Seed Priming Before the Sprout: Revisiting an Established Technique for Stress-Resilient Germination
Abstract
1. Introduction
2. Methods of Seed Priming
3. Mechanisms of Seed Priming
3.1. Metabolic Activation
3.2. Osmotic Adjustment
3.3. Hormonal Modulation
3.4. Enhanced Antioxidant Defense
3.5. Repair of Cellular Structures
3.6. Gene Expression and Epigenetic Changes
4. Recent Advances and Applications in Seed Priming Agents
4.1. Nano-Priming
4.2. Priming with Elicitors
4.3. Redox Priming
4.4. Electro-Priming
4.5. Plasma-Priming
5. Challenges and Future Directions
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Srivastava, L.M. Seed Germination, Mobilization of Food Reserves, and Seed Dormancy. In Plant Growth and Development; Elsevier: Amsterdam, The Netherlands, 2002; pp. 447–471. ISBN 978-0-12-660570-9. [Google Scholar]
- Finch-Savage, W.E.; Bassel, G.W. Seed Vigour and Crop Establishment: Extending Performance beyond Adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Biswas, S. Influence of Abiotic Stresses on Seed Production and Quality. In Seed Biology Updates; Jimenez-Lopez, J.C., Ed.; IntechOpen: London, UK, 2022; ISBN 978-1-80355-813-4. [Google Scholar]
- Feng, D.; Liu, W.; Chen, K.; Ning, S.; Gao, Q.; Chen, J.; Liu, J.; Sun, X.; Xu, W. Exogenous Substances Used to Relieve Plants from Drought Stress and Their Associated Underlying Mechanisms. Int. J. Mol. Sci. 2024, 25, 9249. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Altaf-Un-Nahar, M.; Islam, M.R.; Roy, M.; Rahman, F.; Azam, M.G.; Brestic, M.; Rhaman, M.S.; Karim, M.R. Foliar and Root Applications of Salicylic Acid Alleviate Salinity Stress by Modulating Morpho-Physiological and Biochemical Aspects in Tomato (Solanum lycopersicum). Discov. Plants 2025, 2, 36. [Google Scholar] [CrossRef]
- Rhaman, M.S.; Imran, S.; Rauf, F.; Khatun, M.; Baskin, C.C.; Murata, Y.; Hasanuzzaman, M. Seed Priming with Phytohormones: An Effective Approach for the Mitigation of Abiotic Stress. Plants 2020, 10, 37. [Google Scholar] [CrossRef]
- Paul, S.; Dey, S.; Kundu, R. Seed Priming: An Emerging Tool towards Sustainable Agriculture. Plant Growth Regul. 2022, 97, 215–234. [Google Scholar] [CrossRef]
- Jatana, B.S.; Grover, S.; Ram, H.; Baath, G.S. Seed Priming: Molecular and Physiological Mechanisms Underlying Biotic and Abiotic Stress Tolerance. Agronomy 2024, 14, 2901. [Google Scholar] [CrossRef]
- Monajjem, S.; Soltani, E.; Zainali, E.; Esfahani, M.; Ghaderi-Far, F.; Chaleshtori, M.H.; Rezaei, A. Seed Priming Improves Enzymatic and Biochemical Performances of Rice During Seed Germination under Low and High Temperatures. Rice Sci. 2023, 30, 335–347. [Google Scholar] [CrossRef]
- Ellouzi, H.; Oueslati, S.; Hessini, K.; Rabhi, M.; Abdelly, C. Seed-Priming with H2O2 Alleviates Subsequent Salt Stress by Preventing ROS Production and Amplifying Antioxidant Defense in Cauliflower Seeds and Seedlings. Sci. Hortic. 2021, 288, 110360. [Google Scholar] [CrossRef]
- Rhaman, M.S.; Tania, S.S.; Imran, S.; Rauf, F.; Kibria, M.G.; Ye, W.; Hasanuzzaman, M.; Murata, Y. Seed Priming with Nanoparticles: An Emerging Technique for Improving Plant Growth, Development, and Abiotic Stress Tolerance. J. Soil. Sci. Plant Nutr. 2022, 22, 4047–4062. [Google Scholar] [CrossRef]
- Meel, S.; Saharan, B.S. Enhancing Crop Resilience towards Drought: By Integrating Nanotechnology, Microbiomes, and Growth-Promoting Rhizobacteria. Discov. Agric. 2024, 2, 112. [Google Scholar] [CrossRef]
