Next Issue
Volume 2, September
Previous Issue
Volume 2, March
 
 

SynBio, Volume 2, Issue 2 (June 2024) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 1580 KiB  
Review
Recombinant Protein Expression and Its Biotechnological Applications in Chlorella spp.
by Chuchi Chen and Valerie C. A. Ward
SynBio 2024, 2(2), 223-239; https://doi.org/10.3390/synbio2020013 - 6 Jun 2024
Viewed by 1334
Abstract
Recombinant protein expression is a fundamental aspect of both synthetic biology and biotechnology as well as a field unto itself. Microalgae, with their eukaryotic cellular machinery, high lipid content, cost-effective cultivation conditions, safety profile for human consumption, and environmentally friendly attributes, are a [...] Read more.
Recombinant protein expression is a fundamental aspect of both synthetic biology and biotechnology as well as a field unto itself. Microalgae, with their eukaryotic cellular machinery, high lipid content, cost-effective cultivation conditions, safety profile for human consumption, and environmentally friendly attributes, are a promising system for protein expression or metabolic engineering for sustainable chemical production. Amongst the incredible diversity of microalgae species, Chlorella spp. are heavily studied due to their high growth efficiency, potential for low-cost cultivation, and well-characterized scale-up process for large-scale cultivation. This review aims to comprehensively examine the ongoing advancements in the bioengineering of Chlorella spp. for recombinant protein production and its biotechnological applications. This includes genetic elements such as promoters, terminators, reporters and markers, enhancers, and tags successfully used in Chlorella spp. Full article
(This article belongs to the Special Issue Feature Paper Collection in Synthetic Biology)
Show Figures

Figure 1

18 pages, 8116 KiB  
Article
Structural Evolution of the Pharmaceutical Peptide Octreotide upon Controlled Relative Humidity and Temperature Variation
by Maria Athanasiadou, Christina Papaefthymiou, Angelos Kontarinis, Maria Spiliopoulou, Dimitrios Koutoulas, Marios Konstantopoulos, Stamatina Kafetzi, Kleomenis Barlos, Kostas K. Barlos, Natalia Dadivanyan, Detlef Beckers, Thomas Degen, Andrew N. Fitch and Irene Margiolaki
SynBio 2024, 2(2), 205-222; https://doi.org/10.3390/synbio2020012 - 4 Jun 2024
Cited by 1 | Viewed by 904
Abstract
Octreotide is the first synthetic peptide hormone, consisting of eight amino acids, that mimics the activity of somatostatin, a natural hormone in the body. During the past decades, advanced instrumentation and crystallographic software have established X-Ray Powder Diffraction (XRPD) as a valuable tool [...] Read more.
Octreotide is the first synthetic peptide hormone, consisting of eight amino acids, that mimics the activity of somatostatin, a natural hormone in the body. During the past decades, advanced instrumentation and crystallographic software have established X-Ray Powder Diffraction (XRPD) as a valuable tool for extracting structural information from biological macromolecules. The latter was demonstrated by the successful structural determination of octreotide at a remarkably high d-spacing resolution (1.87 Å) (PDB code: 6vc1). This study focuses on the response of octreotide to different humidity levels and temperatures, with a particular focus on the stability of the polycrystalline sample. XRPD measurements were accomplished employing an Anton Paar MHC-trans humidity-temperature chamber installed within a laboratory X’Pert Pro diffractometer (Malvern Panalytical). The chamber is employed to control and maintain precise humidity and temperature levels of samples during XRPD data collection. Pawley analysis of the collected data sets revealed that the octreotide polycrystalline sample is remarkably stable, and no structural transitions were observed. The compound retains its orthorhombic symmetry (space group: P212121, a = 18.57744(4) Å, b = 30.17338(6) Å, c = 39.70590(9) Å, d ~ 2.35 Å). However, a characteristic structural evolution in terms of lattice parameters and volume of the unit cell is reported mainly upon controlled relative humidity variation. In addition, an improvement in the signal-to-noise ratio in the XRPD data under a cycle of dehydration/rehydration is reported. These results underline the importance of considering the impact of environmental factors, such as humidity and temperature, in the context of structure-based drug design, thereby contributing to the development of more effective and stable pharmaceutical products. Full article
Show Figures

