Structural Evolution of the Pharmaceutical Peptide Octreotide upon Controlled Relative Humidity and Temperature Variation
Abstract
:1. Introduction
1.1. Structural Characterization of Peptide-Based Drugs via X-ray Powder Diffraction (XRPD)
1.2. The Pharmaceutical Peptide Octreotide
1.3. In Situ XRPD Measurements upon Controlled Relative Humidity and Temperature Variation
1.4. Advances of the Current Study
2. Results
2.1. The Effect of rH Variation on Octreotide at Ambient Temperature
2.2. The Effect of Temperature on Octreotide at Selected rH Levels
3. Materials and Methods
3.1. Crystallization
3.2. Laboratory and Synchrotron XRPD Data Collection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ducruix, A.; Giegé, R. (Eds.) Crystallization of Nucleic Acids and Proteins: A Practical Approach, 2nd ed.; Oxford University Press: Oxford, UK, 1999. [Google Scholar] [CrossRef]
- Asherie, N. Protein crystallization and phase diagrams. Methods 2004, 34, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Govada, L.; Chayen, N.E. Choosing the Method of Crystallization to Obtain Optimal Results. Crystals 2019, 9, 106. [Google Scholar] [CrossRef]
- Hageman, M.J. The Role of Moisture in Protein Stability. Drug Dev. Ind. Pharm. 1988, 14, 2047–2070. [Google Scholar] [CrossRef]
- Hudaverdyan, T.G.; Kachalova, G.S.; Bartunik, H.D. Estimation of the effect of relative humidity on protein crystallization. Crystallogr. Rep. 2006, 51, 519–524. [Google Scholar] [CrossRef]
- Zellnitz, S.; Narygina, O.; Resch, C.; Schroettner, H.; Urbanetz, N.A. Crystallization speed of salbutamol as a function of relative humidity and temperature. Int. J. Pharm. 2015, 489, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, F.; Howard, S.; Sowers, J.; Nyce, T. Temperature dependence of protein solubility—Determination and application to crystallization in X-ray capillaries. J. Cryst. Growth 1993, 129, 1–12. [Google Scholar] [CrossRef]
- Budayova-Spano, M.; Dauvergne, F.; Audiffren, M.; Bactivelane, T.; Cusack, S. A methodology and an instrument for the temperature-controlled optimization of crystal growth. Acta Crystallogr. Sect. D Struct. Biol. 2007, 63, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Norrman, M.; Ståhl, K.; Schluckebier, G.; Al-Karadaghi, S. Characterization of insulin microcrystals using powder diffraction and multivariate data analysis. J. Appl. Crystallogr. 2006, 39, 391–400. [Google Scholar] [CrossRef]
- Margiolaki, I.; Wright, J.P. Powder crystallography on macromolecules. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 169–180. [Google Scholar] [CrossRef]
- Karavassili, F.; Valmas, A.; Fili, S.; Georgiou, C.D.; Margiolaki, I. In Quest for Improved Drugs against Diabetes: The Added Value of X-ray Powder Diffraction Methods. Biomolecules 2017, 7, 63. [Google Scholar] [CrossRef]
- Margiolaki, I. Macromolecular Powder Diffraction. In 2019. pp. 718–736. Available online: http://xrpp.iucr.org/cgi-bin/itr?url_ver=Z39.88-2003&rft_dat=what%3Dchapter%26volid%3DHa%26chnumo%3D7o1%26chvers%3Dv0001 (accessed on 11 October 2011).