- Chakraborti, S.; Bera, K.; Sadhukhan, S.; Dutta, P. Bio-Priming of Seeds: Plant Stress Management and Its Underlying Cellular, Biochemical and Molecular Mechanisms. Plant Stress. 2022, 3, 100052. [Google Scholar] [CrossRef]
- Hussain, S.; Zheng, M.; Khan, F.; Khaliq, A.; Fahad, S.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Benefits of Rice Seed Priming Are Offset Permanently by Prolonged Storage and the Storage Conditions. Sci. Rep. 2015, 5, 8101. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Seal, P.; Majumder, B.; Biswas, A.K. Efficacy of Seed Priming Strategies for Enhancing Salinity Tolerance in Plants: An Overview of the Progress and Achievements. Plant Stress. 2023, 9, 100186. [Google Scholar] [CrossRef]
- Pagano, A.; Macovei, A.; Balestrazzi, A. Molecular Dynamics of Seed Priming at the Crossroads between Basic and Applied Research. Plant Cell Rep. 2023, 42, 657–688. [Google Scholar] [CrossRef]
- Rhaman, M.S.; Ali, M.; Ye, W.; Li, B. Opportunities and Challenges in Advancing Plant Research with Single-Cell Omics. Genom. Proteom. Bioinform. 2024, 22, qzae026. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Mo, X.; Wang, Y.; Li, Q. Seed Priming with 2,4-Epibrassionolide Enhances Seed Germination and Heat Tolerance in Rice by Regulating the Antioxidant System and Plant Hormone Signaling Pathways. Antioxidants 2025, 14, 242. [Google Scholar] [CrossRef]
- Nguyen, D.-K.; Nguyen, T.-P.; Lin, C.-C.; Ly, T.-T.; Li, Y.-R.; Chang, C.-H.; Nguyen, V.-A.; Trinh, N.-N.; Huang, H.-J. Transcriptome Analysis Reveals the Role of Microbial Volatile 3-Methyl-1-Butanol-Induced Salt Stress Tolerance in Rice (Oryza sativa L.) Seedlings through Antioxidant Defense System. Plant Physiol. Biochem. 2025, 223, 109830. [Google Scholar] [CrossRef]
- Fercha, A.; Capriotti, A.L.; Caruso, G.; Cavaliere, C.; Samperi, R.; Stampachiacchiere, S.; Laganà, A. Comparative Analysis of Metabolic Proteome Variation in Ascorbate-Primed and Unprimed Wheat Seeds during Germination under Salt Stress. J. Proteom. 2014, 108, 238–257. [Google Scholar] [CrossRef]
- Zhang, H.; Hui, G.; Gao, G.; Ali, I.; Tang, M.; Chen, L.; Zhong, X.; Jiang, L.; Liang, T.; Zhang, X. Physiological and Proteomic Analysis of Various Priming on Rice Seed under Chilling Stress. Plants 2024, 13, 2430. [Google Scholar] [CrossRef]
- Sher, A.; Sarwar, T.; Nawaz, A.; Ijaz, M.; Sattar, A.; Ahmad, S. Methods of Seed Priming. In Priming and Pretreatment of Seeds and Seedlings; Hasanuzzaman, M., Fotopoulos, V., Eds.; Springer: Singapore, 2019; pp. 1–10. ISBN 9789811386244. [Google Scholar]
- Damalas, C.A.; Koutroubas, S.D.; Fotiadis, S. Hydro-Priming Effects on Seed Germination and Field Performance of Faba Bean in Spring Sowing. Agriculture 2019, 9, 201. [Google Scholar] [CrossRef]
- Khalid, M.F.; Hussain, S.; Anjum, M.A.; Ejaz, S.; Ahmad, M.; Jan, M.; Zafar, S.; Zakir, I.; Ali, M.A.; Ahmad, N.; et al. Hydropriming for Plant Growth and Stress Tolerance. In Priming and Pretreatment of Seeds and Seedlings; Hasanuzzaman, M., Fotopoulos, V., Eds.; Springer: Singapore, 2019; pp. 373–384. ISBN 9789811386244. [Google Scholar]
- Lei, C.; Bagavathiannan, M.; Wang, H.; Sharpe, S.M.; Meng, W.; Yu, J. Osmopriming with Polyethylene Glycol (PEG) for Abiotic Stress Tolerance in Germinating Crop Seeds: A Review. Agronomy 2021, 11, 2194. [Google Scholar] [CrossRef]
