A.A.; James, E.A. Misidentification of Brucella melitensis as Ochrobactrum anthropi by API 20NE. J. Med. Microbiol. 2003, 52, 441–442. [Google Scholar] [CrossRef] [Green Version]
- Vila, A.; Pagella, H.; Vera Bello, G.; Vicente, A. Brucella suis bacteremia misidentified as Ochrobactrum anthropi by the VITEK 2 system. J. Infect. Dev. Ctries. 2016, 10, 432–436. [Google Scholar] [CrossRef] [Green Version]
- Hubálek, Z.; Scholz, H.C.; Sedlácek, I.; Melzer, F.; Sanogo, Y.O.; Nesvadbová, J. Brucellosis of the common vole (Microtus arvalis). Vector Borne Zoonotic Dis. 2007, 7, 679–687. [Google Scholar]
- Castrodale, L.J.; Raczniak, G.A.; Rudolph, K.M.; Chikoyak, L.; Cox, R.S.; Franklin, T.L.; Traxler, R.M.; Guerra, M.A. A case-study of implementation of improved strategies for prevention of laboratory-acquired brucellosis. Saf. Health Work 2015, 6, 353–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dash, N.; Al-Zarouni, M.; Rattan, A.; Panigrahi, D. Misidentification of Brucella melitensis as Bergeylla zoohelcum by Microscan WalkAway: A case report. Med. Princ. Pract. 2012, 21, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ren, X.-Q.; Chu, M.-L.; Meng, D.-Y.; Xue, W.-C. Mistaken identity of Brucella Infection. J. Clin. Microbiol. 2013, 51, 2011. [Google Scholar] [PubMed]
- Public Health Laboratory Service. Microbiological test strip (API20NE) identifies Brucella melitensis as Moraxella phenylpyruvica. Commun. Dis. Rep. 1991, 1, 165. [Google Scholar]
- Batchelor, B.I.; Brindle, R.J.; Gilks, G.F.; Selkon, J.B. Biochemical misidentification of Brucella melitensis and subsequent laboratory acquired infections. J. Hosp. Infect. 1992, 22, 159–162. [Google Scholar] [CrossRef]
- Karger, A.; Melzer, F.; Timke, M.; Bettin, B.; Kostrzewa, M.; Nockler, K.; Hohmann, A.; Tomaso, H.; Neubauer, H.; Al Dahouk, S. Interlaboratory comparison of intact-cell matrix-assisted laser desorption ionization- time of flight mass spectrometry results for identification and differentiation of Brucella spp. J. Clin. Microbiol. 2013, 51, 3123–3126. [Google Scholar] [CrossRef] [Green Version]
- Poonawala, H.; Marrs Conner, T.; Peaper, D.R. The brief case: Misidentification of Brucella melitensis as Ochrobactrum anthropi by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). J. Clin. Microbiol. 2018, 56, e00914-17. [Google Scholar] [CrossRef] [Green Version]
- Mesureur, J.; Ranaldi, S.; Monnin, V.; Girard, V.; Arend, S.; Welker, M.; O’Callaghan, D.; Lavigne, J.P.; Keriel, A. A simple and safe protocol for preparing Brucella samples for matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. J. Clin. Microbiol. 2016, 54, 449–452. [Google Scholar] [CrossRef] [Green Version]
- Mesureur, J.; Arend, S.; Cellière, B.; Courault, P.; Cotte-Pattat, P.J.; Totty, H.; Deol, P.; Mick, V.; Girard, V.; Touchberry, T.; et al. A MALDI-TOF MS database with broad genus coverage for species-level identification of Brucella. PLOS Negl. Trop. Dis. 2018, 12, e0006874. [Google Scholar] [CrossRef]
- Ferreira, L.; Vega Castaño, S.; Sánchez-Juanes, F.; González-Cabrero, S.; Menegotto, F.; Orduña-Domingo, A.; González-Buitrago, J.M.; Muñoz-Bellido, J.L. Identification of Brucella by MALDI-TOF mass spectrometry. Fast and reliable identification from agar plates and blood cultures. PLoS ONE 2010, 5, e14235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, S.A.; Patel, R. Importance of using Bruker’s Security-Relevant Library for Biotyper identification of Burkholderia pseudomallei, Brucella species, and Francisella tularensis. J. Clin. Microbiol. 2013, 51, 1639–1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MicrobeNet Centers for Disease Control and Prevention. MicrobeNet; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. Available online: https://www.cdc.gov/microbenet/index.html (accessed on 26 August 2022).
- Rudrik, J.T.; Soehnlen, M.K.; Perry, M.J.; Sullivan, M.M.; Reiter-Kintz, W.; Lee, P.A.; Pettit, D.; Tran, A.; Swaney, E. Safety and accuracy of matrix-assisted laser desorption ionization–time of flight mass spectrometry for identification of highly pathogenic organisms. J. Clin. Microbiol. 2017, 55, 3513–3529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drevinek, M.; Dresler, J.; Klimentova, J.; Pisa, L.; Hubalek, M. Evaluation of sample preparation methods for MALDI-TOF MS identification of highly dangerous bacteria. Lett. Appl. Microbiol. 2012, 55, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Marklein, G.; Josten, M.; Klanke, U.; Müller, E.; Horré, R.; Maier, T.; Wenzel, T.; Kostrzewa, M.; Bierbaum, G.; Hoerauf, A.; et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J. Clin. Microbiol. 2009, 47, 2912–2917. [Google Scholar] [CrossRef]
- Horvat, R.T.; El Atrouni, W.; Hammoud, K.; Hawkinson, D.; Cowden, S. Ribosomal RNA sequence analysis of Brucella infection misidentified as Ochrobactrum anthropi. J. Clin. Microbiol. 2011, 49, 1165–1168. [Google Scholar] [CrossRef] [Green Version]
- Wellinghausen, N.; Nöckler, K.; Sigge, A.; Bartel, M.; Essig, A.; Poppert, S. Rapid detection of Brucella spp. in blood cultures by fluorescence in situ hybridization. J. Clin. Microbiol. 2006, 44, 1828–1830. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Brucellosis Reference Guide: Exposures, Testing, and Prevention. 2017. Available online: https://www.cdc.gov/brucellosis/pdf/brucellosis-reference-guide.pdf (accessed on 26 August 2022).
Category | Hazard | |
---|---|---|
Bacteriological features of brucellae | Low infecting dose | |
Multiple portals of entry to the human body | ||
High infectivity | ||
Long-term persistence on inanimate surfaces | ||
Exponential biomass growth during incubation | ||
Epidemiology | High burden of disease in endemic areas | |
Clinical disease | Unspecific symptoms and signs | |
Mimics other infectious and non-infectious conditions | ||
Lack of communication with the laboratory | ||
Contamination of a wide diversity of clinical specimens | ||
Identification of the isolate | Unfamiliarity with the genus in non-endemic regions | |
Inconspicuous appearance of colonies | ||
Misleading Gram stain | ||
Misidentification by | commercial biochemical kits | |
MALDI-TOF technology | ||
molecular methods | ||
Unsafe laboratory practices | Lack of biosafety protocols | |
Lack of personal protective equipment | ||
Work in an open bench | ||
Eating, drinking, or smoking at the workstation | ||
Aerosolization of living bacteria by centrifugation, vortexing, catalase test, inadequate sterilization of exhaust gas, and malfunction of biological safety cabinets | ||
Accidents such as spillage of media, breakage of tubes, and needle stick injuries | ||
Environment and laboratory equipment | Crowding | |
Poorly designed ventilation systems | ||
Malfunction or improper use of biological safety cabinets |
Risk Category | Exposure Setting | Post Exposure Measures | ||||||
---|---|---|---|---|---|---|---|---|
Enriched Material a and Reproductive Clinical Specimens | Other Clinical Specimens | |||||||
Work outside of a CCBSC b | Work at <5 Feet from Someone Working outside a CCBSC b | Work on a CCBSC b without PPE c | Aerosol-Generating Procedures on an Open Bench | Contact with Mucosae or Broken Skin | Post-Exposure Prophylaxis | Serological Follow-Up | Clinical Monitoring | |
High | Yes | Yes | Yes | Yes | Yes | Yes | 6 months | 6 months |
Low | No | No | No | No | No | No | 6 months | 6 months |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yagupsky, P. Preventing Laboratory-Acquired Brucellosis in the Era of MALDI-TOF Technology and Molecular Tests: A Narrative Review. Zoonotic Dis. 2022, 2, 172-182. https://doi.org/10.3390/zoonoticdis2040016
Yagupsky P. Preventing Laboratory-Acquired Brucellosis in the Era of MALDI-TOF Technology and Molecular Tests: A Narrative Review. Zoonotic Diseases. 2022; 2(4):172-182. https://doi.org/10.3390/zoonoticdis2040016
Chicago/Turabian StyleYagupsky, Pablo. 2022. "Preventing Laboratory-Acquired Brucellosis in the Era of MALDI-TOF Technology and Molecular Tests: A Narrative Review" Zoonotic Diseases 2, no. 4: 172-182. https://doi.org/10.3390/zoonoticdis2040016
APA StyleYagupsky, P. (2022). Preventing Laboratory-Acquired Brucellosis in the Era of MALDI-TOF Technology and Molecular Tests: A Narrative Review. Zoonotic Diseases, 2(4), 172-182. https://doi.org/10.3390/zoonoticdis2040016