Previous Issue
Volume 4, March
 
 

Meteorology, Volume 4, Issue 2 (June 2025) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 7431 KiB  
Article
Vertical Temperature Profile Test by Means of Using UAV: An Experimental Methodology in a Karst Sinkhole of the Apulia Region (Italy)
by Cosimo Cagnazzo and Sara Angelini
Meteorology 2025, 4(2), 15; https://doi.org/10.3390/meteorology4020015 - 31 May 2025
Viewed by 146
Abstract
Atmospheric parameter acquisition along the vertical profile of the troposphere across different locations on the Earth is of primary importance in gaining knowledge of the evolution of large-scale meteorological systems and the relative movements of air masses. Normally, this happens thanks to the [...] Read more.
Atmospheric parameter acquisition along the vertical profile of the troposphere across different locations on the Earth is of primary importance in gaining knowledge of the evolution of large-scale meteorological systems and the relative movements of air masses. Normally, this happens thanks to the launch, into the atmosphere, of radiosondes connected to balloons filled with helium gas. However, on a small scale, and in particular geomorphological contexts, different and peculiar meteorological situations may arise, in which the air column in the lower layers can behave differently from normal, giving rise to the so-called thermal inversions. In this work, in a particular sinkhole in the Apulia region, the use of a multi-rotor UAV (Unmanned Aerial Vehicle) equipped with a temperature data logger was tested. The flight along the vertical, starting from the lowest point of the sinkhole, made it possible to archive the temperature data of the air column in the first 80 m of altitude. The data validation confirmed the goodness of the UAV acquisitions and their subsequent processing made it possible to extrapolate the vertical temperature profile of the sinkhole during the winter thermal inversion phenomenon. In addition to confirming the predisposition of this sinkhole to strong thermal inversions, the preliminary results of this work have highlighted the efficiency of this new methodology. It has proved to be useful in assessing small-scale vertical profiles of atmospheric variables in a relatively low altitude range. Furthermore, this methodology can represent a strong scientific and technological innovation applicable in the meteorological field and in that of environmental monitoring. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2024))
Show Figures

Figure 1

23 pages, 2743 KiB  
Article
Aerosol, Clouds and Radiation Interactions in the NCEP Unified Forecast Systems
by Anning Cheng and Fanglin Yang
Meteorology 2025, 4(2), 14; https://doi.org/10.3390/meteorology4020014 - 23 May 2025
Viewed by 200
Abstract
In this study, we evaluate aerosol, cloud, and radiation interactions in GFS.V17.p8 (Global Forecast System System Version 17 prototype 8). Two experiments were conducted for the summer of 2020. In the control experiment (EXP CTL), aerosols interact with radiation only, incorporating direct and [...] Read more.
In this study, we evaluate aerosol, cloud, and radiation interactions in GFS.V17.p8 (Global Forecast System System Version 17 prototype 8). Two experiments were conducted for the summer of 2020. In the control experiment (EXP CTL), aerosols interact with radiation only, incorporating direct and semi-direct aerosol effects. The sensitivity experiment (EXP ACI) couples aerosols with both radiation and Thompson microphysics, accounting for aerosol indirect effects and fully interactive aerosol–cloud dynamics. Introducing aerosol and cloud interactions results in net cooling at the top of the atmosphere (TOA). Further analysis shows that the EXP ACI produces more liquid water at lower levels and less ice water at higher levels compared to the EXP CTL. The aerosol optical depth (AOD) shows a good linear relationship with cloud droplet number concentration, similar to other climate models, though with larger standard deviations. Including aerosol and cloud interactions generally enhances simulations of the Indian Summer Monsoon, stratocumulus, and diurnal cycles. Additionally, the study evaluates the impacts of aerosols on deep convection and cloud life cycles. Full article
Show Figures