- Ma, L.; Wei, J.; Han, G.; Sun, X.; Yang, X. Seed Osmopriming with Polyethylene Glycol (PEG) Enhances Seed Germination and Seedling Physiological Traits of Coronilla varia L. under Water Stress. PLoS ONE 2024, 19, e0303145. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, E.H.; Musa, Y.; Mustafa, M.; Sjahril, R.; Riadi, M. Comparison between hydro- and osmo-priming to determine period needed for priming indicator and its effect on germination percentage of aerobic rice cultivars (Oryza sativa L.). Agrivita J. Agr. Sci. 2016, 38, 222–230. [Google Scholar] [CrossRef]
- Sumbal, S.; Ali, A.; Nasser Binjawhar, D.; Ullah, Z.; Eldin, S.M.; Iqbal, R.; Sher, H.; Ali, I. Comparative Effects of Hydropriming and Iron Priming on Germination and Seedling Morphophysiological Attributes of Stay-Green Wheat. ACS Omega 2023, 8, 23078–23088. [Google Scholar] [CrossRef]
- Tolrà, R.; González-Cobo, C.; Corrales, I.; Padilla, R.; Llugany, M. Seed Halopriming as an Effective Strategy to Enhance Salt Tolerance in Cakile Maritima: Activation of Antioxidant and Genetic Responses. Antioxidants 2025, 14, 353. [Google Scholar] [CrossRef]
- Hmissi, M.; Krouma, A.; García-Sánchez, F.; Chaieb, M. Potential of Seed Halopriming in the Mitigation of Salinity Stress during Germination and Seedling Establishment in Durum Wheat (Triticum durum Desf.). Plants 2023, 13, 66. [Google Scholar] [CrossRef]
- Janah, I.; Elhasnaoui, A.; Abouloifa, H.; Ait-El-Mokhtar, M.; Ben Laouane, R. Hormonal Priming to Increase Germination of Stevia Rebaudiana Bertoni Seeds in Saline Environments. Int. J. Plant Biol. 2025, 16, 2. [Google Scholar] [CrossRef]
- MacDonald, M.T.; Mohan, V.R. Chemical Seed Priming: Molecules and Mechanisms for Enhancing Plant Germination, Growth, and Stress Tolerance. Curr. Issues Mol. Biol. 2025, 47, 177. [Google Scholar] [CrossRef]
- Jyothi, C.; Masih, S.A.; Maxton, A. Efficiency of Seed Bio-Priming Technique for Drought Management in Mungbean. Environ. Ecol. 2023, 41, 2798–2804. [Google Scholar] [CrossRef]
- Sarkar, D.; Singh, S.; Parihar, M.; Rakshit, A. Seed Bio-Priming with Microbial Inoculants: A Tailored Approach towards Improved Crop Performance, Nutritional Security, and Agricultural Sustainability for Smallholder Farmers. Curr. Res. Environ. Sustain. 2021, 3, 100093. [Google Scholar] [CrossRef]
- Singh, P.; Vaishnav, A.; Liu, H.; Xiong, C.; Singh, H.B.; Singh, B.K. Seed Biopriming for Sustainable Agriculture and Ecosystem Restoration. Microb. Biotechnol. 2023, 16, 2212–2222. [Google Scholar] [CrossRef]
- Fu, Y.; Ma, L.; Li, J.; Hou, D.; Zeng, B.; Zhang, L.; Liu, C.; Bi, Q.; Tan, J.; Yu, X.; et al. Factors Influencing Seed Dormancy and Germination and Advances in Seed Priming Technology. Plants 2024, 13, 1319. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.S.; Elozeiri, A.A. Metabolic Processes During Seed Germination. In Advances in Seed Biology; Jimenez-Lopez, J.C., Ed.; InTech: London, UK, 2017; ISBN 978-953-51-3621-7. [Google Scholar]
- Sen, A.; Puthur, J.T. Seed Priming-Induced Physiochemical and Molecular Events in Plants Coupled to Abiotic Stress Tolerance: An Overview. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 303–316. ISBN 978-0-12-817892-8. [Google Scholar]
- Sghayar, S.; Debez, A.; Lucchini, G.; Abruzzese, A.; Zorrig, W.; Negrini, N.; Morgutti, S.; Abdelly, C.; Sacchi, G.A.; Pecchioni, N.; et al. Seed Priming Mitigates High Salinity Impact on Germination of Bread Wheat (Triticum aestivum L.) by Improving Carbohydrate and Protein Mobilization. Plant Direct 2023, 7, e497. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Choyal, P.; Mishra, U.N.; Dey, P.; Bose, B.; Md, P.; Gupta, N.K.; Mehta, B.K.; Kumar, P.; Pandey, S.; et al. Drought Stress Responses and Inducing Tolerance by Seed Priming Approach in Plants. Plant Stress. 2022, 4, 100066. [Google Scholar] [CrossRef]