Figure 1

16 pages, 2760 KiB  
Article
Density and Composition of Cohabiting Bacteria in Chlorella vulgaris CCAP 211/21A Is Influenced by Changes in Nutrient Supply
by Wasayf J. Almalki, Alison O. Nwokeoji and Seetharaman Vaidyanathan
SynBio 2024, 2(2), 190-204; https://doi.org/10.3390/synbio2020011 - 17 May 2024
Viewed by 1064
Abstract
Microalgae have considerable potential as a renewable feedstock for biochemical and bioethanol production that can be employed in processes associated with carbon capture. Large-scale microalgae cultivations are often non-axenic and are often cohabited by bacteria. A better understanding of the influence of cohabiting [...] Read more.
Microalgae have considerable potential as a renewable feedstock for biochemical and bioethanol production that can be employed in processes associated with carbon capture. Large-scale microalgae cultivations are often non-axenic and are often cohabited by bacteria. A better understanding of the influence of cohabiting bacteria on microalgae productivity is required to develop sustainable synthetic co-culture processes at scale. Nutrient limitation is a frequently employed strategy in algal cultivations to accumulate energy reserves, such as lipids and carbohydrates. Here, a non-axenic culture of an estuarine green microalga, Chlorella vulgaris CCAP 211/21A, was studied under nutrient replete and deplete conditions to assess how changes in nutrient supply influenced the cohabiting bacterial population and its association with intracellular carbohydrate accumulations in the alga. Nutrient limitation resulted in a maximum carbohydrate yield of 47%, which was 74% higher than that in nutrient replete conditions. However, the latter condition elicited a 2-fold higher carbohydrate productivity. Three cohabiting bacterial isolates were cultivable from the three culture conditions tested. These isolates were identified using the 16S rRNA gene sequence to belong to Halomonas sp. and Muricauda sp. The composition of the bacterial population varied significantly between the growth conditions and time points. In all cases and at all time points, the dominant species was Halomonas isolates. Nutrient depletion resulted in an apparent loss of Muricauda sp. This finding demonstrates that nutrient supply can be used to control cohabiting bacterial populations in algal cultures, which will enable the development of synthetic co-culture strategies for improving algae productivity. Full article
Show Figures

Figure 1

16 pages, 3025 KiB  
Article
Construction of an Elastin-like Polypeptide Gene in a High Copy Number Plasmid Using a Modified Method of Recursive Directional Ligation
by Derek W. Nelson, Alexander Connor, Yu Shen and Ryan J. Gilbert
SynBio 2024, 2(2), 174-189; https://doi.org/10.3390/synbio2020010 - 5 May 2024
Viewed by 924
Abstract
Elastin-like polypeptides (ELPs) are popular biomaterials due to their reversible, temperature-dependent phase separation and their tunability, which is achievable by evolving procedures in recombinant technology. In particular, recursive direction ligation by plasmid reconstruction (PRe-RDL) is the predominant cloning technique used to generate ELPs [...] Read more.
Elastin-like polypeptides (ELPs) are popular biomaterials due to their reversible, temperature-dependent phase separation and their tunability, which is achievable by evolving procedures in recombinant technology. In particular, recursive direction ligation by plasmid reconstruction (PRe-RDL) is the predominant cloning technique used to generate ELPs of varying lengths. Pre-RDL provides precise control over the number of (VPGXG)n repeat units in an ELP due to the selection of type IIS restriction enzyme (REs) sites in the reconstructed pET expression plasmid, which is a low-to-medium copy number plasmid. While Pre-RDL can be used to seamlessly repeat essentially any gene sequence and overcome limitations of previous cloning practices, we modified the Pre-RDL technique, where a high copy number plasmid (pBluescript II SK(+)—using a new library of type IIS REs) was used instead of a pET plasmid. The modified technique successfully produced a diblock ELP gene of 240 pentapeptide repeats from 30 pentapeptide “monomers” composed of alanine, tyrosine, and leucine X residues. This study found that the large, GC-rich ELP gene compromised plasmid yields in pBluescript II SK(+) and favored higher plasmid yields in the pET19b expression plasmid. Additionally, the BL21 E. coli strain expression consistently provided a higher transformation efficiency and higher plasmid yield than the high cloning efficiency strain TOP10 E. coli. We hypothesize that the plasmid/high GC gene ratio may play a significant role in these observations, and not the total plasmid size or the total plasmid GC content. While expression of the final gene resulted in a diblock ELP with a phase separation temperature of 34.5 °C, future work will need to investigate RDL techniques in additional plasmids to understand the primary driving factors for improving yields of plasmids with large ELP-encoding genes. Full article
Show Figures

Figure 1

32 pages, 4753 KiB  
Review
Crafting Genetic Diversity: Unlocking the Potential of Protein Evolution
by Vamsi Krishna Gali, Kang Lan Tee and Tuck Seng Wong
SynBio 2024, 2(2), 142-173; https://doi.org/10.3390/synbio2020009 - 7 Apr 2024
Viewed by 1688
Abstract
Genetic diversity is the foundation of evolutionary resilience, adaptive potential, and the flourishing vitality of living organisms, serving as the cornerstone for robust ecosystems and the continuous evolution of life on Earth. The landscape of directed evolution, a powerful biotechnological tool inspired by [...] Read more.
Genetic diversity is the foundation of evolutionary resilience, adaptive potential, and the flourishing vitality of living organisms, serving as the cornerstone for robust ecosystems and the continuous evolution of life on Earth. The landscape of directed evolution, a powerful biotechnological tool inspired by natural evolutionary processes, has undergone a transformative shift propelled by innovative strategies for generating genetic diversity. This shift is fuelled by several factors, encompassing the utilization of advanced toolkits like CRISPR-Cas and base editors, the enhanced comprehension of biological mechanisms, cost-effective custom oligo pool synthesis, and the seamless integration of artificial intelligence and automation. This comprehensive review looks into the myriad of methodologies employed for constructing gene libraries, both in vitro and in vivo, categorized into three major classes: random mutagenesis, focused mutagenesis, and DNA recombination. The objectives of this review are threefold: firstly, to present a panoramic overview of recent advances in genetic diversity creation; secondly, to inspire novel ideas for further innovation in genetic diversity generation; and thirdly, to provide a valuable resource for individuals entering the field of directed evolution. Full article
Show Figures