Figure 1

36 pages, 29158 KiB  
Article
Variability of the Diurnal Cycle of Precipitation in South America
by Ronald G. Ramírez-Nina, Maria Assunção Faus da Silva Dias and Pedro Leite da Silva Dias
Meteorology 2025, 4(2), 13; https://doi.org/10.3390/meteorology4020013 - 21 May 2025
Viewed by 280
Abstract
A seasonal climatology of the diurnal cycle of precipitation (DCP) and the assessment of its observed trend since the beginning of the 21st century using the IMERG product are performed for South America (SA). Its high spatial–temporal resolution ( [...] Read more.
A seasonal climatology of the diurnal cycle of precipitation (DCP) and the assessment of its observed trend since the beginning of the 21st century using the IMERG product are performed for South America (SA). Its high spatial–temporal resolution (Δx=0.1, Δt=0.5 h) enables the examination of the fine-scale features of the DCP associated with the complex physical characteristics of SA. Using 20 years of precipitation rate data, diurnal and semi-diurnal scale processes are analyzed through harmonic analysis. Diurnal metrics—including the hourly mean precipitation rate, normalized amplitude, and phase—are employed to quantify the DCP. The results indicate that large-scale mechanisms, such as the South American Monsoon System (SAMS), seasonally modulate the DCP. These mechanisms in combination with local factors (e.g., land use, topography, and water bodies) influence the timing of peak and intensity of precipitation rates. Cluster analysis identifies regions with homogeneous DCP; however, some distant regions are classified as homogeneous, suggesting that local-scale physical processes triggering precipitation onset operate similarly across these regions (e.g., thermally induced local circulations). The trend analysis of the DCP reveals that, over the past 20 years, the tropical region of SA has undergone changes in the intensity and hourly distribution of this fine-scale climate variability mode. This trend is heterogeneous in space and time and is possibly associated with land-use changes. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2025))
Show Figures

Figure 1

16 pages, 3627 KiB  
Article
Land Cover and Trends in Temperature and Dew Point in Illinois
by Chelsea Henry and Alan W. Black
Meteorology 2025, 4(2), 12; https://doi.org/10.3390/meteorology4020012 - 29 Apr 2025
Viewed by 246
Abstract
Illinois is a leading state for agricultural production in the United States, and corn production in the state has rapidly increased since the 1970s. Intensification of agriculture has been shown to have impacts on the atmosphere by altering humidity, and changes in land [...] Read more.
Illinois is a leading state for agricultural production in the United States, and corn production in the state has rapidly increased since the 1970s. Intensification of agriculture has been shown to have impacts on the atmosphere by altering humidity, and changes in land cover and soil moisture have resulted in changes in stability and temperature in the planetary boundary layer. Using descriptive statistics and regression analysis, this study assessed changes in temperature and dew point across different land cover classes, parts of the growing season, and by the geographic location of the station (north vs. south) in Illinois from 2005–2022 using data from 58 hourly weather stations. Overall, dew points are not increasing more rapidly in cultivated agriculture areas compared to other land cover classes in the state. Dew points are increasing across land cover classifications, particularly in the later part of the growing season. Temperatures are not as consistent, with decreases in temperature observed in cultivated agricultural areas and during the peak of the growing season. While dew points are increasing in both the northern and southern regions of the state, temperature increases are only found in the north. Dew point increases in Illinois do not appear to be driven by changing agricultural practices. However, future work should examine additional regions inside and outside of the Corn Belt to determine if changes in land cover and agricultural practices have impacts on the climates of those regions. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2024))
Show Figures

Figure 1

19 pages, 5047 KiB  
Article
Increased Extreme Precipitation in Western North America from Cut-Off Lows Under a Warming Climate
by Henri Pinheiro, Tercio Ambrizzi and Kevin Hodges
Meteorology 2025, 4(2), 11; https://doi.org/10.3390/meteorology4020011 - 9 Apr 2025
Viewed by 321
Abstract
Cut-off low (COL) pressure systems significantly influence local weather in regions with high COL frequency, particularly in western North America. Nonetheless, future changes in COL frequency, intensity, and precipitation patterns remain uncertain. This study examines projected COL changes and their drivers in western [...] Read more.
Cut-off low (COL) pressure systems significantly influence local weather in regions with high COL frequency, particularly in western North America. Nonetheless, future changes in COL frequency, intensity, and precipitation patterns remain uncertain. This study examines projected COL changes and their drivers in western North America under a high greenhouse gas concentration pathway (SSP585) using a multi-model ensemble from CMIP6 and a feature-tracking algorithm. We compare historical simulations (1980–2009) and future projections (2070–2099), revealing a marked increase in COL track density during summer in the northeast Pacific and western United States, while a strong decrease is projected for winter, associated with shifts in jet streams. Climate models project an increase in COL-related precipitation in future climate, with winter and spring experiencing more intense and localized precipitation, while autumn showing a more widespread precipitation pattern. Additionally, there is an increased frequency of extreme precipitation events, though accompanied by large uncertainties. The projected increase in extreme precipitation highlights the need to understand COL dynamics for effective climate adaptation in affected areas. Further research should aim to refine projections and reduce uncertainties, supporting better-informed policy and decision-making. Full article
Show Figures

Figure 1

21 pages, 6210 KiB  
Article
Enhancing Meteorological Insights: A Study of Uncertainty in CALMET
by Nina Miklavčič, Rudi Vončina and Maja Ivanovski
Meteorology 2025, 4(2), 10; https://doi.org/10.3390/meteorology4020010 - 7 Apr 2025
Viewed by 231
Abstract
Accurate weather forecasting is essential for various industries, particularly in sectors like energy, agriculture, and disaster management. In Slovenia, weather predictions are crucial for estimating electrical current transmission efficiency through power lines and ensuring the reliable supply of electricity to consumers. This study [...] Read more.
Accurate weather forecasting is essential for various industries, particularly in sectors like energy, agriculture, and disaster management. In Slovenia, weather predictions are crucial for estimating electrical current transmission efficiency through power lines and ensuring the reliable supply of electricity to consumers. This study focuses on quantifying measurement uncertainty in meteorological forecasts generated by the CALMET model, specifically addressing its impact on energy transmission reliability. The research highlights those local factors, such as topography, that contribute significantly to measurement uncertainty, which affects the accuracy of weather forecasts. The study examines meteorological parameters like temperature, wind speed, and solar radiation, identifying how environmental variations lead to fluctuations in forecast reliability. Understanding these uncertainties is critical for improving the precision of forecasts, especially for energy transmission, where even small errors can have substantial consequences. The primary goal of this study is to enhance forecast reliability by addressing measurement uncertainty. By improving the interpretation of data, refining measurement methods, and integrating advanced models, the study proposes ways to reduce uncertainty. These improvements could support better decision-making in energy transmission and other sectors that rely on accurate weather predictions. Ultimately, the findings suggest that addressing measurement uncertainty is key to ensuring more dependable and accurate forecasting in critical industries. Full article
Show Figures

Figure 1

23 pages, 7345 KiB  
Article
Dynamical Mechanisms of Rapid Intensification and Multiple Recurvature of Pre-Monsoonal Tropical Cyclone Mocha over the Bay of Bengal
by Prabodha Kumar Pradhan, Sushant Kumar, Lokesh Kumar Pandey, Srinivas Desamsetti, Mohan S. Thota and Raghavendra Ashrit
Meteorology 2025, 4(2), 9; https://doi.org/10.3390/meteorology4020009 - 27 Mar 2025
Viewed by 628
Abstract
Cyclone Mocha, classified as an Extremely Severe Cyclonic Storm (ESCS), followed an unusual northeastward trajectory while exhibiting a well-defined eyewall structure. It experienced rapid intensification (RI) before making landfall along the Myanmar coast. It caused heavy rainfall (~90 mm) and gusty winds (~115 [...] Read more.
Cyclone Mocha, classified as an Extremely Severe Cyclonic Storm (ESCS), followed an unusual northeastward trajectory while exhibiting a well-defined eyewall structure. It experienced rapid intensification (RI) before making landfall along the Myanmar coast. It caused heavy rainfall (~90 mm) and gusty winds (~115 knots) over the coastal regions of Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) countries, such as the coasts of Bangladesh and Myanmar. The factors responsible for the RI of the cyclone in lower latitudes, such as sea surface temperature (SST), tropical cyclone heat potential (TCHP), vertical wind shear (VWS), and mid-tropospheric moisture content, are studied using the National Ocean and Atmospheric Administration (NOAA) SST and National Center for Medium-Range Weather Forecasting (NCMRWF) Unified Model (NCUM) global analysis. The results show that SST and TCHP values of 30 °C and 100 (KJ cm−2) over the Bay of Bengal (BoB) favored cyclogenesis. However, a VWS (ms−1) and relative humidity (RH; %) within the range of 10 ms−1 and >70% also provided a conducive environment for the low-pressure system to transform into the ESCS category. The physical mechanism of RI and recurvature of the Mocha cyclone have been investigated using forecast products and compared with Cooperative Institute for Research in the Atmosphere (CIRA) and Indian Meteorological Department (IMD) satellite observations. The key results indicate that a dry air intrusion associated with a series of troughs and ridges at a 500 hPa level due to the western disturbance (WD) during that time was very active over the northern part of India and adjoining Pakistan, which brought north-westerlies at the 200 hPa level. The existence of troughs at 500 and 200 hPa levels are significantly associated with a Rossby wave pattern over the mid-latitude that creates the baroclinic zone and favorable for the recurvature and RI of Mocha cyclone clearly represented in the NCUM analysis. Moreover the Q-vector analysis and steering flow (SF) emphasize the vertical motion and recurvature of the Mocha cyclone so as to move in a northeast direction, and this has been reasonably well represented by the NCUM model analysis and the 24, 7-, and 120 h forecasts. Additionally, a quantitative assessment of the system indicates that the model forecasts of TC tracks have an error of 50, 70, and 100 km in 24, 72, and 120 h lead times. Thus, this case study underscores the capability of the NCUM model in representing the physical mechanisms behind the recurving and RI over the BoB. Full article
Show Figures

Figure 1

16 pages, 9568 KiB  
Article
Decadal Variability of Tropical Cyclone Genesis Factors over the Arabian Sea During Post-Monsoon Season
by Prabodha Kumar Pradhan, Vinay Kumar, Akhilesh Kumar Mishra, Lokesh Kumar Pandey and Nagarjuna Rao Dabbugottu
Meteorology 2025, 4(2), 8; https://doi.org/10.3390/meteorology4020008 - 21 Mar 2025
Viewed by 655
Abstract
Arabian Sea (AS) and Bay of Bengal (BoB) cyclones around the Indian subcontinent cause widespread floods and other natural hazards. There is no single convincing answer to this puzzle in the era of global warming. The warming of the western and central Indian [...] Read more.
Arabian Sea (AS) and Bay of Bengal (BoB) cyclones around the Indian subcontinent cause widespread floods and other natural hazards. There is no single convincing answer to this puzzle in the era of global warming. The warming of the western and central Indian Ocean is one of the few prominent features of local warming. The availability of moisture in the atmosphere in the last decade is an important factor in the rapid intensification and strengthening of tropical cyclones (TCs) before landfall. Essentially, the AS basin has shown an upward trend in the number and intensity of very severe cyclones during the period of 2009–2019. The decadal variation (1991–2001, 2002–2011, and 2012–2021) in SST, vorticity, wind shear, and moisture is primarily responsible for the genesis and intensification of cyclones during the post-monsoon season (October–November–December) over the AS. The results showed that slight changes in wind conditions, such as increased wind shear and the northward shift of the Asian Jet Stream over the region, facilitate TC formation. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop