Crafting Genetic Diversity: Unlocking the Potential of Protein Evolution
Abstract
:1. Introduction
2. Molecular Cloning
2.1. In Vivo Cloning
In Vivo Cloning Method | Method Description | Cloning Accuracy * | Maximum Number of Fragments Assembled at Once * | Reference(s) |
---|---|---|---|---|
Bacterial in vivo cloning (HR-based) | Depends on RecA-independent recombination (RAIR) pathway. DNA fragments generated via PCR or restriction enzyme digestion with overlapping homologous sequences can be used to directly transform bacteria. | Close to 100% for a 2-fragment assembly. Efficiency decreases with increasing number of fragments assembled at once. | Up to 7 across the references cited | [7,8,10,11,12,13,14,15,16,17] |
Yeast in vivo cloning (HR-based) | Highly efficient HR pathway in yeast (S. cerevisiae) can be used for assembling multiple DNA fragments with homologous sequences directing the order of assembly. | >95%, even for a 9-fragment assembly | 4–9 across the references cited | [19,20,21,22] |
Yeast in vivo cloning (NHEJ-based) | Highly efficient NHEJ pathway in thermotolerant yeast (K. marxianus) allows direct joining of two DNA fragments without the need for homologous ends. | 97–100% for a 2-fragment assembly | 2 | [25] |
CReasPy-cloning | Combines ability of CRISPR-Cas9 and HR pathway of yeast to clone and edit large genomes at multiple loci. | >50% for a 2-fragment assembly | 4 | [26] |
Phage Enzyme-Assisted In Vivo DNA Assembly (PEDA) method | Simultaneous expression of exonuclease and ligase allows in vivo cloning in a wide range of microorganisms. | 70–100% for a 2-fragment assembly, 71–100% for a 3-fragment assembly | 3 | [27] |
Yeast Life Cycle (YLC) assembly method | Combines CRISPR-Cas9 and meiosis of yeast to iteratively assemble large DNA fragments. | 67–100% | 2 DNA fragments assembled per life cycle | [28] |
2.2. In Vitro Cloning
2.3. Modular DNA Assembly
2.4. Automated DNA Assembly
3. Genetic Diversity Creation
3.1. Quality and Size of a Gene Library
- Mutations are precisely targeted to the GOI (i.e., no off-target mutations).
- Mutations are uniformly distributed along the entire GOI.
- All bases (A/T/G/C) experience mutations at the same frequency and are substituted with their three counterparts equally.
- The mutation frequency (number of errors per 1 kb of DNA) is not excessively high, preventing the predominance of non-functional protein variants.
- Duplicated sequences are avoided/eliminated.
- Wildtype sequences are absent in the gene library (i.e., no template carry-over).
3.2. Random Mutagenesis
3.2.1. epPCR
3.2.2. In Vivo Mutagenesis in E. coli
3.2.3. Random Base Editing
Method/First Author’s Name (Year of Publication) | Guide Protein (GP) | Base Editor (BE) | Linkage between GP and BE | Organisms/Cells Validated | Ref. |
---|---|---|---|---|---|
Targeted mutagenesis | |||||
Nishida et al. (2016) | dCas9 1 or nCas9 2 | PmCDA1 | Gene fusion or interaction between SH3 (SRC homology domain 3) and SHL (SH3 interaction ligand) | S. cerevisiae and CHO | [94] |
CRISPR-X (2016) | dCas9 1 | hAID*Δ 4 | MS2 bacteriophage coat protein (MCP) binding to the MS2 RNA stem-loop | K-562 cell | [95] |
TAM (2016) | dCas9 1 | hAID, hAID CD 5, hAID P182X 6, or hAID R190X 7 | Gene fusion | K-562 cell and HEK293T cell | [96] |
Komor et al. (2016) | dCas9 1 or nCas9 2 | hAID, rAPOBEC1, hAPOBEC3G, or PmCDA1 | Gene fusion | U2OS cell, HEK293T cell, and HCC1954 cell | [97] |
Gehrke et al. (2018) | nCas9 2 | rAPOBEC1 or engineered hAPOBEC3A | Gene fusion | U2OS cell and HEK293T | [98] |
TRACE (2020) | T7 RNA polymerase | rAPOBEC1 or hAID*Δ 4 | Gene fusion | HEK293T cell | [99] |
TRIDENT (2021) | T7 RNA polymerase | PmCDA1 or yeTadA1.0 8 | Gene fusion | S. cerevisiae | [100] |
Volke et al. (2022) | nCas9 2 | rAPOBEC1 | Gene fusion | P. putida and P. aeruginosa | [101] |
Skrekas et al. (2023) | dCas9 1 | hAID*Δ 4, TadA8e 9, or TadA8e V106W 10 | Gene fusion | S. cerevisiae | [102] |
CoMuTER (2023) | dCas3 3 | PmCDA1 or rAPOBEC1 | Gene fusion | S. cerevisiae | [103] |
Global mutagenesis | |||||
Pan et al. (2021) | rAPOBEC1 | N/A | S. cerevisiae | [104] |
3.2.4. Virus-Assisted Mutagenesis
3.2.5. Random Insertion and Deletion
3.3. Focused Mutagenesis
3.3.1. Multi-Site-Directed Mutagenesis
Method/First Author (Year of Publication) | Method Description and Mutagenic Agent | Template | Maximum Mutated Sites per Gene | Ref. |
---|---|---|---|---|
ssDNA template | ||||
Nicking mutagenesis (2016) |
| Plasmid ssDNA | 7 | [117] |
Darwin Assembly (2018) |
| Plasmid ssDNA | 19 | [123] |
Nicking mutagenesis (2021) |
| Plasmid ssDNA | 15 | [124] |
SLUPT (2021) |
| Linear GOI ssDNA | 17 | [118] |
SUNi mutagenesis (2023) |
| Plasmid ssDNA | n.r * | [125] |
Assembly of mutated gene fragments | ||||
Combinatorial codon mutagenesis (CCM) (2014, 2017) |
| Plasmid dsDNA (2014) Linear GOI dsDNA (2017) | 7 | [126,127] |
Chung et al. (2017) |
| Linear GOI dsDNA | 14 | [128] |
Golden mutagenesis (2019) |
| Plasmid dsDNA | 5 | [129] |
Hejlesen et al. (2020) |
| Plasmid dsDNA | 3 | [130] |
In vivo method | ||||
Plasmid recombineering (2017) |
| Plasmid dsDNA | 2 | [119] |
3.3.2. CRISPR/Cas9-Mediated Mutagenesis
3.3.3. The Numbers Game
3.3.4. Automated Oligo Design
3.3.5. Oligo Pool (oPool) for Cost-Effective Library Construction
3.4. DNA Recombination
4. Applications of Genetic Diversity Creation
4.1. Biofuels and Biochemicals
4.2. Bioremediation
4.3. Agriculture and Food Production
4.4. Diagnostics and Healthcare
4.5. Advanced Molecular Biology and Protein Engineering Tools
5. Emerging Trends and Prospective Trajectories
Author Contributions
Funding
Conflicts of Interest
References
- Arnold:, F.H. Innovation by Evolution: Bringing New Chemistry to Life (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 2019, 58, 14420–14426. [Google Scholar] [CrossRef] [PubMed]
- Fasan, R.; Kan, S.B.J.; Zhao, H. A Continuing Career in Biocatalysis: Frances H. Arnold. ACS Catal. 2019, 9, 9775–9788. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.S.; Zhurina, D.; Schwaneberg, U. The Diversity Challenge in Directed Protein Evolution. Comb. Chem. High Throughput Screen. 2006, 9, 271–288. [Google Scholar] [CrossRef] [PubMed]
- Tee, K.L.; Wong, T.S. Polishing the craft of genetic diversity creation in directed evolution. Biotechnol. Adv. 2013, 31, 1707–1721. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.S.; Tee, K.L. A Practical Guide to Protein Engineering; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Xia, Y.; Li, K.; Li, J.; Wang, T.; Gu, L.; Xun, L. T5 exonuclease-dependent assembly offers a low-cost method for efficient cloning and site-directed mutagenesis. Nucleic Acids Res. 2019, 47, e15. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.F.; García-Nafría, J. In vivo DNA assembly using common laboratory bacteria: A re-emerging tool to simplify molecular cloning. J. Biol. Chem. 2019, 294, 15271–15281. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, S.; Niki, H. Exonuclease III (XthA) Enforces In Vivo DNA Cloning of Escherichia coli To Create Cohesive Ends. J. Bacteriol. 2019, 201, e00660-18. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.H.; Howard, B.H. A rapid method for recombination and site-specific mutagenesis by placing homologous ends on DNA using polymerase chain reaction. Biotechniques 1991, 10, 62–66. [Google Scholar] [PubMed]
- García-Nafría, J.; Watson, J.F.; Greger, I.H. IVA cloning: A single-tube universal cloning system exploiting bacterial In Vivo Assembly. Sci. Rep. 2016, 6, 27459. [Google Scholar] [CrossRef]
- Huang, F.; Spangler, J.R.; Huang, A.Y. In vivo cloning of up to 16 kb plasmids in E. coli is as simple as PCR. PLoS ONE 2017, 12, e0183974. [Google Scholar] [CrossRef]
- Jacobus, A.P.; Gross, J. Optimal Cloning of PCR Fragments by Homologous Recombination in Escherichia coli. PLoS ONE 2015, 10, e0119221. [Google Scholar] [CrossRef] [PubMed]
- Kostylev, M.; Otwell, A.E.; Richardson, R.E.; Suzuki, Y. Cloning Should Be Simple: Escherichia coli DH5alpha-Mediated As-sembly of Multiple DNA Fragments with Short End Homologies. PLoS ONE 2015, 10, e0137466. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Chen, J.; Tang, M.; Zhang, S.; Wei, L.; Li, C.; Wei, D. Restriction-ligation-free (RLF) cloning: A high-throughput cloning method by in vivo homologous recombination of PCR products. Genet Mol. Res. 2015, 14, 12306–12315. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yuan, H.; He, W.; Hu, X.; Lu, H.; Li, Y. Construction of a novel kind of expression plasmid by homologous re-combination in Saccharomyces cerevisiae. Sci. China C Life Sci. 2005, 48, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Gibson, D.G. Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res. 2009, 37, 6984–6990. [Google Scholar] [CrossRef] [PubMed]
- Oldenburg, K.R.; Vo, K.T.; Michaelis, S.; Paddon, C. Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 1997, 25, 451–452. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Weng, H.; Jin, P.; Du, G.; Chen, J.; Kang, Z. Scarless assembly of unphosphorylated DNA fragments with a simplified DATEL method. Bioengineered 2017, 8, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Joska, T.M.; Mashruwala, A.; Boyd, J.M.; Belden, W.J. A universal cloning method based on yeast homologous recombination that is simple, efficient, and versatile. J. Microbiol. Methods 2014, 100, 46–51. [Google Scholar] [CrossRef]
- Kuijpers, N.G.; Solis-Escalante, D.; Bosman, L.; van den Broek, M.; Pronk, J.T.; Daran, J.M.; Daran-Lapujade, P. A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic re-combination sequences. Microb. Cell Fact. 2013, 12, 47. [Google Scholar] [CrossRef]
- Mashruwala, A.A.; Boyd, J.M. De Novo Assembly of Plasmids Using Yeast Recombinational Cloning. Methods Mol. Biol. 2016, 1373, 33–41. [Google Scholar]
- van Leeuwen, J.; Andrews, B.; Boone, C.; Tan, G. Rapid and Efficient Plasmid Construction by Homologous Recombination in Yeast. Cold Spring Harb. Protoc. 2015, 2015, 085100. [Google Scholar] [CrossRef] [PubMed]
- Ip, K.; Yadin, R.; George, K.W. High-Throughput DNA Assembly Using Yeast Homologous Recombination. Methods Mol. Biol. 2020, 2205, 79–89. [Google Scholar] [PubMed]
- Abdel-Banat, B.M.A.; Nonklang, S.; Hoshida, H.; Akada, R. Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus. Yeast 2009, 27, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Hoshida, H.; Murakami, N.; Suzuki, A.; Tamura, R.; Asakawa, J.; Abdel-Banat, B.M.A.; Nonklang, S.; Nakamura, M.; Akada, R. Non-homologous end joining-mediated functional marker selection for DNA cloning in the yeast Kluyveromyces marxianus. Yeast 2013, 31, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, E.; Talenton, V.; Dubrana, M.P.; Guesdon, G.; Lluch-Senar, M.; Salin, F.; Sirand-Pugnet, P.; Arfi, Y.; Lartigue, C. CReasPy-Cloning: A Method for Simultaneous Cloning and Engineering of Megabase-Sized Genomes in Yeast Using the CRISPR-Cas9 System. ACS Synth. Biol. 2019, 8, 2547–2557. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.; Ma, S.; Han, H.; Jin, X.; Liu, X.; Su, T.; Qi, Q. Phage Enzyme-Assisted Direct In Vivo DNA Assembly in Multiple Micro-organisms. ACS Synth. Biol. 2022, 11, 1477–1487. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Ma, Y.; Tian, F.; Zhao, G.-R.; Wu, Y.; Yuan, Y.-J. YLC-assembly: Large DNA assembly via yeast life cycle. Nucleic Acids Res. 2023, 51, 8283–8292. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.K.; Yu, J.; Bae, S. Construction of non-canonical PAM-targeting adenosine base editors by restriction enzyme-free DNA cloning using CRISPR-Cas9. Sci. Rep. 2019, 9, 4939. [Google Scholar] [CrossRef]
- Wang, J.-W.; Wang, A.; Li, K.; Wang, B.; Jin, S.; Reiser, M.; Lockey, R.F. CRISPR/Cas9 nuclease cleavage combined with Gibson assembly for seamless cloning. BioTechniques 2015, 58, 161–170. [Google Scholar] [CrossRef]
- Jiang, W.; Zhao, X.; Gabrieli, T.; Lou, C.; Ebenstein, Y.; Zhu, T.F. Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat. Commun. 2015, 6, 8101. [Google Scholar] [CrossRef]
- Richter, D.; Bayer, K.; Toesko, T.; Schuster, S. ZeBRα a universal, multi-fragment DNA-assembly-system with minimal hands-on time requirement. Sci. Rep. 2019, 9, 2980. [Google Scholar] [CrossRef] [PubMed]
- Dao, V.L.; Chan, S.; Zhang, J.; Ngo, R.K.J.; Poh, C.L. Single 3′-exonuclease-based multifragment DNA assembly method (SENAX). Sci. Rep. 2022, 12, 4004. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Li, X.; Wang, F.; Liu, Y.; Zhai, C.; Li, W.Q.; Ma, L.X.; Chen, W.P. TLTC, a T5 exonuclease-mediated low-temperature DNA cloning method. Front. Bioeng. Biotechnol. 2023, 11, 1167534. [Google Scholar] [CrossRef] [PubMed]
- Nisson, P.E.; Rashtchian, A.; Watkins, P.C. Rapid and efficient cloning of Alu-PCR products using uracil DNA glycosylase. PCR Methods Appl. 1991, 1, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Cavaleiro, A.M.; Kim, S.H.; Seppälä, S.; Nielsen, M.T.; Nørholm, M.H.H. Accurate DNA Assembly and Genome Engineering with Optimized Uracil Excision Cloning. ACS Synth. Biol. 2015, 4, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Genee, H.J.; Bonde, M.T.; Bagger, F.O.; Jespersen, J.B.; Sommer, M.O.A.; Wernersson, R.; Olsen, L.R. Software-Supported USER Cloning Strategies for Site-Directed Mutagenesis and DNA Assembly. ACS Synth. Biol. 2014, 4, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Jajesniak, P.; Wong, T.S. QuickStep-Cloning: A sequence-independent, ligation-free method for rapid construction of re-combinant plasmids. J. Biol. Eng. 2015, 9, 15. [Google Scholar] [CrossRef]
- Jajesniak, P.; Tee, K.L.; Wong, T.S. PTO-QuickStep: A Fast and Efficient Method for Cloning Random Mutagenesis Libraries. Int. J. Mol. Sci. 2019, 20, 3908. [Google Scholar] [CrossRef] [PubMed]
- Jajesniak, P.; Tee, K.L.; Wong, T.S. Rapid Cloning of Random Mutagenesis Libraries Using PTO-QuickStep. Methods Mol. Biol. 2022, 2461, 123–135. [Google Scholar]
- Jin, P.; Ding, W.; Du, G.; Chen, J.; Kang, Z. DATEL: A Scarless and Sequence-Independent DNA Assembly Method Using Thermostable Exonucleases and Ligase. ACS Synth. Biol. 2016, 5, 1028–1032. [Google Scholar] [CrossRef]
- Kang, Z.; Ding, W.; Jin, P.; Du, G.; Chen, J. DNA Assembly with the DATEL Method. Methods Mol. Biol. 2018, 1772, 421–428. [Google Scholar] [PubMed]
- Bird, J.E.; Marles-Wright, J.; Giachino, A. A User’s Guide to Golden Gate Cloning Methods and Standards. ACS Synth. Biol. 2022, 11, 3551–3563. [Google Scholar] [CrossRef] [PubMed]
- Marillonnet, S.; Grützner, R. Synthetic DNA Assembly Using Golden Gate Cloning and the Hierarchical Modular Cloning Pipeline. Curr. Protoc. Mol. Biol. 2020, 130, e115. [Google Scholar] [CrossRef] [PubMed]
- Sorida, M.; Bonasio, R. An efficient cloning method to expand vector and restriction site compatibility of Golden Gate As-sembly. Cell Rep. Methods 2023, 3, 100564. [Google Scholar] [CrossRef] [PubMed]
- Storch, M.; Casini, A.; Mackrow, B.; Fleming, T.; Trewhitt, H.; Ellis, T.; Baldwin, G.S. BASIC: A New Biopart Assembly Standard for Idempotent Cloning Provides Accurate, Single-Tier DNA Assembly for Synthetic Biology. ACS Synth. Biol. 2015, 4, 781–787. [Google Scholar] [CrossRef] [PubMed]
- van Dolleweerd, C.J.; Kessans, S.A.; Van de Bittner, K.C.; Bustamante, L.Y.; Bundela, R.; Scott, B.; Nicholson, M.J.; Parker, E.J. MIDAS: A Modular DNA Assembly System for Synthetic Biology. ACS Synth. Biol. 2018, 7, 1018–1029. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; O’callaghan, C.A. MetClo: Methylase-assisted hierarchical DNA assembly using a single type IIS restriction enzyme. Nucleic Acids Res. 2018, 46, e113. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G.M.; Heap, J.T. Design and Implementation of Multi-protein Expression Constructs and Combinatorial Libraries using Start-Stop Assembly. Methods Mol. Biol. 2020, 2205, 219–237. [Google Scholar] [PubMed]
- Taylor, G.M.; Mordaka, P.M.; Heap, J.T. Start-Stop Assembly: A functionally scarless DNA assembly system optimized for metabolic engineering. Nucleic Acids Res. 2018, 47, e17. [Google Scholar] [CrossRef] [PubMed]
- Trubitsyna, M.; Honsbein, A.; Jayachandran, U.; Elfick, A.; French, C.E. PaperClip DNA Assembly: Reduce, Reuse, Recycle. Methods Mol. Biol. 2020, 2205, 161–177. [Google Scholar]
- Storch, M.; Haines, M.C.; Baldwin, G.S. DNA-BOT: A low-cost, automated DNA assembly platform for synthetic biology. Synth. Biol. 2020, 5, ysaa010. [Google Scholar] [CrossRef] [PubMed]
- Enghiad, B.; Xue, P.; Singh, N.; Boob, A.G.; Shi, C.; Petrov, V.A.; Liu, R.; Peri, S.S.; Lane, S.T.; Gaither, E.D.; et al. PlasmidMaker is a versatile, automated, and high throughput end-to-end platform for plasmid construction. Nat. Commun. 2022, 13, 2697. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.A.; Kellinger, M.; Longmire, C.; Miller, R.; Wright, R.C. AssemblyTron: Flexible automation of DNA assembly with Opentrons OT-2 lab robots. Synth. Biol. 2022, 8, ysac032. [Google Scholar] [CrossRef]
- Fukuda, M.; Umeno, H.; Nose, K.; Nishitarumizu, A.; Noguchi, R.; Nakagawa, H. Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing. Sci. Rep. 2017, 7, 41478. [Google Scholar] [CrossRef] [PubMed]
- Kopsidas, G.; Carman, R.K.; Stutt, E.L.; Raicevic, A.; Roberts, A.S.; Siomos, M.-A.V.; Dobric, N.; Pontes-Braz, L.; Coia, G. RNA mutagenesis yields highly diverse mRNA libraries for in vitro protein evolution. BMC Biotechnol. 2007, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.S.; Roccatano, D.; Loakes, D.; Tee, K.L.; Schenk, A.; Hauer, B.; Schwaneberg, U. Transversion-enriched sequence saturation mutagenesis (SeSaM-Tv+): A random mutagenesis method with consecutive nucleotide exchanges that complements the bias of error-prone PCR. Biotechnol. J. 2008, 3, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.S.; Tee, K.L.; Hauer, B.; Schwaneberg, U. Sequence saturation mutagenesis (SeSaM): A novel method for directed evolution. Nucleic Acids Res. 2004, 32, e26. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.S.; Tee, K.L.; Hauer, B.; Schwaneberg, U. Sequence saturation mutagenesis with tunable mutation frequencies. Anal. Biochem. 2005, 341, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Frauenkron-Machedjou, V.J.; Kardashliev, T.; Ruff, A.J.; Zhu, L.; Bocola, M.; Schwaneberg, U. Amino acid substitutions in random mutagenesis libraries: Lessons from analyzing 3000 mutations. Appl. Microbiol. Biotechnol. 2017, 101, 3177–3187. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Kardashliev, T.; Ruff, A.J.; Bocola, M.; Schwaneberg, U. Lessons from diversity of directed evolution experiments by an analysis of 3,000 mutations. Biotechnol. Bioeng. 2014, 111, 2380–2389. [Google Scholar] [CrossRef]
- Verma, R.; Wong, T.S.; Schwaneberg, U.; Roccatano, D. The Mutagenesis Assistant Program. Methods Mol. Biol. 2014, 1179, 279–290. [Google Scholar] [PubMed]
- Wong, T.S.; Roccatano, D.; Schwaneberg, U. Are transversion mutations better? A Mutagenesis Assistant Program analysis on P450 BM-3 heme domain. Biotechnol. J. 2007, 2, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.S.; Roccatano, D.; Zacharias, M.; Schwaneberg, U. A Statistical Analysis of Random Mutagenesis Methods Used for Directed Protein Evolution. J. Mol. Biol. 2006, 355, 858–871. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, J.; Jin, R.; Chen, W.; Liang, C.; Wu, J.; Jin, J.-M.; Tang, S.-Y. Towards the construction of high-quality mutagenesis libraries. Biotechnol. Lett. 2018, 40, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, X.; Bai, Y.; Yao, B.; Luo, H.; Tu, T. High-Throughput Screening Techniques for the Selection of Thermostable Enzymes. J. Agric. Food Chem. 2024, 72, 3833–3845. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Deng, Y.; Yang, G.-Y. Growth-coupled high throughput selection for directed enzyme evolution. Biotechnol. Adv. 2023, 68, 108238. [Google Scholar] [CrossRef] [PubMed]
- Manteca, A.; Gadea, A.; Van Assche, D.; Cossard, P.; Gillard-Bocquet, M.; Beneyton, T.; Innis, C.A.; Baret, J.-C. Directed Evolution in Drops: Molecular Aspects and Applications. ACS Synth. Biol. 2021, 10, 2772–2783. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, P.; Cao, M.; Yu, T.; Lane, S.T.; Zhao, H. Directed Evolution: Methodologies and Applications. Chem. Rev. 2021, 121, 12384–12444. [Google Scholar] [CrossRef]
- Stucki, A.; Vallapurackal, J.; Ward, T.R.; Dittrich, P.S. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew. Chem. Int. Ed. Engl. 2021, 60, 24368–24387. [Google Scholar] [CrossRef]
- Markel, U.; Essani, K.D.; Besirlioglu, V.; Schiffels, J.; Streit, W.R.; Schwaneberg, U. Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem. Soc. Rev. 2019, 49, 233–262. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, M.; Wang, T.; Wang, Q.; Liu, H.; Xun, L.; Xia, Y. An Optimized Transformation Protocol for Escherichia coli BW3KD with Supreme DNA Assembly Efficiency. Microbiol. Spectr. 2022, 10, e0249722. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, Q.; Wang, M.; Zhao, R.; Liu, H.; Xun, L.; Xia, Y. Escherichia coli BW25113 Competent Cells Prepared Using a Simple Chemical Method Have Unmatched Transformation and Cloning Efficiencies. Front. Microbiol. 2022, 13, 838698. [Google Scholar] [CrossRef] [PubMed]
- Chai, D.; Wang, G.; Fang, L.; Li, H.; Liu, S.; Zhu, H.; Zheng, J. The optimization system for preparation of TG1 competent cells and electrotransformation. Microbiologyopen 2020, 9, e1043. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chang, W.; Pan, L.; Liu, X.; Su, L.; Zhang, W.; Li, Q.; Zheng, Y. An Improved Method of Preparing High Efficiency Transformation Escherichia coli with Both Plasmids and Larger DNA Fragments. Indian J. Microbiol. 2018, 58, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Loock, M.; Antunes, L.B.; Heslop, R.T.; De Lauri, A.A.; Lira, A.B.; Cestari, I. High-Efficiency Transformation and Expression of Genomic Libraries in Yeast. Methods Protoc. 2023, 6, 89. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-C.; Dawson, A.; Henderson, A.C.; Lockyer, E.J.; Read, E.; Sritharan, G.; Ryan, M.; Sgroi, M.; Ngou, P.M.; Woodruff, R.; et al. Nutrient supplements boost yeast transformation efficiency. Sci. Rep. 2016, 6, 35738. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, S.; Solak, K.; Acar, M.; Mavi, A.; Unver, Y. Magnetic nanoparticle mediated-gene delivery for simpler and more effective transformation of Pichia pastoris. Nanoscale Adv. 2021, 3, 4482–4491. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mannil, A.; Mutturi, S. Modified chemical method for efficient transformation and diagnosis in Pichia pastoris. Protein Expr. Purif. 2020, 174, 105685. [Google Scholar] [CrossRef]
- Kumar, R. Simplified protocol for faster transformation of (a large number of) Pichia pastoris strains. Yeast 2019, 36, 399–410. [Google Scholar] [CrossRef]
- Lyu, Y.; Wu, P.; Zhou, J.; Yu, Y.; Lu, H. Protoplast transformation of Kluyveromyces marxianus. Biotechnol. J. 2021, 16, 2100122. [Google Scholar] [CrossRef]
- Yang, J.; Ruff, A.J.; Arlt, M.; Schwaneberg, U. Casting epPCR (cepPCR): A simple random mutagenesis method to generate high quality mutant libraries. Biotechnol. Bioeng. 2017, 114, 1921–1927. [Google Scholar] [CrossRef]
- Ye, B.; Li, Y.; Tao, Q.; Yao, X.; Cheng, M.; Yan, X. Random Mutagenesis by Insertion of Error-Prone PCR Products to the Chromosome of Bacillus subtilis. Front. Microbiol. 2020, 11, 570280. [Google Scholar] [CrossRef] [PubMed]
- Tachioka, M.; Sugimoto, N.; Nakamura, A.; Sunagawa, N.; Ishida, T.; Uchiyama, T.; Igarashi, K.; Samejima, M. Development of simple random mutagenesis protocol for the protein expression system in Pichia pastoris. Biotechnol. Biofuels 2016, 9, 8425. [Google Scholar] [CrossRef] [PubMed]
- Badran, A.H.; Liu, D.R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat. Commun. 2015, 6, 8425. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.L.; Papa, L.J.; Shoulders, M.D. A Processive Protein Chimera Introduces Mutations across Defined DNA Regions In Vivo. J. Am. Chem. Soc. 2018, 140, 11560–11564. [Google Scholar] [CrossRef]
- Park, H.; Kim, S. Gene-specific mutagenesis enables rapid continuous evolution of enzymes in vivo. Nucleic Acids Res. 2021, 49, e32. [Google Scholar] [CrossRef]
- Mengiste, A.A.; Wilson, R.H.; Weissman, R.F.; Iii, L.J.P.; Hendel, S.J.; Moore, C.L.; Butty, V.L.; Shoulders, M.D. Expanded MutaT7 toolkit efficiently and simultaneously accesses all possible transition mutations in bacteria. Nucleic Acids Res. 2023, 51, e31. [Google Scholar] [CrossRef]
- Gaudelli, N.M.; Komor, A.C.; Rees, H.A.; Packer, M.S.; Badran, A.H.; Bryson, D.I.; Liu, D.R. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 2017, 551, 464–471. [Google Scholar] [CrossRef]
- Álvarez, B.; Mencía, M.; de Lorenzo, V.; Fernández, L. In vivo diversification of target genomic sites using processive base deaminase fusions blocked by dCas9. Nat. Commun. 2020, 11, 6436. [Google Scholar] [CrossRef]
- Halperin, S.O.; Tou, C.J.; Wong, E.B.; Modavi, C.; Schaffer, D.V.; Dueber, J.E. CRISPR-guided DNA polymerases enable diversi-fication of all nucleotides in a tunable window. Nature 2018, 560, 248–252. [Google Scholar] [CrossRef]
- Sadanand, S. EvolvR-ing to targeted mutagenesis. Nat. Biotechnol. 2018, 36, 819. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xue, W.; Yan, L.; Li, X.; Wei, J.; Chen, M.; Wu, J.; Yang, B.; Yang, L.; Chen, J. Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. 2017, 27, 1289–1292. [Google Scholar] [CrossRef] [PubMed]
- Nishida, K.; Arazoe, T.; Yachie, N.; Banno, S.; Kakimoto, M.; Tabata, M.; Mochizuki, M.; Miyabe, A.; Araki, M.; Hara, K.Y.; et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 2016, 353, aaf8729. [Google Scholar] [CrossRef] [PubMed]
- Hess, G.T.; Frésard, L.; Han, K.; Lee, C.H.; Li, A.; Cimprich, K.A.; Montgomery, S.B.; Bassik, M.C. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 2016, 13, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, J.; Yin, W.; Zhang, Z.; Song, Y.; Chang, X. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods 2016, 13, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable editing of a target base in genomic DNA without dou-ble-stranded DNA cleavage. Nature 2016, 533, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, J.M.; Cervantes, O.; Clement, M.K.; Wu, Y.; Zeng, J.; Bauer, D.E.; Pinello, L.; Joung, J.K. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat. Biotechnol. 2018, 36, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, S.; Padula, S.; Lesman, D.; Griswold, K.; Lin, A.; Zhao, T.; Marshall, J.L.; Chen, F. Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor. Nat. Biotechnol. 2019, 38, 165–168. [Google Scholar] [CrossRef]
- Cravens, A.; Jamil, O.K.; Kong, D.; Sockolosky, J.T.; Smolke, C.D. Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering. Nat. Commun. 2021, 12, 1579. [Google Scholar] [CrossRef]
- Volke, D.C.; Martino, R.A.; Kozaeva, E.; Smania, A.M.; Nikel, P.I. Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing. Nat. Commun. 2022, 13, 3026. [Google Scholar] [CrossRef]
- Skrekas, C.; Limeta, A.; Siewers, V.; David, F. Targeted In Vivo Mutagenesis in Yeast Using CRISPR/Cas9 and Hyperactive Cytidine and Adenine Deaminases. ACS Synth. Biol. 2023, 12, 2278–2289. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, A.; Prieto-Vivas, J.E.; Cautereels, C.; Gorkovskiy, A.; Steensels, J.; Van de Peer, Y.; Verstrepen, K.J. A Cas3-base editing tool for targetable in vivo mutagenesis. Nat. Commun. 2023, 14, 3389. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Xia, S.; Dong, C.; Pan, H.; Cai, J.; Huang, L.; Xu, Z.; Lian, J. Random Base Editing for Genome Evolution in Saccharomyces cerevisiae. ACS Synth. Biol. 2021, 10, 2440–2446. [Google Scholar] [CrossRef] [PubMed]
- Jewel, D.; Pham, Q.; Chatterjee, A. Virus-assisted directed evolution of biomolecules. Curr. Opin. Chem. Biol. 2023, 76, 102375. [Google Scholar] [CrossRef] [PubMed]
- English, J.G.; Olsen, R.H.J.; Lansu, K.; Patel, M.; White, K.; Cockrell, A.S.; Singh, D.; Strachan, R.T.; Wacker, D.; Roth, B.L. VEGAS as a Platform for Facile Directed Evolution in Mammalian Cells. Cell 2019, 178, 748–761.e17. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Cho, K.H.; Song, H.; Yi, H.; Kim, H.S. Deletion mutations conferring substrate spectrum extension in the class A be-ta-lactamase. Antimicrob. Agents Chemother. 2014, 58, 6265–6269. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Patiño, S.; Pascarelli, S.; Uechi, G.-I.; Laurino, P. Insertions and deletions mediated functional divergence of Rossmann fold enzymes. Proc. Natl. Acad. Sci. USA 2022, 119, e2207965119. [Google Scholar] [CrossRef] [PubMed]