- Ansari, H.H.; Siddiqui, A.; Wajid, D.; Tabassum, S.; Umar, M.; Siddiqui, Z.S. Profiling of Energy Compartmentalization in Photosystem II (PSII), Light Harvesting Complexes and Specific Energy Fluxes of Primed Maize Cultivar (P1429) under Salt Stress Environment. Plant Physiol. Biochem. 2022, 170, 296–306. [Google Scholar] [CrossRef]
- Zhang, H.; Irving, L.J.; McGill, C.; Matthew, C.; Zhou, D.; Kemp, P. The Effects of Salinity and Osmotic Stress on Barley Germination Rate: Sodium as an Osmotic Regulator. Ann. Bot. 2010, 106, 1027–1035. [Google Scholar] [CrossRef]
- Irving, L.J.; Zhang, H. Modelling the Effect of Salt and PEG on Water Uptake in Wheat Seeds. Agronomy 2021, 11, 1660. [Google Scholar] [CrossRef]
- Munz, E.; Rolletschek, H.; Oeltze-Jafra, S.; Fuchs, J.; Guendel, A.; Neuberger, T.; Ortleb, S.; Jakob, P.M.; Borisjuk, L. A Functional Imaging Study of Germinating Oilseed Rape Seed. New Phytol. 2017, 216, 1181–1190. [Google Scholar] [CrossRef]
- Kermode, A.R. Role of Abscisic Acid in Seed Dormancy. J. Plant Growth Regul. 2005, 24, 319–344. [Google Scholar] [CrossRef]
- Zhao, T.; Deng, X.; Xiao, Q.; Han, Y.; Zhu, S.; Chen, J. IAA Priming Improves the Germination and Seedling Growth in Cotton (Gossypium hirsutum L.) via Regulating the Endogenous Phytohormones and Enhancing the Sucrose Metabolism. Ind. Crops Prod. 2020, 155, 112788. [Google Scholar] [CrossRef]
- Tapfumaneyi, L.; Dube, P.; Mavengahama, S.; Ngezimana, W. Effect of Gibberellic Acid and Potassium Nitrate Seed Treatments on the Emergence and Seedling Vigor of Amaranth and Cleome Gynandra. Agrosyst. Geosci. Environ. 2023, 6, e20359. [Google Scholar] [CrossRef]
- Arc, E.; Sechet, J.; Corbineau, F.; Rajjou, L.; Marion-Poll, A. ABA Crosstalk with Ethylene and Nitric Oxide in Seed Dormancy and Germination. Front. Plant Sci. 2013, 4, 63. [Google Scholar] [CrossRef]
- Ellouzi, H.; Ben Slimene Debez, I.; Amraoui, S.; Rabhi, M.; Hanana, M.; Alyami, N.M.; Debez, A.; Abdelly, C.; Zorrig, W. Effect of Seed Priming with Auxin on ROS Detoxification and Carbohydrate Metabolism and Their Relationship with Germination and Early Seedling Establishment in Salt Stressed Maize. BMC Plant Biol. 2024, 24, 704. [Google Scholar] [CrossRef]
- Sour, V.; Sour, P.; Vorn, Y.; Sim, S. Effect of Hormonal Priming on Seed Germination and Initial Growth of Cambodian Rice in Salt Stress Condition. Int. J. Appl. Adv. Multidiscip. Res. 2024, 2, 369–380. [Google Scholar] [CrossRef]
- Hela, M.; Hanen, Z.; Imen, T.; Olfa, B.; Nawel, N.; Raouia, B.M.; Maha, Z.; Wissal, A.; Jun, H.; Abdelali, H.; et al. Combined Effect of Hormonal Priming and Salt Treatments on Germination Percentage and Antioxidant Activities in Lettuce Seedlings. Afr. J. Biotechnol. 2012, 11, 10373–10380. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.H.M.; Zulfiqar, F.; Raza, A.; Mohsin, S.; Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Peng, J.; Li, F.; Ali, F.; Wang, Z. Regulation of Seed Germination: ROS, Epigenetic, and Hormonal Aspects. J. Adv. Res. 2025, 71, 107–125. [Google Scholar] [CrossRef]
- Aswathi, K.P.R.; Kalaji, H.M.; Puthur, J.T. Seed Priming of Plants Aiding in Drought Stress Tolerance and Faster Recovery: A Review. Plant Growth Regul. 2022, 97, 235–253. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H. Priming the Proteasome to Protect against Proteotoxicity. Trends Mol. Med. 2020, 26, 639–648. [Google Scholar] [CrossRef]