- Spiliopoulou, M.; Triandafillidis, D.-P.; Valmas, A.; Kosinas, C.; Fitch, A.N.; Von Dreele, R.B.; Margiolaki, I. Rietveld Refinement for Macromolecular Powder Diffraction. Cryst. Growth Des. 2020, 20, 8101–8123. [Google Scholar] [CrossRef]
- Triandafillidis, D.P.; Karavassili, F.; Spiliopoulou, M.; Valmas, A.; Athanasiadou, M.; Nikolaras, G.; Fili, S.; Kontou, P.; Bowler, M.W.; Chasapis, C.T.; et al. The T2 structure of polycrystalline cubic human insulin. Acta Crystallogr. Sect. D Struct. Biol. 2023, 79, 374–386. [Google Scholar] [CrossRef]
- Rupley, J.A.; Careri, G. Protein Hydration and Function. In Advances in Protein Chemistry; Elsevier: Amsterdam, The Netherlands, 1991; pp. 37–172. [Google Scholar] [CrossRef] [PubMed]
- Fenimore, P.W.; Frauenfelder, H.; McMahon, B.H.; Young, R.D. Bulk-solvent and hydration-shell fluctuations, similar to α- and β-fluctuations in glasses, control protein motions and functions. Proc. Natl. Acad. Sci. USA 2004, 101, 14408–14413. [Google Scholar] [CrossRef] [PubMed]
- Atakisi, H.; Moreau, D.W.; Thorne, R.E. Effects of protein-crystal hydration and temperature on side-chain conformational heterogeneity in monoclinic lysozyme crystals. Acta Crystallogr. Sect. D Struct. Biol. 2018, 74, 264–278. [Google Scholar] [CrossRef]
- Trampari, S.; Valmas, A.; Logotheti, S.; Saslis, S.; Fili, S.; Spiliopoulou, M.; Beckers, D.; Degen, T.; Nenert, G.; Fitch, A.N.; et al. In situ detection of a novel lysozyme monoclinic crystal form upon controlled relative humidity variation. J. Appl. Crystallogr. 2018, 51, 1671–1683. [Google Scholar] [CrossRef]
- Logotheti, S.; Valmas, A.; Trampari, S.; Fili, S.; Saslis, S.; Spiliopoulou, M.; Beckers, D.; Degen, T.; Nénert, G.; Fitch, A.N.; et al. Unit-cell response of tetragonal hen egg white lysozyme upon controlled relative humidity variation. J. Appl. Crystallogr. 2019, 52, 816–827. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022, 7, 48. [Google Scholar] [CrossRef]
- Spiliopoulou, M.; Karavassili, F.; Triandafillidis, D.-P.; Valmas, A.; Fili, S.; Kosinas, C.; Barlos, K.; Barlos, K.K.; Morin, M.; Reinle-Schmitt, M.L.; et al. New perspectives in macromolecular powder diffraction using single-photon-counting strip detectors: High-resolution structure of the pharmaceutical peptide octreotide. Acta Crystallogr. Sect. A Found. Adv. 2021, 77, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Pohl, E.; Heine, A.; Sheldrick, G.M.; Dauter, Z.; Schneider, T.; Wilson, K.S.; Kallen, J. Comparison of different X-ray data-collection systems using the crystal structure of octreotide. Acta Crystallogr. Sect. D Struct. Biol. 1995, 51, 60–68. [Google Scholar] [CrossRef]
- Fili, S.; Valmas, A.; Spiliopoulou, M.; Kontou, P.; Fitch, A.; Beckers, D.; Degen, T.; Barlos, K.; Barlos, K.K.; Karavassili, F.; et al. Revisiting the structure of a synthetic somatostatin analogue for peptide drug design. Acta Crystallogr. Sect. B Struct. Sci. 2019, 75, 611–620. [Google Scholar] [CrossRef]
- European Medicines Agency. Assessment Report Mycapssa International Non-Proprietary Name: Octreotide Procedure No. EMEA/H/C/005826/0000. Available online: https://www.ema.europa.eu/en/documents/assessment-report/mycapssa-epar-public-assessment-report_en.pdf (accessed on 15 September 2022).
- Kuntz, I.D. Structure-Based Strategies for Drug Design and Discovery. Science 1992, 257, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Debnath, D.; Cheriyath, P. Octreotide. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK544333/ (accessed on 26 April 2024).
- Zhao, J.; Fu, H.; Yu, J.; Hong, W.; Tian, X.; Qi, J.; Sun, S.; Zhao, C.; Wu, C.; Xu, Z.; et al. Prospect of acromegaly therapy: Molecular mechanism of clinical drugs octreotide and paltusotine. Nat. Commun. 2023, 14, 962. [Google Scholar] [CrossRef]
- Li, S.-C.; Martijn, C.; Cui, T.; Essaghir, A.; Luque, R.M.; Demoulin, J.-B.; Castaño, J.P.; Öberg, K.; Giandomenico, V. The Somatostatin Analogue Octreotide Inhibits Growth of Small Intestine Neuroendocrine Tumour Cells. PLoS ONE 2012, 7, e48411. [Google Scholar] [CrossRef]
- Battershill, P.E.; Clissold, S.P. Octreotide: A Review of its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Potential in Conditions Associated with Excessive Peptide Secretion. Drugs 1989, 38, 658–702. [Google Scholar] [CrossRef]
- Di, L. Strategic Approaches to Optimizing Peptide ADME Properties. AAPS J. 2015, 17, 134–143. [Google Scholar] [CrossRef]
- Harris, A.G. Somatostatin and somatostatin analogues: Pharmacokinetics and pharmacodynamic effects. Gut 1994, 35 (Suppl. S3), S1–S4. [Google Scholar] [CrossRef]
- Han, B.; Tang, H.; Liang, Q.; Zhu, M.; Xie, Y.; Chen, J.; Li, Q.; Jia, J.; Li, Y.; Ren, Z.; et al. Preparation of long-acting microspheres loaded with octreotide for the treatment of portal hypertensive. Drug Deliv. 2021, 28, 719–732. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Rao, T.; Xu, Y.; Hu, K.; Zhu, Z.; Li, H.; Kang, D.; Shao, Y.; Shen, B.; Yin, X.; et al. Pharmacokinetic and pharmacodynamic evidence for developing an oral formulation of octreotide against gastric mucosal injury. Acta Pharmacol. Sin. 2018, 39, 1373–1385. [Google Scholar] [CrossRef] [PubMed]
- Tiberg, F.; Roberts, J.; Cervin, C.; Johnsson, M.; Sarp, S.; Tripathi, A.P.; Linden, M. Octreotide s.c. depot provides sustained octreotide bioavailability and similar IGF-1 suppression to octreotide LAR in healthy volunteers. Br. J. Clin. Pharmacol. 2015, 80, 460–472. [Google Scholar] [CrossRef]
- Fitch, A.; Dejoie, C.; Covacci, E.; Confalonieri, G.; Grendal, O.; Claustre, L.; Guillou, P.; Kieffer, J.; de Nolf, W.; Petitdemange, S.; et al. ID22—The high-resolution powder-diffraction beamline at ESRF. J. Synchrotron Radiat. 2023, 30, 1003–1012. [Google Scholar] [CrossRef]
- Basso, S.; Fitch, A.N.; Fox, G.C.; Margiolaki, I.; Wright, J.P. High-throughput phase-diagram mapping via powder diffraction: A case study of HEWL versus pH. Acta Crystallogr. D Biol. Crystallogr. 2005, 61, 1612–1625. [Google Scholar] [CrossRef] [PubMed]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef]
- Pawley, G.S. Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 1981, 14, 357–361. [Google Scholar] [CrossRef]
- Abraham, J. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. In Handbook of Transnational Economic Governance Regimes; Tietje, C., Brouder, A., Eds.; Brill|Nijhoff: Leiden, The Netherlands, 2010; pp. 1041–1053. Available online: https://brill.com/view/book/edcoll/9789004181564/Bej.9789004163300.i-1081_085.xml (accessed on 27 November 2023).
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Prueksaritanont, T.; Tang, C. ADME of Biologics—What Have We Learned from Small Molecules? AAPS J. 2012, 14, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Bansal, V.; Madhavan, A.; Kumar, M.; Sindhu, R.; Awasthi, M.K.; Binod, P.; Saran, S. Active pharmaceutical ingredient (API) chemicals: A critical review of current biotechnological approaches. Bioengineered 2022, 13, 4309–4327. [Google Scholar] [CrossRef]
- Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic. Med. Chem. 2018, 26, 2700–2707. [Google Scholar] [CrossRef]
- Bashir, S.; Fitaihi, R.; Abdelhakim, H.E. Advances in formulation and manufacturing strategies for the delivery of therapeutic proteins and peptides in orally disintegrating dosage forms. Eur. J. Pharm. Sci. 2023, 182, 106374. [Google Scholar] [CrossRef] [PubMed]
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128. [Google Scholar] [CrossRef]
- Muheem, A.; Shakeel, F.; Jahangir, M.A.; Anwar, M.; Mallick, N.; Jain, G.K.; Warsi, M.H.; Ahmad, F.J. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm. J. 2016, 24, 413–428. [Google Scholar] [CrossRef]
- Manning, M.C.; Chou, D.K.; Murphy, B.M.; Payne, R.W.; Katayama, D.S. Stability of Protein Pharmaceuticals: An Update. Pharm. Res. 2010, 27, 544–575. [Google Scholar] [CrossRef] [PubMed]
- Nugrahadi, P.P.; Hinrichs, W.L.J.; Frijlink, H.W.; Schöneich, C.; Avanti, C. Designing Formulation Strategies for Enhanced Stability of Therapeutic Peptides in Aqueous Solutions: A Review. Pharmaceutics 2023, 15, 935. [Google Scholar] [CrossRef] [PubMed]
- Mirza, S.; Miroshnyk, I.; Heinämäki, J.; Antikainen, O.; Rantanen, J.; Vuorela, P.; Vuorela, H.; Yliruusi, J. Crystal Morphology Engineering of Pharmaceutical Solids: Tabletting Performance Enhancement. Aaps Pharmscitech 2009, 10, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J.T.; Kim, H.; Cho, J.M.; Yun, G.; Lee, J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 2014, 9, 304–316. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services, Food and Drug Administration, Center for Veterinary Medicine (CVM). Guidance for Industry #5—Drug Stability Guidelines. 2008. Available online: https://www.fda.gov/media/69957/download (accessed on 1 November 2023).
- Daéid, N.N. Forensic Sciences|Systematic Drug Identification. In Encyclopedia of Analytical Science; Elsevier: Amsterdam, The Netherlands, 2005; pp. 471–480. Available online: https://linkinghub.elsevier.com/retrieve/pii/B0123693977001977 (accessed on 26 April 2024).
- Li, P.; Ford, L.; Haque, S.; McInerney, M.P.; Williams, H.D.; Scammells, P.J.; Thompson, P.E.; Jannin, V.; Porter, C.J.H.; Benameur, H.; et al. Lipophilic Salts and Lipid-Based Formulations: Enhancing the Oral Delivery of Octreotide. Pharm. Res. 2021, 38, 1125–1137. [Google Scholar] [CrossRef] [PubMed]
- Yasin, M.S.; Hussain, K.; Khan, K.-U.-R.; Waris, K.; Kamran, M.; Dilshad, R.; Abid, H.M.U.; Sohail, I.; Ahmad, S.; Dilshad, R.; et al. Development and validation of a reversed-phase hplc method for assay of the octapeptide octreotide in raw material and pharmaceutical dosage form. J. Popul. Ther. Clin. Pharmacol. 2024, 31, 1195–1203. Available online: https://jptcp.com/index.php/jptcp/article/view/4048 (accessed on 26 April 2024).
- Ismaiel, O.A.; Zhang, T.; Jenkins, R.; Karnes, H.T. Determination of octreotide and assessment of matrix effects in human plasma using ultra high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2011, 879, 2081–2088. [Google Scholar] [CrossRef]
- Cui, L.; Yang, Z.; Li, M.; Wei, Z.; Fei, Q.; Huan, Y.; Li, H. Structural characterization of octreotide impurities by on-line electrochemistry-tandem mass spectrometry. Int. J. Mass Spectrom. 2019, 435, 18–25. [Google Scholar] [CrossRef]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH Quality Guidelines. Available online: https://www.ich.org/page/quality-guidelines (accessed on 1 November 2023).
95–60% rH | 95–40% rH | 95–30% rH | |
---|---|---|---|
Δa/ai (%) | 0.04 | −1.56 | −0.51 |
Δb/bi (%) | 4.14 | 5.61 | 6.43 |
Δc/ci (%) | 1.24 | −0.61 | −0.27 |
ΔV/Vi (%) | 5.00 | 3.53 | 5.63 |
294.15–318.15 K | 95% rH | 85% rH | 75% rH | 65% rH | 55% rH | 45% rH |
---|---|---|---|---|---|---|
Δa/ai (%) | −0.15 | −0.16 | −0.98 | 0.23 | 1.32 | 0.42 |
Δb/bi (%) | −0.08 | 0.38 | 1.33 | 7.30 | 0.81 | 0.42 |
Δc/ci (%) | −0.38 | −0.22 | 2.08 | 2.57 | 1.41 | −0.34 |
ΔV/Vi (%) | −0.61 | 0.00 | 2.46 | 9.89 | 3.56 | 0.45 |
Cycle | Initial rH Levels (%) | Final rH Levels (%) | Step (% rH) | Temperature (K) | Waiting Time | Scans/Level |
---|---|---|---|---|---|---|
1 | 95 | 70 | 5 | 294.15 | 60 min | 10 |
70 | 60 | 2 | 294.15 | 60 min | 10 | |
2 | 95 | 70 | 5 | 294.15 | 60 min | 10 |
70 | 40 | 2 | 294.15 | 60 min | 10 | |
3 | 95 | 70 | 5 | 294.15 | 60 min | 10 |
70 | 30 | 2 | 294.15 | 60 min | 10 |
Cycle | Initial Temperature (K) | Final Temperature (K) | Step (K) | rH Level (%) | Waiting Time | Scans/Level |
---|---|---|---|---|---|---|
1 | 294.15 | 318.15 | 4 | 95 | 60 min | 10 |
2 | 294.15 | 318.15 | 4 | 85 | 60 min | 10 |
3 | 294.15 | 318.15 | 4 | 75 | 60 min | 10 |
4 | 294.15 | 318.15 | 4 | 65 | 60 min | 10 |
5 | 294.15 | 318.15 | 4 | 55 | 60 min | 10 |
6 | 294.15 | 318.15 | 4 | 45 | 60 min | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasiadou, M.; Papaefthymiou, C.; Kontarinis, A.; Spiliopoulou, M.; Koutoulas, D.; Konstantopoulos, M.; Kafetzi, S.; Barlos, K.; Barlos, K.K.; Dadivanyan, N.; et al. Structural Evolution of the Pharmaceutical Peptide Octreotide upon Controlled Relative Humidity and Temperature Variation. SynBio 2024, 2, 205-222. https://doi.org/10.3390/synbio2020012
Athanasiadou M, Papaefthymiou C, Kontarinis A, Spiliopoulou M, Koutoulas D, Konstantopoulos M, Kafetzi S, Barlos K, Barlos KK, Dadivanyan N, et al. Structural Evolution of the Pharmaceutical Peptide Octreotide upon Controlled Relative Humidity and Temperature Variation. SynBio. 2024; 2(2):205-222. https://doi.org/10.3390/synbio2020012
Chicago/Turabian StyleAthanasiadou, Maria, Christina Papaefthymiou, Angelos Kontarinis, Maria Spiliopoulou, Dimitrios Koutoulas, Marios Konstantopoulos, Stamatina Kafetzi, Kleomenis Barlos, Kostas K. Barlos, Natalia Dadivanyan, and et al. 2024. "Structural Evolution of the Pharmaceutical Peptide Octreotide upon Controlled Relative Humidity and Temperature Variation" SynBio 2, no. 2: 205-222. https://doi.org/10.3390/synbio2020012
APA StyleAthanasiadou, M., Papaefthymiou, C., Kontarinis, A., Spiliopoulou, M., Koutoulas, D., Konstantopoulos, M., Kafetzi, S., Barlos, K., Barlos, K. K., Dadivanyan, N., Beckers, D., Degen, T., Fitch, A. N., & Margiolaki, I. (2024). Structural Evolution of the Pharmaceutical Peptide Octreotide upon Controlled Relative Humidity and Temperature Variation. SynBio, 2(2), 205-222. https://doi.org/10.3390/synbio2020012