- Savino, S.; Desmet, T.; Franceus, J. Insertions and deletions in protein evolution and engineering. Biotechnol. Adv. 2022, 60, 108010. [Google Scholar] [CrossRef] [PubMed]
- Fujii, R.; Kitaoka, M.; Hayashi, K. RAISE: A simple and novel method of generating random insertion and deletion mutations. Nucleic Acids Res. 2006, 34, e30. [Google Scholar] [CrossRef]
- Kipnis, Y.; Dellus-Gur, E.; Tawfik, D.S. TRINS: A method for gene modification by randomized tandem repeat insertions. Protein Eng. Des. Sel. 2012, 25, 437–444. [Google Scholar] [CrossRef]
- Liu, S.S.; Wei, X.; Ji, Q.; Xin, X.; Jiang, B.; Liu, J. A facile and efficient transposon mutagenesis method for generation of mul-ti-codon deletions in protein sequences. J. Biotechnol. 2016, 227, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Hayes, F.; Hallet, B. Pentapeptide scanning mutagenesis: Encouraging old proteins to execute unusual tricks. Trends Microbiol. 2000, 8, 571–577. [Google Scholar] [CrossRef]
- Jones, D.D. Triplet nucleotide removal at random positions in a target gene: The tolerance of TEM-1 beta-lactamase to an amino acid deletion. Nucleic Acids Res. 2005, 33, e80. [Google Scholar] [CrossRef] [PubMed]
- Emond, S.; Petek, M.; Kay, E.J.; Heames, B.; Devenish, S.R.A.; Tokuriki, N.; Hollfelder, F. Accessing unexplored regions of sequence space in directed enzyme evolution via insertion/deletion mutagenesis. Nat. Commun. 2020, 11, 3469. [Google Scholar] [CrossRef] [PubMed]
- Skamaki, K.; Emond, S.; Chodorge, M.; Andrews, J.; Rees, D.G.; Cannon, D.; Popovic, B.; Buchanan, A.; Minter, R.R.; Hollfelder, F. In vitro evolution of antibody affinity via insertional scanning mutagenesis of an entire antibody variable region. Proc. Natl. Acad. Sci. USA 2020, 117, 27307–27318. [Google Scholar] [CrossRef] [PubMed]
- Wrenbeck, E.E.; Klesmith, J.R.; Stapleton, J.A.; Adeniran, A.; Tyo, K.E.; Whitehead, T.A. Plasmid-based one-pot saturation mu-tagenesis. Nat. Methods 2016, 13, 928–930. [Google Scholar] [CrossRef] [PubMed]
- Meinke, G.; Dalda, N.; Brigham, B.S.; Bohm, A. Synthesis of libraries and multi-site mutagenesis using a PCR-derived, dU-containing template. Synth. Biol. 2021, 6, ysaa030. [Google Scholar] [CrossRef] [PubMed]
- Higgins, S.A.; Ouonkap, S.V.Y.; Savage, D.F. Rapid and Programmable Protein Mutagenesis Using Plasmid Recombineering. ACS Synth. Biol. 2017, 6, 1825–1833. [Google Scholar] [CrossRef] [PubMed]
- Hoebenreich, S.; Zilly, F.E.; Acevedo-Rocha, C.G.; Zilly, M.; Reetz, M.T. Speeding up Directed Evolution: Combining the Advantages of Solid-Phase Combinatorial Gene Synthesis with Statistically Guided Reduction of Screening Effort. ACS Synth. Biol. 2014, 4, 317–331. [Google Scholar] [CrossRef]
- Li, A.; Sun, Z.; Reetz, M.T. Solid-Phase Gene Synthesis for Mutant Library Construction: The Future of Directed Evolution? ChemBioChem 2018, 19, 2023–2032. [Google Scholar] [CrossRef]
- Öling, D.; Lawenius, L.; Shaw, W.; Clark, S.; Kettleborough, R.; Ellis, T.; Larsson, N.; Wigglesworth, M. Large Scale Synthetic Site Saturation GPCR Libraries Reveal Novel Mutations That Alter Glucose Signaling. ACS Synth. Biol. 2018, 7, 2317–2321. [Google Scholar] [CrossRef] [PubMed]
- Cozens, C.; Pinheiro, V.B. Darwin Assembly: Fast, efficient, multi-site bespoke mutagenesis. Nucleic Acids Res. 2018, 46, e51. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.B.; Medina-Cucurella, A.V.; Baumer, Z.T.; Whitehead, T.A. Optimization of multi-site nicking mutagenesis for generation of large, user-defined combinatorial libraries. Protein Eng. Des. Sel. 2021, 34, gzab017. [Google Scholar] [CrossRef] [PubMed]
- Mighell, T.L.; Toledano, I.; Lehner, B. SUNi mutagenesis: Scalable and uniform nicking for efficient generation of variant libraries. PLoS ONE 2023, 18, e0288158. [Google Scholar] [CrossRef] [PubMed]
- Belsare, K.D.; Andorfer, M.C.; Cardenas, F.S.; Chael, J.R.; Park, H.J.; Lewis, J.C. A Simple Combinatorial Codon Mutagenesis Method for Targeted Protein Engineering. ACS Synth. Biol. 2017, 6, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Bloom, J.D. An Experimentally Informed Evolutionary Model Improves Phylogenetic Fit to Divergent Lactamase Homologs. Mol. Biol. Evol. 2014, 31, 2753–2769. [Google Scholar] [CrossRef]
- Chung, D.H.; Potter, S.C.; Tanomrat, A.C.; Ravikumar, K.M.; Toney, M.D. Site-directed mutant libraries for isolating minimal mutations yielding functional changes. Protein Eng. Des. Sel. 2017, 30, 347–357. [Google Scholar] [CrossRef]
- Püllmann, P.; Ulpinnis, C.; Marillonnet, S.; Gruetzner, R.; Neumann, S.; Weissenborn, M.J. Golden Mutagenesis: An efficient multi-site-saturation mutagenesis approach by Golden Gate cloning with automated primer design. Sci. Rep. 2019, 9, 10932. [Google Scholar] [CrossRef]
- Hejlesen, R.; Füchtbauer, E.-M. Multiple site-directed mutagenesis via simple cloning by prolonged overlap extension. BioTechniques 2020, 68, 345–348. [Google Scholar] [CrossRef]
- She, W.; Ni, J.; Shui, K.; Wang, F.; He, R.; Xue, J.; Reetz, M.T.; Li, A.; Ma, L. Rapid and Error-Free Site-Directed Mutagenesis by a PCR-Free In Vitro CRISPR/Cas9-Mediated Mutagenic System. ACS Synth. Biol. 2018, 7, 2236–2244. [Google Scholar] [CrossRef]
- Currin, A.; Kwok, J.; Sadler, J.C.; Bell, E.L.; Swainston, N.; Ababi, M.; Day, P.J.; Turner, N.J.; Kell, D.B. GeneORator: An Effective Strategy for Navigating Protein Sequence Space More Efficiently through Boolean OR-Type DNA Libraries. ACS Synth. Biol. 2019, 8, 1371–1378. [Google Scholar] [CrossRef]
- Reetz, M.T.; Carballeira, J.D. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat. Protoc. 2007, 2, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zheng, K.; Zheng, H.; Nie, H.; Yang, Z.; Tang, L. DC-Analyzer-facilitated combinatorial strategy for rapid directed evolution of functional enzymes with multiple mutagenesis sites. J. Biotechnol. 2014, 192, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Gao, H.; Zhu, X.; Wang, X.; Zhou, M.; Jiang, R. Construction of “small-intelligent” focused mutagenesis libraries using well-designed combinatorial degenerate primers. BioTechniques 2012, 52, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Lonsdale, R.; Li, G.; Reetz, M.T. Comparing Different Strategies in Directed Evolution of Enzyme Stereoselectivity: Single- versus Double-Code Saturation Mutagenesis. ChemBioChem 2016, 17, 1865–1872. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ducharme, J.; Johnston, K.E.; Li, F.-Z.; Yue, Y.; Arnold, F.H. DeCOIL: Optimization of Degenerate Codon Libraries for Machine Learning-Assisted Protein Engineering. ACS Synth. Biol. 2023, 12, 2444–2454. [Google Scholar] [CrossRef] [PubMed]
- Hiraga, K.; Mejzlik, P.; Marcisin, M.; Vostrosablin, N.; Gromek, A.; Arnold, J.; Wiewiora, S.; Svarba, R.; Prihoda, D.; Clarova, K.; et al. Mutation Maker, An Open Source Oligo Design Platform for Protein Engineering. ACS Synth. Biol. 2021, 10, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Swainston, N.; Currin, A.; Day, P.J.; Kell, D.B. GeneGenie: Optimized oligomer design for directed evolution. Nucleic Acids Res. 2014, 42, W395–W400. [Google Scholar] [CrossRef] [PubMed]
- Swainston, N.; Currin, A.; Green, L.; Breitling, R.; Day, P.J.; Kell, D.B. CodonGenie: Optimised ambiguous codon design tools. PeerJ Comput. Sci. 2017, 3, e120. [Google Scholar] [CrossRef]
- Kuiper, B.P.; Prins, R.C.; Billerbeck, S. Oligo Pools as an Affordable Source of Synthetic DNA for Cost-Effective Library Construction in Protein- and Metabolic Pathway Engineering. ChemBioChem 2021, 23, e202100507. [Google Scholar] [CrossRef]
- Fowler, D.M.; Fields, S. Deep mutational scanning: A new style of protein science. Nat. Methods 2014, 11, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Kitzman, J.O.; Starita, L.M.; Lo, R.S.; Fields, S.; Shendure, J. Massively parallel single-amino-acid mutagenesis. Nat. Methods 2015, 12, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Medina-Cucurella, A.V.; Steiner, P.J.; Faber, M.S.; Beltrán, J.; Borelli, A.N.; Kirby, M.B.; Cutler, S.R.; Whitehead, T.A. User-defined single pot mutagenesis using unamplified oligo pools. Protein Eng. Des. Sel. 2019, 32, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Ma, S.; Li, Y.; Dalby, P.A. Hot spots-making directed evolution easier. Biotechnol. Adv. 2022, 56, 107926. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Gao, L.; Yang, G.; Liu, D.; Bai, A.; Li, B.; Deng, Z.; Feng, Y. Design of Hyperthermophilic Lipase Chimeras by Key Motif-Directed Recombination. ChemBioChem 2014, 16, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.A.; Sathish, S.; Prabu, D.; Renita, A.A.; Saravanan, A.; Deivayanai, V.; Anish, M.; Jayaprabakar, J.; Baigenzhenov, O.; Hosseini-Bandegharaei, A. Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies. Chemosphere 2023, 331, 138680. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.-L.; Zha, J.; He, L.-W.; Lv, Y.-J.; Shen, M.-H.; Zhong, C.; Li, B.-Z.; Yuan, Y.-J. Enhanced Bioconversion of Cellobiose by Industrial Saccharomyces cerevisiae Used for Cellulose Utilization. Front. Microbiol. 2016, 7, 241. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Oh, E.J.; Lane, S.T.; Lee, W.-H.; Cate, J.H.; Jin, Y.-S. Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase. J. Biotechnol. 2018, 275, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, R.P.; Cunha, J.M.; Sousa, S.F. Perspectives on the Role of Enzymatic Biocatalysis for the Degradation of Plastic PET. Int. J. Mol. Sci. 2021, 22, 11257. [Google Scholar] [CrossRef]
- Tournier, V.; Topham, C.M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M.-L.; Texier, H.; Gavalda, S.; et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 2020, 580, 216–219. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Zhai, Z.; Zhang, S.; Ma, J.; Liang, X.; Li, Q. Construction of Fusion Protein with Carbohydrate-Binding Module and Leaf-Branch Compost Cutinase to Enhance the Degradation Efficiency of Polyethylene Terephthalate. Int. J. Mol. Sci. 2023, 24, 2780. [Google Scholar] [CrossRef] [PubMed]
- Butt, H.; Eid, A.; Momin, A.A.; Bazin, J.; Crespi, M.; Arold, S.T.; Mahfouz, M.M. CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. Genome Biol. 2019, 20, 73. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Zhou, Y.; Yan, T.; Wang, R.; Li, H.; Wu, Z.; Zhang, X.; Zhou, X.; Zhao, F.; Zhang, L.; et al. Directed evolution of adeno-associated virus for efficient gene delivery to microglia. Nat. Methods 2022, 19, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Fana, S.E.; Fazaeli, A.; Aminian, M. Directed evolution of cholesterol oxidase with improved thermostability using error-prone PCR. Biotechnol. Lett. 2023, 45, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Koo, T.; Park, S.W.; Kim, D.; Kim, K.; Cho, H.-Y.; Song, D.W.; Lee, K.J.; Jung, M.H.; Kim, S.; et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 2017, 8, 14500. [Google Scholar] [CrossRef] [PubMed]
- Schmidheini, L.; Mathis, N.; Marquart, K.F.; Rothgangl, T.; Kissling, L.; Böck, D.; Chanez, C.; Wang, J.P.; Jinek, M.; Schwank, G. Continuous directed evolution of a compact CjCas9 variant with broad PAM compatibility. Nat. Chem. Biol. 2023, 20, 333–343. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Margheritis, E.G.; Takahashi, K.; Kulesha, A.; D’souza, A.; Kim, I.; Yoon, J.H.; Tame, J.R.H.; Volkov, A.N.; Makhlynets, O.V.; et al. NMR-guided directed evolution. Nature 2022, 610, 389–393. [Google Scholar] [CrossRef]
In Vitro Cloning Method | Method Description | Cloning Accuracy * | Maximum Number of Fragments Assembled at Once * | Reference(s) |
---|---|---|---|---|
T5 Exonuclease-Dependent Assembly (TEDA) | Exonuclease generates complementary overhangs, and gap repair and ligation are completed in vivo. | 70–99% for a 2-fragment assembly, depending on competent cell preparation | 4 | [6] |
Single 3′-exonuclease-based multifragment DNA assembly (SENAX) | 95% for a 3-fragment assembly | 6 | [33] | |
T5 exonuclease-mediated low-temperature DNA cloning (TLTC) | >95% for a 2-fragment assembly | 4 | [34] | |
Uracil-Specific Excision Reagent (USER) | Uracil-specific endonuclease generates complementary overhangs by digesting deoxyuracil introduced by primers. | ~80% for a 4-fragment assembly | 6 | [36,37] |
PTO-QuickStep cloning | Phosphorothioate bonds introduced by primers are processed by iodine cleavage to generate complementary overhangs. | 95% for a 2-fragment assembly | 2 | [39,40] |
Scarless and sequence-independent DNA assembly method using thermostable exonuclease and ligase (DATEL) | Thermostable exonuclease generates complementary overhangs, and thermostable ligase joins DNA fragments. | 74–100% for assembly of 2–10 fragments | 10 | [41,42] |
Modular DNA Assembly Method | Method Description | Cloning Accuracy * | Maximum Number of Parts Assembled at Once * | Reference(s) |
---|---|---|---|---|
Biopart Assembly Standard for Idempotent Cloning (BASIC) | Makes use of reusable linkers and parts. Orthogonal oligonucleotide linkers with single-stranded overhangs are used to assemble DNA parts. Flexibility with the order of various DNA parts. | 93% for a 4-part assembly with single antibiotic selection, 99.7% for a 4-part assembly with double antibiotic selection, 90% for a 7-part assembly with double antibiotic selection | 7 | [46] |
Modular Idempotent DNA Assembly System (MIDAS) | Requires three type IIS restriction enzymes and is more complex than other modular DNA assemblies. Advantages include the ability to add new parts between existing parts rather than at the end. | 86–98% | 2 | [47] |
MetClo Assembly | Controlling methylation (which cuts or blocks the recognition site) of a single type IIS recognition enzyme allows for a simpler hierarchical DNA assembly system. | 100% for a 3-part assembly | 3 | [48] |
Start–Stop Assembly | 3 bp overhangs corresponding to start and stop codons allow for scarless assembly of coding sequences. | 90–100% for a 5-part assembly | 5 | [49,50] |
PaperClip DNA Assembly | Unlike most other modular DNA assembly methods, it does not require restriction enzymes. Four oligos per DNA part allow flexible ordering of DNA parts and reuse of oligos. | 100% for 5-part and 6-part assemblies | 6 | [51] |
Automated DNA Assembly Methods | Method Description | Cloning Accuracy * | Maximum Number of Fragments Assembled at Once * | Cost per Genetic Construct | Reference(s) |
---|---|---|---|---|---|
DNA assembly with BASIC on Opentrons (DNA-BOT) | Modular DNA assembly technique BASIC has been automated using robotic liquid-handling Opentrons | Not reported | 10 | USD1.50–USD5.50 | [52] |
PlasmidMaker | Combining the use of artificial restriction enzymes [Pyrococcus furiosus Argonaute (PfAgo)], custom software and robotic systems, an end-to-end system designed for automated DNA assembly. | 18–69%, depending on the number of fragments assembled at once and fragment size | 11 | Not reported | [53] |
AssemblyTron | Golden Gate and HR-dependent in vivo assemblies (IVA) or AQUA cloning are automated using Opentrons | 98–100% for a 4-fragment assembly using the Golden Gate approach, 68–88% for a 4-fragment assembly using AQUA cloning, 33–50% for a 2-fragment assembly using an IVA approach. | 4 | Not reported | [54] |
Organism (Year Published) | Strain Used | Transformation Method | Transformation Efficiency (CFU/µg) | Ref. |
---|---|---|---|---|
E. coli (2022) | BW3KD | Chemical | 7.2 ± 1.9 × 109 | [72] |
E. coli (2022) | BW25113 | Chemical | >109 | [73] |
E. coli (2020) | TG1 | Electroporation | >8 × 1010 | [74] |
E. coli (2018) | DH5α, JM109, TOP10 | Chemical 1 | 3.1 ± 0.3 × 109 | [75] |
S. cerevisiae (2023) | EBY100 | Electroporation | 108 | [76] |
S. cerevisiae (2016) | MaV203 | Chemical 2 | 1 × 107 | [77] |
K. pastoris (2021) | X-33 | Magnetic nanoparticle-mediated gene delivery | 1.3 × 103 | [78] |
K. pastoris (2020) | X-33 | Chemical | 6.52 × 103 | [79] |
K. pastoris (2019) | PPY12h | Electroporation | 1.3 ± 0.1 × 103 | [80] |
K. marxianus (2021) | FIM-1ΔU | Protoplast | 1.8 × 104 | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gali, V.K.; Tee, K.L.; Wong, T.S. Crafting Genetic Diversity: Unlocking the Potential of Protein Evolution. SynBio 2024, 2, 142-173. https://doi.org/10.3390/synbio2020009
Gali VK, Tee KL, Wong TS. Crafting Genetic Diversity: Unlocking the Potential of Protein Evolution. SynBio. 2024; 2(2):142-173. https://doi.org/10.3390/synbio2020009
Chicago/Turabian StyleGali, Vamsi Krishna, Kang Lan Tee, and Tuck Seng Wong. 2024. "Crafting Genetic Diversity: Unlocking the Potential of Protein Evolution" SynBio 2, no. 2: 142-173. https://doi.org/10.3390/synbio2020009
APA StyleGali, V. K., Tee, K. L., & Wong, T. S. (2024). Crafting Genetic Diversity: Unlocking the Potential of Protein Evolution. SynBio, 2(2), 142-173. https://doi.org/10.3390/synbio2020009