- Louis, N.; Dhankher, O.P.; Puthur, J.T. Seed Priming Can Enhance and Retain Stress Tolerance in Ensuing Generations by Inducing Epigenetic Changes and Trans-generational Memory. Physiol. Plant 2023, 175, e13881. [Google Scholar] [CrossRef]
- Yao, L.; Ni, Y.; Chen, C.; Xiong, W.; Gan, Q.; Jia, X.; Jin, S.; Yang, J.; Guo, Y. Unlocking the Synergy: ABA Seed Priming Enhances Drought Tolerance in Seedlings of Sweet Sorghum Through ABA-IAA Crosstalk. Plant Cell Environ. 2025, 1–18, pce.15575. [Google Scholar] [CrossRef]
- Nie, L.; Song, S.; Yin, Q.; Zhao, T.; Liu, H.; He, A.; Wang, W. Enhancement in Seed Priming-Induced Starch Degradation of Rice Seed Under Chilling Stress via GA-Mediated α-Amylase Expression. Rice 2022, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Yung, W.; Wang, Q.; Chan, L.; Wang, Z.; Huang, M.; Li, M.; Wong, F.; Lam, H. DNA Hypomethylation Is One of the Epigenetic Mechanisms Involved in Salt-Stress Priming in Soybean Seedlings. Plant Cell Environ. 2024, 1–13, pce.15297. [Google Scholar] [CrossRef]
- Harris, C.J.; Amtmann, A.; Ton, J. Epigenetic Processes in Plant Stress Priming: Open Questions and New Approaches. Curr. Opin. Plant Biol. 2023, 75, 102432. [Google Scholar] [CrossRef]
- Yung, W.; Wang, Q.; Huang, M.; Wong, F.; Liu, A.; Ng, M.; Li, K.; Sze, C.; Li, M.; Lam, H. Priming-induced Alterations in Histone Modifications Modulate Transcriptional Responses in Soybean under Salt Stress. Plant J. 2022, 109, 1575–1590. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Song, G.; Guo, W.; Wang, W.; Zhao, H.; Gao, T.; Lv, Q.; Yang, X.; Xu, F.; Dong, Y.; et al. Dynamic Changes in Genome-Wide Histone3 Lysine27 Trimethylation and Gene Expression of Soybean Roots in Response to Salt Stress. Front. Plant Sci. 2019, 10, 1031. [Google Scholar] [CrossRef]
- Song, Y.; Ji, D.; Li, S.; Wang, P.; Li, Q.; Xiang, F. The Dynamic Changes of DNA Methylation and Histone Modifications of Salt Responsive Transcription Factor Genes in Soybean. PLoS ONE 2012, 7, e41274. [Google Scholar] [CrossRef]
- BiBi, R.; Elahi, N.N.; Danish, S.; Alahmadi, T.A.; Ansari, M.J. Enhancing Germination and Growth of Canola (Brassica napus L.) through Hydropriming and NaCl Priming. Sci. Rep. 2024, 14, 14026. [Google Scholar] [CrossRef]
- Lemmens, E.; Deleu, L.J.; De Brier, N.; De Man, W.L.; De Proft, M.; Prinsen, E.; Delcour, J.A. The Impact of Hydro-Priming and Osmo-Priming on Seedling Characteristics, Plant Hormone Concentrations, Activity of Selected Hydrolytic Enzymes, and Cell Wall and Phytate Hydrolysis in Sprouted Wheat (Triticum aestivum L.). ACS Omega 2019, 4, 22089–22100. [Google Scholar] [CrossRef]
- Hadia, E.; Slama, A.; Romdhane, L.; Cheikh M’Hamed, H.; Fahej, M.A.S.; Radhouane, L. Seed Priming of Bread Wheat Varieties with Growth Regulators and Nutrients Improves Salt Stress Tolerance Particularly for the Local Genotype. J. Plant Growth Regul. 2023, 42, 304–318. [Google Scholar] [CrossRef]
- Al-Quraan, N.A.; Samarah, N.H.; Rasheed, E.I. The Role of Chitosan Priming in Induction of GABA Shunt Pathway during Wheat Seed Germination under Salt Stress. Biol. Plant. 2023, 67, 234–248. [Google Scholar] [CrossRef]
- Cecchetti, D.; Pawełek, A.; Wyszkowska, J.; Antoszewski, M.; Szmidt-Jaworska, A. Treatment of Winter Wheat (Triticum aestivum L.) Seeds with Electromagnetic Field Influences Germination and Phytohormone Balance Depending on Seed Size. Agronomy 2022, 12, 1423. [Google Scholar] [CrossRef]
- Mouradi, M.; Bouizgaren, A.; Farissi, M.; Makoudi, B.; Kabbadj, A.; Very, A.-A.; Sentenac, H.; Qaddoury, A.; Ghoulam, C. Osmopriming Improves Seeds Germination, Growth, Antioxidant Responses and Membrane Stability during Early Stage of Moroccan Alfalfa Populations under Water Deficit. Chil. J. Agric. Res. 2016, 76, 265–272. [Google Scholar] [CrossRef]
- Chattha, M.U.; Hassan, M.U.U.; Khan, I.; Nawaz, M.; Shah, A.N.; Sattar, A.; Hashem, M.; Alamri, S.; Aslam, M.T.; Alhaithloul, H.A.S.; et al. Hydrogen Peroxide Priming Alleviates Salinity Induced Toxic Effect in Maize by Improving Antioxidant Defense System, Ionic Homeostasis, Photosynthetic Efficiency and Hormonal Crosstalk. Mol. Biol. Rep. 2022, 49, 5611–5624. [Google Scholar] [CrossRef] [PubMed]
- Mahakham, W.; Sarmah, A.K.; Maensiri, S.; Theerakulpisut, P. Nanopriming Technology for Enhancing Germination and Starch Metabolism of Aged Rice Seeds Using Phytosynthesized Silver Nanoparticles. Sci. Rep. 2017, 7, 8263. [Google Scholar] [CrossRef]
- Ben Youssef, R.; Jelali, N.; Martínez-Andújar, C.; Abdelly, C.; Hernández, J.A. Salicylic Acid and Calcium Chloride Seed Priming: A Prominent Frontier in Inducing Mineral Nutrition Balance and Antioxidant System Capacity to Enhance the Tolerance of Barley Plants to Salinity. Plants 2024, 13, 1268. [Google Scholar] [CrossRef]
- Adhikari, B.; Dhital, P.R.; Ranabhat, S.; Poudel, H. Effect of Seed Hydro-Priming Durations on Germination and Seedling Growth of Bitter Gourd (Momordica charantia). PLoS ONE 2021, 16, e0255258. [Google Scholar] [CrossRef]
- Yan, M. Seed Priming Stimulate Germination and Early Seedling Growth of Chinese Cabbage under Drought Stress. S. Afr. J. Bot. 2015, 99, 88–92. [Google Scholar] [CrossRef]
- Hassini, I.; Martinez-Ballesta, M.C.; Boughanmi, N.; Moreno, D.A.; Carvajal, M. Improvement of Broccoli Sprouts (Brassica oleracea L. Var. Italica) Growth and Quality by KCl Seed Priming and Methyl Jasmonate under Salinity Stress. Sci. Hortic. 2017, 226, 141–151. [Google Scholar] [CrossRef]
- Kasote, D.M.; Lee, J.H.J.; Jayaprakasha, G.K.; Patil, B.S. Seed Priming with Iron Oxide Nanoparticles Modulate Antioxidant Potential and Defense-Linked Hormones in Watermelon Seedlings. ACS Sustain. Chem. Eng. 2019, 7, 5142–5151. [Google Scholar] [CrossRef]
- Karim, M.R.; Sultana, S.; Altaf-Un-Nahar, M.; Islam, M.R.; Rahman, F.; Pretha, S.J.; Azam, M.G.; Hussain, S.; Yang, X.; Ibrahimova, U.; et al. Integrated Molecular Defense Mitigating Salt Stress in Tomatoes Using Synergistic Signaling Molecules. Physiol. Plant. 2025, 177, e70344. [Google Scholar] [CrossRef] [PubMed]
- Shelar, A.; Singh, A.V.; Chaure, N.; Jagtap, P.; Chaudhari, P.; Shinde, M.; Nile, S.H.; Chaskar, M.; Patil, R. Nanoprimers in Sustainable Seed Treatment: Molecular Insights into Abiotic-Biotic Stress Tolerance Mechanisms for Enhancing Germination and Improved Crop Productivity. Sci. Total Environ. 2024, 951, 175118. [Google Scholar] [CrossRef]
- Imtiaz, H.; Shiraz, M.; Mir, A.R.; Siddiqui, H.; Hayat, S. Nano-Priming Techniques for Plant Physio-Biochemistry and Stress Tolerance. J. Plant Growth Regul. 2023, 42, 6870–6890. [Google Scholar] [CrossRef]
- Faizan, M.; Sharma, P.; Sultan, H.; Alam, P.; Sehar, S.; Rajput, V.D.; Hayat, S. Nano-Priming: Improving Plant Nutrition to Support the Establishment of Sustainable Agriculture under Heavy Metal Stress. Plant Nano Biol. 2024, 10, 100096. [Google Scholar] [CrossRef]
- Szőllősi, R.; Molnár, Á.; Kondak, S.; Kolbert, Z. Dual Effect of Nanomaterials on Germination and Seedling Growth: Stimulation vs. Phytotoxicity. Plants 2020, 9, 1745. [Google Scholar] [CrossRef] [PubMed]