Figure 1

17 pages, 1232 KiB  
Article
Saccharomyces cerevisiae as a Host for Chondroitin Production
by Márcia R. Couto, Joana L. Rodrigues, Oscar Dias and Lígia R. Rodrigues
SynBio 2024, 2(2), 125-141; https://doi.org/10.3390/synbio2020008 - 3 Apr 2024
Viewed by 1256
Abstract
Chondroitin is a glycosaminoglycan that has gained widespread use in nutraceuticals and pharmaceuticals, mainly for treating osteoarthritis. Traditionally, it has been extracted from animal cartilage but recently, biotechnological processes have emerged as a commercial alternative to avoid the risk of viral or prion [...] Read more.
Chondroitin is a glycosaminoglycan that has gained widespread use in nutraceuticals and pharmaceuticals, mainly for treating osteoarthritis. Traditionally, it has been extracted from animal cartilage but recently, biotechnological processes have emerged as a commercial alternative to avoid the risk of viral or prion contamination and offer a vegan-friendly source. Typically, these methods involve producing the chondroitin backbone using pathogenic bacteria and then modifying it enzymatically through the action of sulfotransferases. Despite the challenges of expressing active sulfotransferases in bacteria, the use of eukaryotic microorganisms is still limited to a few works using Pichia pastoris. To create a safer and efficient biotechnological platform, we constructed a biosynthetic pathway for chondroitin production in S. cerevisiae as a proof-of-concept. Up to 125 mg/L and 200 mg/L of intracellular and extracellular chondroitin were produced, respectively. Furthermore, as genome-scale models are valuable tools for identifying novel targets for metabolic engineering, a stoichiometric model of chondroitin-producing S. cerevisiae was developed and used in optimization algorithms. Our research yielded several novel targets, such as uridine diphosphate (UDP)-N-acetylglucosamine pyrophosphorylase (QRI1), glucosamine-6-phosphate acetyltransferase (GNA1), or N-acetylglucosamine-phosphate mutase (PCM1) overexpression, that might enhance chondroitin production and guide future experimental research to develop more efficient host organisms for the biotechnological production process. Full article
Show Figures

Figure 1

13 pages, 1654 KiB  
Article
Development of SynBio Tools for Pseudomonas chlororaphis: A Versatile Non-Pathogenic Bacterium Host
by Miguel Angel Bello-González, Leidy Patricia Bedoya-Perez, Miguel Alberto Pantoja-Zepeda and Jose Utrilla
SynBio 2024, 2(2), 112-124; https://doi.org/10.3390/synbio2020007 - 27 Mar 2024
Viewed by 1143
Abstract
Pseudomonas chlororaphis ATCC 9446 is a non-pathogenic bacterium associated with the rhizosphere. It is commonly used as a biocontrol agent against agricultural pests. This organism can grow on a variety of carbon sources, has a robust secondary metabolism, and produces secondary metabolites with [...] Read more.
Pseudomonas chlororaphis ATCC 9446 is a non-pathogenic bacterium associated with the rhizosphere. It is commonly used as a biocontrol agent against agricultural pests. This organism can grow on a variety of carbon sources, has a robust secondary metabolism, and produces secondary metabolites with antimicrobial properties. This makes it an alternative host organism for synthetic biology applications. However, as a novel host there is a need for well-characterized molecular tools that allow fine control of gene expression and exploration of its metabolic potential. In this work we developed and characterized expression vectors for P. chlororaphis. We used two different promoters: the exogenously induced lac-IPTG promoter, and LuxR-C6-AHL, which we evaluated for its auto-inducible capacities, as well as using an external addition of C6-AHL. The expression response of these vectors to the inducer concentration was characterized by detecting a reporter fluorescent protein (YFP: yellow fluorescent protein). Furthermore, the violacein production operon was evaluated as a model heterologous pathway. We tested violacein production in shake flasks and a 3 L fermenter, showing that P. chlororaphis possesses a vigorous aromatic amino acid metabolism and was able to produce 1 g/L of violacein in a simple batch reactor experiment with minimal medium using only glucose as the carbon source. We compared the experimental results with the predictions of a modified genome scale model. The presented results show the potential of P. chlororaphis as a novel host organism for synthetic biology applications. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop