Review of Research in Developing Hydrogels with Insulin to Promote Wound Healing †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quitério, M.; Simões, S.; Ascenso, A.; Carvalheiro, M.; Leandro, A.P.; Correia, I.; Viana, A.S.; Faísca, P.; Ascensão, L.; Molpeceres, J.; et al. Development of a Topical Insulin Polymeric Nanoformulation for Skin Burn Regeneration: An Experimental Approach. Int. J. Mol. Sci. 2021, 22, 4087. [Google Scholar] [CrossRef] [PubMed]
- Madibally, S.V.; Solomon, V.; Mitchell, R.N.; Van De Water, L.; Yarmush, M.L.; Toner, M. Influence of insulin therapy on burn wound healing in rats. J. Surg. Res. 2003, 109, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, D.H.; Osman, M.A.; El-Gizawy, S.A.; Hawthorne, S.J.; Faheem, A.M.; McCarron, P.A. Effect of poly(ethylene glycol) on insulin stability and cutaneous cell proliferation in vitro following cytoplasmic delivery of insulin-loaded nanoparticulate carriers—A potential topical wound management approach. Eur. J. Pharm. Sci. 2018, 114, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Shanley, L.J.; McCaig, C.D.; Forrester, J.V.; Zhao, M. Insulin, not leptin, promotes in vitro cell migration to heal monolayer wounds in human corneal epithelium. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Macedo, A.S.; Mendes, F.; Filipe, P.; Reis, S.; Fonte, P. Nanocarrier-Mediated Topical Insulin Delivery for Wound Healing. Materials 2021, 14, 4257. [Google Scholar] [CrossRef]
- AbdelKader, D.H.; Tambuwala, M.M.; Mitchell, C.A.; Osman, M.A.; El-Gizawy, S.A.; Faheem, A.M.; El-Tanani, M.; McCarron, P.A. Enhanced cutaneous wound healing in rats following topical delivery of insulin-loaded nanoparticles embedded in poly(vinyl alcohol)-borate hydrogels. Drug Deliv. Transl. Res. 2018, 8, 1053–1065. [Google Scholar] [CrossRef]
- Benoliel, A.M.; Kahn-Perles, B.; Imbert, J.; Verrando, P. Insulin stimulates haptotactic migration of human epidermal keratinocytes through activation of NF-kappa B transcription factor. J. Cell Sci. 1997, 110, 2089–2097. [Google Scholar] [CrossRef]
- Hermann, C.; Assmus, B.; Urbich, C.; Zeiher, A.M.; Dimmeler, S. Insulin-mediated stimulation of protein kinase Akt: A potent survival signaling cascade for endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 402–409. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Zhang, X. Topical insulin application improves healing by regulating the wound inflammatory response. Wound Repair. Regen. 2012, 20, 425–434. [Google Scholar] [CrossRef]
- Benkő, B.M.; Sebe, I.; Szabó, Z.I. Insulin for topical use in wound healing: Opportunities and limitations. Acta Pharm. Hung. 2022, 92, 3–19. [Google Scholar] [CrossRef]
- Besson, J.C.F.; Hernandes, L.; Campos, J.M.; Morikawa, K.A.; Bersani-Amado, C.A.; Matioli, G. Insulin complexed with cyclodextrins stimulates epithelialization and neovascularization of skin wound healing in rats. Injury 2017, 48, 2417–2425. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J. Effects of Topical Insulin on Wound Healing: A Review of Animal and Human Evidences. Diabetes Metab. Syndr. Obes. 2020, 13, 719–727. [Google Scholar] [CrossRef]
- Dhall, S.; Silva, J.P.; Liu, Y.; Hrynyk, M.; Garcia, M.; Chan, A.; Lyubovitsky, J.; Neufeld, R.J.; Martins-Green, M. Release of insulin from PLGA-alginate dressing stimulates regenerative healing of burn wounds in rats. Clin. Sci. 2015, 129, 1115–1129. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, X.; Liu, Y. Effect of topical insulin application on wound neutrophil function. Wounds 2012, 24, 178–184. [Google Scholar]