- Mahra, S.; Tripathi, S.; Tiwari, K.; Sharma, S.; Mathew, S.; Kumar, V.; Sharma, S. Harnessing Nanotechnology for Sustainable Agriculture: From Seed Priming to Encapsulation. Plant Nano Biol. 2025, 11, 100124. [Google Scholar] [CrossRef]
- Sanchez-Lucas, R.; Bosanquet, J.L.; Henderson, J.; Catoni, M.; Pastor, V.; Luna, E. Elicitor Specific Mechanisms of Defence Priming in Oak Seedlings Against Powdery Mildew. Plant Cell Environ. 2025, 48, 4455–4474. [Google Scholar] [CrossRef]
- Guru, A.; Dwivedi, P.; Kaur, P.; Pandey, D.K. Exploring the Role of Elicitors in Enhancing Medicinal Values of Plants under in Vitro Condition. S. Afr. J. Bot. 2022, 149, 1029–1043. [Google Scholar] [CrossRef]
- Ramirez-Estrada, K.; Vidal-Limon, H.; Hidalgo, D.; Moyano, E.; Golenioswki, M.; Cusidó, R.; Palazon, J. Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories. Molecules 2016, 21, 182. [Google Scholar] [CrossRef]
- Gowtham, H.G.; Murali, M.; Shilpa, N.; Amruthesh, K.N.; Gafur, A.; Antonius, S.; Sayyed, R.Z. Harnessing Abiotic Elicitors to Bolster Plant’s Resistance against Bacterial Pathogens. Plant Stress. 2024, 11, 100371. [Google Scholar] [CrossRef]
- Tania, S.S.; Rahaman, M.M.; Rauf, F.; Suborna, M.A.; Humayun Kabir, M.; Hoque, M.A.; Rhaman, M.S. Seed Priming with Salicylic Acid (SA) and Hydrogen Peroxide (H2O2) Improve Germination and Seedling Growth of Wheat (Triticum aestivum) under Salt Stress. Asian J. Res. Crop Sci. 2021, 6, 60–69. [Google Scholar] [CrossRef]
- Wang, S.; Hu, J.; Ren, B.; Liu, P.; Zhao, B.; Zhang, J. Effects of Hydrogen Peroxide Priming on Yield, Photosynthetic Capacity and Chlorophyll Fluorescence of Waterlogged Summer Maize. Front. Plant Sci. 2022, 13, 1042920. [Google Scholar] [CrossRef]
- Silva, P.C.C.; Gheyi, H.R.; Jesus, M.J.D.S.D.; Correia, M.R.S.; Azevedo Neto, A.D.D. Seed Priming with Hydrogen Peroxide Enhances Tolerance to Salt Stress of Hydroponic Lettuce. Rev. Bras. Eng. Agríc. Ambient. 2023, 27, 704–711. [Google Scholar] [CrossRef]
- Gammoudi, N.; Nagaz, K.; Ferchichi, A. Hydrotime Analysis to Explore the Effect of H2O2−priming in the Relationship between Water Potential (Ψ) and Germination Rate of Capsicum annuum L. Seed under NaCl− and PEG−induced Stress. Plant Physiol. Biochem. 2021, 167, 990–998. [Google Scholar] [CrossRef]
- Jamshidi Goharrizi, K.; Karami, S.; Ghanaei, S. Hydrogen Peroxide Priming Promotes Salinity Tolerance in Plants—A Comprehensive Review. Agron. J. 2024, 116, 612–629. [Google Scholar] [CrossRef]
- Faraz Ali, M.; Sajid Aqeel Ahmad, M.; Gaafar, A.-R.Z.; Shakoor, A. Seed Pre-Treatment with Electromagnetic Field (EMF) Differentially Enhances Germination Kinetics and Seedling Growth of Maize (Zea mays L.). J. King Saud. Univ. Sci. 2024, 36, 103184. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Peng, Q.; Sun, X.; Yang, Q.; Song, Z.; Tian, F.; Yan, Y.; Liu, M. Enhancing Maize Seed Resistance to Chilling Stress through Seed Germination and Surface Morphological Changes Using High Voltage Electrostatic Field. Sci. Rep. 2025, 15, 3972. [Google Scholar] [CrossRef]
- Kaur, S.; Vian, A.; Chandel, S.; Singh, H.P.; Batish, D.R.; Kohli, R.K. Sensitivity of Plants to High Frequency Electromagnetic Radiation: Cellular Mechanisms and Morphological Changes. Rev. Environ. Sci. Biotechnol. 2021, 20, 55–74. [Google Scholar] [CrossRef]
- Mshenskaya, N.S.; Grinberg, M.A.; Kalyasova, E.A.; Vodeneev, V.A.; Ilin, N.V.; Slyunyaev, N.N.; Mareev, E.A.; Sinitsyna, Y.V. The Effect of an Extremely Low-Frequency Electromagnetic Field on the Drought Sensitivity of Wheat Plants. Plants 2023, 12, 826. [Google Scholar] [CrossRef]
- Adhikari, B.; Adhikari, M.; Ghimire, B.; Adhikari, B.C.; Park, G.; Choi, E.H. Cold Plasma Seed Priming Modulates Growth, Redox Homeostasis and Stress Response by Inducing Reactive Species in Tomato (Solanum lycopersicum). Free Radic. Biol. Med. 2020, 156, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, L.; Dong, Y. Seed Priming with Cold Plasma Mitigated the Negative Influence of Drought Stress on Growth and Yield of Rapeseed (Brassica napus L.). Ind. Crops Prod. 2025, 228, 120899. [Google Scholar] [CrossRef]
- Konchekov, E.M.; Gusein-zade, N.; Burmistrov, D.E.; Kolik, L.V.; Dorokhov, A.S.; Izmailov, A.Y.; Shokri, B.; Gudkov, S.V. Advancements in Plasma Agriculture: A Review of Recent Studies. Int. J. Mol. Sci. 2023, 24, 15093. [Google Scholar] [CrossRef] [PubMed]
Different Crops | Species | Priming Methods | Agronomic or Physio-Biochemical Response | References |
---|---|---|---|---|
Field crops | Brassica napus L. | Hydro-priming | Improved the germination, growth, yield, and oil attributes of canola | [65] |
Triticum aestivum L. | Hydro- and hormo-priming | Enhanced seed germination, coleoptile, and radicle growth, hydrolytic enzyme activity, and nutritional quality | [66,67] | |
Elicitor- (Chitosan) priming | Improved germination percentage and seedling growth, and reduced oxidative damage. | [68] | ||
Electro-priming | Accelerated seed germination and the rapid early growth of organs | [69] | ||
Medicago sativa L. | Osmo-priming | Improved seed germination performance, seedling growth, and antioxidant defense system | [70] | |
Zea mays L. | Redox- priming | Improved root characteristics, relative leaf water content, total chlorophyll content, photosynthetic rate, and uptake of Zn and K+ | [71] | |
Oryza sativa L. | Nano-priming | Improved germination, enhanced photosynthetic efficiency, and a stronger antioxidant defense mechanism | [72] | |
Bio-priming | Enhanced morphological, physiological, and biochemical responses | [35] | ||
Hordeum vulgare L. | Halo- and hormo-priming | Enhanced germination and stress tolerance. | [73] | |
Horticultural crops | Momordica charantia L. | Hydro-priming | Increased germination rate and vigor index | [74] |
Chinese cabbage (B. rapa L.) | Hydro-priming | Increased soluble sugar and protein content, and enzyme (CAT and POD) activities | [75] | |
Broccoli (B. oleracea L. var. Italica) | Osmo- and hormo-priming | Improved glucosinolate metabolism and phenolics | [76] | |
Citrullus lanatus | Nano-priming | Enhanced germination attributes, soluble sugar contents, and high yield | [77] | |
Solanum lycopersicum L. | Halo-priming | Improved seedling physiological and biochemical attributes | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhaman, M.S. Seed Priming Before the Sprout: Revisiting an Established Technique for Stress-Resilient Germination. Seeds 2025, 4, 29. https://doi.org/10.3390/seeds4030029
Rhaman MS. Seed Priming Before the Sprout: Revisiting an Established Technique for Stress-Resilient Germination. Seeds. 2025; 4(3):29. https://doi.org/10.3390/seeds4030029
Chicago/Turabian StyleRhaman, Mohammad Saidur. 2025. "Seed Priming Before the Sprout: Revisiting an Established Technique for Stress-Resilient Germination" Seeds 4, no. 3: 29. https://doi.org/10.3390/seeds4030029
APA StyleRhaman, M. S. (2025). Seed Priming Before the Sprout: Revisiting an Established Technique for Stress-Resilient Germination. Seeds, 4(3), 29. https://doi.org/10.3390/seeds4030029