Effects of Taraxacum officinale on Glioblastoma Cell Culture and Their Correlation with Hydroxycinnamic Acids Content †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extracts Preparation
2.3. Cell Culture
2.4. MTT Test
2.5. TO Composition
2.6. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lis, B.; Jedrejek, D.; Rywaniak, J.; Soluch, A.; Stochmal, A.; Olas, B. Flavonoid Preparations from Taraxacum officinale L. Fruits—A Phytochemical, Antioxidant and Hemostasis Studies. Molecules 2020, 25, 5402. [Google Scholar] [CrossRef]
- Taofiq, O.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review. Molecules 2017, 22, 281. [Google Scholar] [CrossRef]
- Hunke, M.; Martinez, W.; Kashyap, A.; Bokoskie, T.; Pattabiraman, M.; Chandra, S. Antineoplastic Actions of Cinnamic Acids and Their Dimers in Breast Cancer Cells: A Comparative Study. Anticancer Res. 2018, 38, 4469–4474. [Google Scholar] [CrossRef]
- Pal, A.; Tapadar, P.; Pal, R. Exploring the Molecular Mechanism of Cinnamic Acid-Mediated Cytotoxicity in Triple Negative MDA-MB-231 Breast Cancer Cells. Anticancer Agents Med. Chem. 2021, 21, 1141–1150. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Naumowicz, M.; Kusaczuk, M.; Zając, M.; Gál, M.; Kotyńska, J. Monitoring of the Surface Charge Density Changes of Human Glioblastoma Cell Membranes upon Cinnamic and Ferulic Acids Treatment. Int. J. Mol. Sci. 2020, 21, 6972. [Google Scholar] [CrossRef] [PubMed]
- Sova, M.; Saso, L. Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites. Nutrients 2020, 12, 2190. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hudgins, W.R.; Shack, S.; Yin, M.Q.; Samid, D. Cinnamic Acid: A Natural Product with Potential Use in Cancer Intervention. Int. J. Cancer 1995, 62, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Jana, M.; Roy, A.; Pahan, K. Upregulation of Suppressor of Cytokine Signaling 3 in Microglia by Cinnamic Acid. Curr. Alzheimer Res. 2018, 15, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Niero, E.L.d.O.; Machado-Santelli, G.M. Cinnamic Acid Induces Apoptotic Cell Death and Cytoskeleton Disruption in Human Melanoma Cells. J. Exp. Clin. Cancer Res. 2013, 32, 31. [Google Scholar] [CrossRef] [PubMed]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic Acid Derivatives and Their Biological Efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, X.; Zhai, H.; Zhang, D.; Ma, S. Chicoric Acid (CA) Induces Autophagy in Gastric Cancer through Promoting Endoplasmic Reticulum (ER) Stress Regulated by AMPK. Biomed. Pharmacother. 2019, 118, 109144. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-L.; Chiu, C.-C.; Yi-Fu Chen, J.; Chan, K.-C.; Lin, S.-D. Cytotoxic Effects of Echinacea Purpurea Flower Extracts and Cichoric Acid on Human Colon Cancer Cells through Induction of Apoptosis. J. Ethnopharmacol. 2012, 143, 914–919. [Google Scholar] [CrossRef]
- Lu, H.; Tian, Z.; Cui, Y.; Liu, Z.; Ma, X. Chlorogenic Acid: A Comprehensive Review of the Dietary Sources, Processing Effects, Bioavailability, Beneficial Properties, Mechanisms of Action, and Future Directions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3130–3158. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.-L.; Xue, N.-N.; Li, C.; Guo, H.-H.; Ren, T.-K.; Zhan, Y.; Li, W.-B.; Zhang, J.; Chen, X.-G.; et al. Chlorogenic Acid Effectively Treats Cancers through Induction of Cancer Cell Differentiation. Theranostics 2019, 9, 6745–6763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ishida, R.; Yuhara, Y.; Kamiya, T.; Hatano, T.; Okamoto, G.; Arimoto-Kobayashi, S. Anti-Genotoxic Activity of Vitis Coignetiae Pulliat towards Heterocyclic Amines and Isolation and Identification of Caftaric Acid as an Antimutagenic Component from the Juice. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2011, 723, 182–189. [Google Scholar] [CrossRef] [PubMed]
DMSO | TO | 110,000 | 22,000 | 4400 | 880 | 176 | 35.2 | 7.04 | 1.408 | rs | p |
Viability | 17.3 | 86.0 | 88.7 | 87.9 | 91.1 | 93.0 | 93.6 | 93.6 | |||
ChA | 8976.0 | 1795.2 | 359.0 | 71.8 | 14.4 | 2.9 | 0.57 | 0.11 | −0.95 | 0.0001 | |
CGA | 316.8 | 63.4 | 12.7 | 2.5 | 0.5 | 0.1 | 0.02 | 0.004 | −0.95 | 0.0001 | |
CA | 1628.0 | 325.6 | 65.1 | 13.0 | 2.6 | 0.5 | 0.1 | 0.02 | −0.95 | 0.0001 | |
EtOH20 | TO | 140,000 | 28,000 | 5600 | 1120 | 224 | 44.8 | 8.96 | 1.792 | rs | p |
Viability | 38.4 | 53.8 | 63.6 | 77.1 | 81.8 | 78.7 | 87.8 | 86.7 | |||
ChA | 33320 | 6664 | 1332.8 | 266.6 | 53.3 | 10.7 | 2.1 | 0.4 | −0.95 | 0.0001 | |
CGA | 1232 | 246.4 | 49.3 | 9.9 | 2 | 0.4 | 0.08 | 0.02 | −0.95 | 0.0001 | |
CA | 7224 | 1444.8 | 289 | 57.8 | 11.6 | 2.3 | 0.5 | 0.09 | −0.95 | 0.0001 | |
EtOH50 | TO | 150,000 | 30,000 | 6000 | 1200 | 240 | 48 | 96 | 1.92 | rs | p |
Viability | 13.7 | 88.0 | 70.2 | 80.6 | 83.5 | 84.1 | 89.8 | 92.7 | |||
ChA | 52,500 | 10,500 | 2100 | 420 | 84 | 16.8 | 33.6 | 0.7 | −0.71 | 0.02 | |
CGA | 1746 | 349.2 | 69.8 | 14 | 2.8 | 0.6 | 1.1 | 0.02 | −0.71 | 0.02 | |
CA | 8460 | 1692 | 338.4 | 67.7 | 13.5 | 2.7 | 5.4 | 0.1 | −0.71 | 0.02 | |
EtOH80 | TO | 40,000 | 8000 | 1600 | 320 | 64 | 12.8 | 2.56 | 0.512 | rs | p |
Viability | 16.1 | 54.3 | 60.0 | 67.1 | 65.9 | 62.9 | 72.2 | 79.6 | |||
ChA | 904 | 180.8 | 36.2 | 7.2 | 1.4 | 0.3 | 0.1 | 0.01 | −0.90 | 0.001 | |
CGA | 114.4 | 22.9 | 4.6 | 0.9 | 0.2 | 0.04 | 0.01 | 0.001 | −0.90 | 0.001 | |
CA | 70.4 | 14.1 | 2.8 | 0.6 | 0.1 | 0.02 | 0.005 | 0.001 | −0.90 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fulga, A.; Casian, A.; Casian, I.; Protopop, S.; Gudumac, V.; Tagadiuc, O. Effects of Taraxacum officinale on Glioblastoma Cell Culture and Their Correlation with Hydroxycinnamic Acids Content. Med. Sci. Forum 2023, 21, 18. https://doi.org/10.3390/ECB2023-14363
Fulga A, Casian A, Casian I, Protopop S, Gudumac V, Tagadiuc O. Effects of Taraxacum officinale on Glioblastoma Cell Culture and Their Correlation with Hydroxycinnamic Acids Content. Medical Sciences Forum. 2023; 21(1):18. https://doi.org/10.3390/ECB2023-14363
Chicago/Turabian StyleFulga, Ala, Ana Casian, Igor Casian, Svetlana Protopop, Valentin Gudumac, and Olga Tagadiuc. 2023. "Effects of Taraxacum officinale on Glioblastoma Cell Culture and Their Correlation with Hydroxycinnamic Acids Content" Medical Sciences Forum 21, no. 1: 18. https://doi.org/10.3390/ECB2023-14363
APA StyleFulga, A., Casian, A., Casian, I., Protopop, S., Gudumac, V., & Tagadiuc, O. (2023). Effects of Taraxacum officinale on Glioblastoma Cell Culture and Their Correlation with Hydroxycinnamic Acids Content. Medical Sciences Forum, 21(1), 18. https://doi.org/10.3390/ECB2023-14363