- Liu, Y.; Dhall, S.; Castro, A.; Chan, A.; Alamat, R.; Martins-Green, M. Insulin regulates multiple signaling pathways leading to monocyte/macrophage chemotaxis into the wound tissue. Biol. Open. 2018, 7, bio026187. [Google Scholar] [CrossRef]
- Lima, M.H.M.; Caricilli, A.M.; de Abreu, L.L.; Araújo, E.P.; Pelegrinelli, F.F.; Thirone, A.C.P.; Tsukumo, D.M.; Pessoa, A.F.M.; dos Santos, M.F.; de Moraes, M.A.; et al. Topical Insulin Accelerates Wound Healing in Diabetes by Enhancing the AKT and ERK Pathways: A Double-Blind Placebo-Controlled Clinical Trial. PLoS ONE 2012, 7, e36974. [Google Scholar] [CrossRef]
- Barker, J.N.; Jones, M.L.; Mitra, R.S.; Crockett-Torabe, E.; Fantone, J.C.; Kunkel, S.L.; Warren, J.S.; Dixit, V.M.; Nickoloff, B.J. Modulation of keratinocyte-derived interleukin-8 which is chemotactic for neutrophils and T lymphocytes. Am. J. Pathol. 1991, 139, 869–876. [Google Scholar]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Dipietro, L.A. Factors affecting wound healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Pourshahrestani, S.; Zeimaran, E.; Kadri, N.A.; Mutlu, N.; Boccaccini, A.R. Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. Adv. Healthc. Mater. 2020, 9, e2000905. [Google Scholar] [CrossRef]
- Zhu, J.; Jiang, G.; Hong, W.; Zhang, Y.; Xu, B.; Song, G.; Liu, T.; Hong, C.; Ruan, L. Rapid gelation of oxidized hyaluronic acid and succinyl chitosan for integration with insulin-loaded micelles and epidermal growth factor on diabetic wound healing. Mater Sci. Eng. C Mater. Biol. Appl. 2020, 117, 111273. [Google Scholar] [CrossRef]
- Cai, Y.; Che, J.; Yuan, M.; Shi, X.; Chen, W.; Yuan, W.E. Effect of glycerol on sustained insulin release from PVA hydrogels and its application in diabetes therapy. Exp. Ther. Med. 2016, 12, 2039–2044. [Google Scholar] [CrossRef] [PubMed]
- Dawoud, M.H.S.; Yassin, G.E.; Ghorab, D.M.; Morsi, N.M. Insulin Mucoadhesive Liposomal Gel for Wound Healing: A Formulation with Sustained Release and Extended Stability Using Quality by Design Approach. AAPS PharmSciTech 2019, 20, 158. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gao, F.; Kan, J.; Deng, J.; Wang, B.; Hao, S. Synthesis and fabrication of a keratin-conjugated insulin hydrogel for the enhancement of wound healing. Colloids Surf. B Biointerfaces 2019, 175, 436–444. [Google Scholar] [CrossRef]
- Kaur, P.; Sharma, A.K.; Nag, D.; Das, A.; Datta, S.; Ganguli, A.; Goel, V.; Rajput, S.; Chakrabarti, G.; Basu, B.; et al. Novel nano-insulin formulation modulates cytokine secretion and remodeling to accelerate diabetic wound healing. Nanomedicine 2019, 15, 47–57. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Correa, V.L.R.; Silva, F.K.L.D.; Casas, A.A.; Chagas, A.L.D.; Oliveira, L.P.; Miguel, M.P.; Diniz, D.G.A.; Amaral, A.C.; Menezes, L.B. Wound healing treatment using insulin within polymeric nanoparticles in the diabetes animal model. Eur. J. Pharm. Sci. 2020, 150, 105330. [Google Scholar] [CrossRef]
- Ostróżka-Cieślik, A.; Maciążek-Jurczyk, M.; Pożycka, J.; Dolińska, B. Pre-Formulation Studies: Physicochemical Characteristics and In Vitro Release Kinetics of Insulin from Selected Hydrogels. Pharmaceutics 2021, 13, 1215. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, T.; Gupta, S.; Nair, A.; Chauhan, S.; Saini, V. Wound healing potential of insulin-loaded nanoemulsion with Aloe vera gel in diabetic rats. J. Drug Deliv. Sci. Technol. 2021, 64, 102601. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Lu, J.; Ding, M.; Chen, Y. Synthesis and properties of poly (vinyl alcohol) hydrogels with high strength and toughness. Polym. Test. 2022, 108, 107516. [Google Scholar] [CrossRef]
- Bardill, J.R.; Laughter, M.R.; Stager, M.; Liechty, K.W.; Krebs, M.D.; Zgheib, C. Topical gel-based biomaterials for the treatment of diabetic foot ulcers. Acta Biomater. 2022, 138, 73–91. [Google Scholar] [CrossRef]
- Li, Z.; Yu, C.; Kumar, H.; He, X.; Lu, Q.; Bai, H.; Kim, K.; Hu, J. The Effect of Crosslinking Degree of Hydrogels on Hydrogel Adhesion. Gels 2022, 8, 682. [Google Scholar] [CrossRef] [PubMed]
- Aderibigbe, B.A.; Buyana, B. Alginate in Wound Dressings. Pharmaceutics 2018, 10, 42. [Google Scholar] [CrossRef]
- Pereira, R.; Mendes, A.; Bártolo, P. Alginate/Aloe vera hydrogel films for biomedical applications. Procedia CIRP 2013, 5, 210–215. [Google Scholar] [CrossRef]
- Ostróżka-Cieślik, A. The Potential of Pharmaceutical Hydrogels in the Formulation of Topical Administration Hormone Drugs. Polymers 2022, 14, 3307. [Google Scholar] [CrossRef] [PubMed]
- Suhail, M.; Wu, P.-C.; Minhas, M.U. Using Carbomer-Based Hydrogels for Control the Release Rate of Diclofenac Sodium: Preparation and In Vitro Evaluation. Pharmaceuticals 2020, 13, 399. [Google Scholar] [CrossRef]
- Sarfraz, M.; Iqbal, R.; Khan, K.U.; Minhas, M.U. Carbopol Based Hydrogels for ITOPRIDE Hydrochloride Delivery; Synthesis, Characterization and Comparative Assessment with Various Monomers. J. Funct. Biomater. 2022, 13, 295. [Google Scholar] [CrossRef]
Author, Year of Publication | Dosage Insulin | Hydrogel Carrier/Insulin Form | Research Model | Effects of the Insulin Preparation |
---|---|---|---|---|
Dhall et al. [13] | 0.04 mg/cm2 | Alginate gels; insulin-loaded PLGA microparticles | Female adult Sprague–Dawley rats; burn wound model | Accelerated healing via a decrease in oxidative stress and tissue damage, early recruitment of neutrophils, management of inflammatory cells, enhanced angiogenesis, and proper collagen deposition and maturation |
Cai et al. [22] | 14.2 mg | Glycerol/PVA hydrogel | In vitro: 6-well plate; in vivo: male Wistar diabetic rats; | Addition of glycerol reduced the swelling ratio and hardness of the hydrogel, and enhanced the release of insulin in vitro and in vivo; glycerol disrupted the crystallite structure of PVA molecules while forming crosslinked structures between them, thereby promoting insulin release; insulin-loaded PVA hydrogel film exhibited a hypoglycemic effect in diabetic rats over 10 days |
Besson et al. [11] | 50 IU | Carbopol 940 gel; insulin complexed with 2-hydroxypropyl-β-cyclodextrin (HPβCD-INS) | Excisional wounds in the skin of rats; chronic wound | Formulations: showed no cytotoxic or irritative effects; prolonged proliferation and migration of keratinocytes; increased deposition of type I and III collagen fibers |
Abdelkader et al. [6] | 33.86 μg/mg | PVA-borate hydrogel; Insulin-loaded PLGA nanoparticles | Excisional wounds in the skin of rats; diabetic and healthy rats | In non-diabetic rats, there was no significant difference between healing observed in control and wounds treated with free insulin; in diabetic rats, insulin induced significant improvement in wound healing; histological images of diabetic wounds: reduction in the inflammatory process, increased angiogenesis, formation of granulation tissue, and completely reconstructed epidermis and collagen deposition |
Dawoud et al. [23] | 20 mg/g (2% w/w) | chitosan gel; insulin-loaded liposomes | In vitro: franz diffusion cells; cellophane membrane; in vivo: patients with chronic wounds | Release was sustained up to 24 h; release rate of 91.521 μg/cm2/h; improvement in the wound healing rate; reduction in the erythema of the ulcer and no signs of hypoglycemia |
Li et al. [24] | 5 mg | Keratin-conjugated insulin hydrogel (Ins-K) | Hairless rat skin | Promoted wound healing by stimulating cellular migration; Ins-K hydrogel shows a stronger hemostatic ability than keratin hydrogel; stronger wound healing effect of Ins-K was found in the early regeneration stage; more smooth skin tissues at excision section were obtained treatment with Ins-K hydrogel |
Kaur et al. [25] | 150 μM to 15 mM | Carbopol 980 gel; insulin-loaded silver nanoparticles (AgNPs) | In vitro: HEKa cells; in vivo: male Wistar rats; diabetic and healthy rats | Higher wound healing activity in higher hyperglycemic condition; improvement in collagen deposition; insulin regulates the early inflammatory phase; rapid decrease in pro-inflammatory cytokines and an increase in anti-inflammatory cytokine antibacterial activity |
Ribeiro et al. [26] | 0.5 IU | Chitosan gel; insulin-loaded chitosan nanoparticles | Diabetes mellitus animal model using Wister rats | Stimulate inflammatory cell and angiogenesis; improve wound maturation in diabetic rats |
Zhu et al. [21] | 10 mg/mL | Oxidized hyaluronic acid/succinyl chitosan gel; insulin-loaded micelles | In vitro: 24-well plates; in vivo: Type 1 diabetes male Sprague-Dawley rats | The rate of insulin release depends on the glucose concentration in the wounded tissue; high biocompatibility and low cytotoxicity; promotion of fibroblast proliferation and tissue internal structure integrity, as well as the deposition of collagen and myofibrils; combining insulin with epidermal growth factor resulted in even more effective wound healing |
Ostróżka-Cieślik et al. [27] | 1 mg/g (0.1% w/w) | Carbopol Ultrez 10, Carbopol Ultrez 30, methyl cellulose, glycerol ointment | In vitro: enhancer cel; cellulose dialysis membrane | Insulin release from the formulations occurs in a prolonged manner; methyl cellulose-based hydrogel released API, reaching 75% after 9 h |
Chakraborty et al. [28] | 0.2 IU/g | Aloe vera gel; insulin-loaded nanoemulsion | Diabetic rats | Greater wound contraction (75% in 15 days); improvement in the skin histological architecture; gel is non-irritant and is safe for topical use; aloe vera with insulin-loaded nanoemulsion showed synergistic effect |
Quitério et al. [1] | 10 mg/g (1% w/w) | Pluronic ® F 127 gel; insulin-loaded PLGA nanoparticles | Human keratinocytes cells, female mice, | Insulin was completely released from NPs and its structure was preserved; in vitro release studies suggested a controlled release profile (5 µg/cm2/8 h); improves wound healing without causing side effects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostróżka-Cieślik, A.; Przybyła, M.; Wójcik, W.; Birówka, K.; Majczyna, M.; Dolińska, B. Review of Research in Developing Hydrogels with Insulin to Promote Wound Healing. Med. Sci. Forum 2023, 21, 17. https://doi.org/10.3390/ECB2023-14290
Ostróżka-Cieślik A, Przybyła M, Wójcik W, Birówka K, Majczyna M, Dolińska B. Review of Research in Developing Hydrogels with Insulin to Promote Wound Healing. Medical Sciences Forum. 2023; 21(1):17. https://doi.org/10.3390/ECB2023-14290
Chicago/Turabian StyleOstróżka-Cieślik, Aneta, Marcin Przybyła, Weronika Wójcik, Klaudia Birówka, Marta Majczyna, and Barbara Dolińska. 2023. "Review of Research in Developing Hydrogels with Insulin to Promote Wound Healing" Medical Sciences Forum 21, no. 1: 17. https://doi.org/10.3390/ECB2023-14290
APA StyleOstróżka-Cieślik, A., Przybyła, M., Wójcik, W., Birówka, K., Majczyna, M., & Dolińska, B. (2023). Review of Research in Developing Hydrogels with Insulin to Promote Wound Healing. Medical Sciences Forum, 21(1), 17. https://doi.org/10.3390/ECB2023-14290