Advanced Technologies and Artificial Intelligence in Agriculture
Abstract
:1. Introduction
2. Advanced Technologies in Agriculture
2.1. Satellite Imagery
2.2. Unmanned Aerial Vehicles
2.3. Autonomous Platforms and Tractors
2.4. Controlled Environment Farming
2.5. Sensors and Digitalization
3. MLIT Activities Related to Artificial Intelligence in Agriculture
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Gu, B.; Tian, G. Review of agricultural IoT technology. Artif. Intell. Agric. 2022, 6, 10–22. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in agriculture: A review and bibliometric analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Ojo, M.O.; Zahid, A. Deep Learning in Controlled Environment Agriculture: A Review of Recent Advancements, Challenges and Prospects. Sensors 2022, 22, 7965. [Google Scholar] [CrossRef] [PubMed]
- Mail, M.F.; Maja, J.M.; Marshall, M.; Cutulle, M.; Miller, G.; Barnes, E. Agricultural Harvesting Robot Concept Design and System Components: A Review. AgriEngineering 2023, 5, 777–800. [Google Scholar] [CrossRef]
- Wang, T.; Chen, B.; Zhang, Z.; Li, H.; Zhang, M. Applications of machine vision in agricultural robot navigation: A review. Comput. Electron. Agric. 2022, 198, 107085. [Google Scholar] [CrossRef]
- Dayioglu, M.A.; Turker, U. Digital transformation for sustainable future agriculture 4.0: A review. J. Agric. Sci. 2021, 27, 373–399. [Google Scholar]
- Abbasi, R.; Martinez, P.; Ahmad, R. The digitization of agricultural industry—A systematic literature review on agriculture 4.0. Smart Agric. Technol. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Oliveira, R.C.d.; Silva, R.D.d.S.e. Artificial Intelligence in Agriculture: Benefits, Challenges, and Trends. Appl. Sci. 2023, 13, 7405. [Google Scholar] [CrossRef]
- Li, X.; Sun, C.; Meng, H.; Ma, X.; Huang, G.; Xu, X. A Novel Efficient Method for Land Cover Classification in Fragmented Agricultural Landscapes Using Sentinel Satellite Imagery. Remote Sens. 2022, 14, 2045. [Google Scholar] [CrossRef]
- Forkuor, G.; Hounkpatin, O.K.; Welp, G.; Thiel, M. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models. PLoS ONE 2017, 12, e0170478. [Google Scholar] [CrossRef]
- Dindaroğlu, T.; Kılıç, M.; Günal, E.; Gündoğan, R.; Akay, A.E.; Seleiman, M. Multispectral UAV and Satellite Images for DigitalSoil Modeling with Gradient Descent Boosting and Artificial Neural Network. Earth Sci. Inform. 2022, 15, 2239–2263. [Google Scholar] [CrossRef]
- Berhane, T.M.; Lane, C.R.; Wu, Q.; Autrey, B.C.; Anenkhonov, O.A.; Chepinoga, V.V.; Liu, H. Decision-Tree, Rule-Based, and Random Forest Classification of High-Resolution Multispectral Imagery for Wetland Mapping and Inventory. Remote Sens. 2018, 10, 580. [Google Scholar] [CrossRef] [PubMed]
- Silvero, N.E.; Dematte, J.A.; Vieira, J.D.S.; Mello, F.A.D.O.; Amorim, M.T.A.; Poppiel, R.R.; Mendes, W.D.S.; Bonfatti, B.R. Soil property maps with satellite images at multiple scales and its impact on management and classification. Geoderma 2021, 397, 115089. [Google Scholar] [CrossRef]
- Ghaderi, A.; Abbaszadeh Shahri, A.; Larsson, S. An artificial neural network based model to predict spatial soil type distribution using piezocone penetration test data (CPTu). Bull. Eng. Geol. Environ. 2019, 78, 4579–4588. [Google Scholar] [CrossRef]
- Bermudez, J.D.; Achanccaray, P.; Sanches, I.D.; Cue, L.; Happ, P. Evaluation of Recurrent Neural Networks for Crop Recognition from Multitemporal Remote Sensing Images. In Proceedings of the Anais do XXVII Congresso Brasileiro de Cartografia, Rio de Janeiro, Brazil, 6–9 November 2017; pp. 800–804. [Google Scholar]
- Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [Google Scholar] [CrossRef]
- Mohan, S.; Kapil Dev, T. Pixel based classification for Landsat 8 OLI multispectral satellite images using deep learning neural network. Remote Sens. Appl. Soc. Environ. 2021, 24, 100645. [Google Scholar] [CrossRef]
- Pandey, A.; Kumar, D.; Chakraborty, D.B. Soil Type Classification from High Resolution Satellite Images with Deep CNN. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4087–4090. [Google Scholar] [CrossRef]
- Naushad, R.; Kaur, T.; Ghaderpour, E. Deep Transfer Learning for Land Use and Land Cover Classification: A Comparative Study. Sensors 2021, 21, 8083. [Google Scholar] [CrossRef]
- Rabiei, S.; Jalilvand, E.; Tajrishy, M. A Method to Estimate Surface Soil Moisture and Map the Irrigated Cropland Area Using Sentinel-1 and Sentinel-2 Data. Sustainability 2021, 13, 11355. [Google Scholar] [CrossRef]
- Paul, S.; Kumari, M.; Murthy, C.S.; Kumar, D.N. Generating pre-harvest crop maps by applying convolutional neural network on multi-temporal Sentinel-1 data. Int. J. Remote Sens. 2022, 43, 6078–6101. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, Z.; Lin, C.; Hu, Y.; Zhao, L.; Zou, R.; Wen, Y.; Mao, X. A new method for estimating soil fertility using extreme gradient boosting and a backpropagation neural network. Remote Sens. 2022, 14, 3311. [Google Scholar] [CrossRef]
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.C.; Jha, S.K. DenseResUNet: An Architecture to Assess Water-Stressed Sugarcane Crops from Sentinel-2 Satellite Imagery. Trait. Du Signal 2021, 38, 1131–1139. [Google Scholar] [CrossRef]
- Pignatti, S.; Casa, R.; Laneve, G.; Li, Z.; Liu, L.; Marzialetti, P.; Mzid, N.; Pascucci, S.; Silvestro, P.C.; Tolomio, M.; et al. Sino-EU Earth Observation Data to Support the Monitoring and Management of Agricultural Resources. Remote Sens. 2021, 13, 2889. [Google Scholar] [CrossRef]
- Goswami, B.; Nayak, P. Optimization in agricultural growth using AI and satellite imagery. In Data Science in Societal Applications; Springer Nature: Singapore, 2022; pp. 107–125. [Google Scholar]
- Ji, Z.; Pan, Y.; Zhu, X.; Zhang, D.; Dai, J. Prediction of corn yield in the USA corn belt using satellite data and machine learning: From an Evapotranspiration perspective. Agriculture 2022, 12, 1263. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Z.; Cao, J.; Zhang, L.; Zhang, J.; Han, J.; Zhuang, H.; Cheng, F.; Tao, F. Accurately mapping global wheat production system using deep learning algorithms. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102823. [Google Scholar] [CrossRef]
- Xie, Y. Combining CERES-Wheat model, Sentinel-2data, and deep learning method for winter wheat yield estimation. Int. J. Remote Sens. 2022, 43, 630–648. [Google Scholar] [CrossRef]
- Watson-Hernandez, F.; Gomez-Calderon, N.; da Silva, R.P. Oil palm yield estimation based on vegetation and humidity indices generated from satellite images and machine learning techniques. AgriEngineering 2022, 4, 279–291. [Google Scholar] [CrossRef]
- Huuskonen, J.; Oksanen, T. Soil sampling with drones and augmented reality in precision agriculture. Comput. Electron. Agric. 2018, 154, 25–35. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, Y.; Gu, X.; Chen, T.; Sun, Q.; Zhang, S.; Pan, Y. High-Precision Mapping of Soil Organic Matter Based on UAV Imagery Using Machine Learning Algorithms. Drones 2023, 7, 290. [Google Scholar] [CrossRef]
- Bertalan, L.; Holb, I.; Pataki, A.; Negyesi, G.; Szabo, G.; Kupasne Szaloki, A.; Szabo, S. UAV-based multispectral and thermal cameras to predict soil water content—A machine learning approach. Comput. Electron. Agric. 2022, 200, 107262. [Google Scholar] [CrossRef]
- Wilke, N.; Siegmann, B.; Postma, J.; Muller, O.; Krieger, V.; Pude, R.; Rascher, U. Assessment of plant density for barley and wheat using UAV multispectral imagery for high-throughput field phenotyping. Comput. Electron. Agric. 2021, 189, 106380. [Google Scholar] [CrossRef]
- Koh, J.C.O.; Hayden, M.; Daetwyler, H. Estimation of crop plant density at early mixed growth stages using UAV imagery. Plant Methods 2019, 15, 64. [Google Scholar] [CrossRef] [PubMed]
- Ong, P.; Teo, K.S.; Sia, C.K. UAV-based weed detection in Chinese cabbage using deep learning. Smart Agric. Technol. 2023, 4, 100181. [Google Scholar] [CrossRef]
- Khan, S.; Tufail, M.; Khan, M.T.; Khan, Z.A.; Iqbal, J.; Alam, M. A novel semi-supervised framework for UAV based crop/weed classification. PLoS ONE 2021, 16, e0251008. [Google Scholar] [CrossRef] [PubMed]
- Tetila, E.C.; Machado, B.B.; Astolfi, G.; de Souza Belete, N.A.; Amorim, W.P.; Roel, A.R.; Pistori, H. Detection and classification of soybean pests using deep learning with UAV images. Comput. Electron. Agric. 2020, 179, 105836. [Google Scholar] [CrossRef]
- Mohidem, N.A.; Che Ya, N.N.; Juraimi, A.S.; Fazlil Ilahi, W.F.; Mohd Roslim, M.H.; Sulaiman, N.; Saberioon, M.; Mohd Noor, N. How Can Unmanned Aerial Vehicles Be Used for Detecting Weeds in Agricultural Fields? Agriculture 2021, 11, 1004. [Google Scholar] [CrossRef]
- Kumar, C.; Mubvumba, P.; Huang, Y.; Dhillon, J.; Reddy, K. Multi-Stage Corn Yield Prediction Using High-Resolution UAV Multispectral Data and Machine Learning Models. Agronomy 2023, 13, 1277. [Google Scholar] [CrossRef]
- Zeng, L.; Peng, G.; Meng, R.; Man, J.; Li, W.; Xu, B.; Lu, Z.; Sun, R. Wheat Yield Prediction Based on Unmanned Aerial Vehicles-Collected Red–Green–Blue Imagery. Remote Sens. 2021, 13, 2937. [Google Scholar] [CrossRef]
- Shahi, B.; Xu, C.Y.; Neupane, A.; Fleischfresser, D.; O’Connor, D.; Wright, G.; Guo, W. Peanut yield prediction with UAV multispectral imagery using a cooperative machine learning approach. Electron. Res. Arch. 2023, 31, 3343–3361. [Google Scholar] [CrossRef]
- Chen, P.; Ouyang, F.; Zhang, Y.; Lan, Y. Preliminary Evaluation of Spraying Quality of Multi-Unmanned Aerial Vehicle (UAV) Close Formation Spraying. Agriculture 2022, 12, 1149. [Google Scholar] [CrossRef]
- Song, C.; Liu, L.; Wang, G.; Han, J.; Zhang, T.; Lan, Y. Particle Deposition Distribution of Multi-Rotor UAV-Based Fertilizer Spreader under Different Height and Speed Parameters. Drones 2023, 7, 425. [Google Scholar] [CrossRef]
- Su, D.; Yao, W.; Yu, F.; Liu, Y.; Zheng, Z.; Wang, Y.; Xu, T.; Chen, C. Single-Neuron PID UAV Variable Fertilizer Application Control System Based on a Weighted Coefficient Learning Correction. Agriculture 2022, 12, 1019. [Google Scholar] [CrossRef]
- Anand, K.; Goutam, R. An autonomous UAV for pesticides praying. Int. J. Trend Sci. Res. Dev. 2019, 3, 986–990. [Google Scholar]
- Ivić, S.; Andrejčuk, A.; Družeta, S. Autonomous control for multi-agent non-uniform spraying. Appl. Soft Comput. 2019, 80, 742–760. [Google Scholar] [CrossRef]
- Sinha, J.P. Aerial robot for smart farming and enhancing farmers’ net benefit. Indian J. Agric. Sci. 2020, 90, 258–267. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Gagliardi, G.; Lupia, M.; Cario, G.; Cicchello Gaccio, F.; D’Angelo, V.; Cosma, A.I.M.; Casavola, A. An Internet of Things Solution for Smart Agriculture. Agronomy 2021, 11, 2140. [Google Scholar] [CrossRef]
- Madushanki, R.; Halgamuge, M.; Wirasagoda, S.; Syed, A. Adoption of the Internet of Things (IoT) in Agriculture and Smart Farming towards Urban Greening: A Review. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 11–28. [Google Scholar] [CrossRef]
- Bilotta, G.; Genovese, E.; Citroni, R.; Cotroneo, F.; Meduri, G.M.; Barrile, V. Integration of an Innovative Atmospheric Forecasting Simulator and Remote Sensing Data into a Geographical Information System in the Frame of Agriculture 4.0 Concept. AgriEngineering 2023, 5, 1280–1301. [Google Scholar] [CrossRef]
- Azmi, H.N.; Hajjaj, S.S.H.; Gsangaya, K.R.; Sultan, M.T.H.; Mail, M.F.; Hua, L.S. Design and fabrication of an agricultural robot for crop seeding. Mater. Today Proc. 2023, 81, 283–289. [Google Scholar] [CrossRef]
- Ghafar, A.S.A.; Hajjaj, S.S.H.; Gsangaya, K.R.; Sultan, M.T.H.; Mail, M.F.; Hua, L.S. Design and development of a robot for spraying fertilizers and pesticides for agriculture. Mater. Today Proc. 2023, 81, 242–248. [Google Scholar] [CrossRef]
- Otani, T.; Itoh, A.; Mizukami, H.; Murakami, M.; Yoshida, S.; Terae, K.; Tanaka, T.; Masaya, K.; Aotake, S.; Funabashi, M. Agricultural Robot under Solar Panels for Sowing, Pruning, and Harvesting in a Synecoculture Environment. Agriculture 2023, 13, 18. [Google Scholar] [CrossRef]
- Raffik, R.; Mayukha, S.; Hemchander, J.; Abishek, D.; Tharun, R.; Kumar, S.D. Autonomous Weeding Robot for Organic Farming Fields. In Proceedings of the International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation, Coimbatore, India, 8–9 October 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Pandiaraj, K.; Prakash, K.J.; Dhanalakshmi, K.S.; Teja, M.S.; Kalyan, K.P.; Basha, S.M. Autonomous Robot for Field Health Indication and Crop Monitoring System using Artificial Intelligence. In Proceedings of the 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 28–29 April 2022; pp. 937–942. [Google Scholar] [CrossRef]
- Chandana, R.; Nisha, M.; Pavithra, B.; Sumana, S.; Nagashree, R.N. A Multipurpose Agricultural Robot for Automatic Ploughing, Seeding and Plant Health Monitoring. Int. J. Eng. Res. Technol. (IJERT) IETE 2020, 8, 57–60. [Google Scholar]
- Cubero, S.; Marco-noales, E.; Aleixos, N.; Barbé, S.; Blasco, J. Robhortic: A field robot to detect pests and diseases in horticultural crops by proximal sensing. Agriculture 2020, 10, 276. [Google Scholar] [CrossRef]
- Seo, D.; Cho, B.-H.; Kim, K.-C. Development of Monitoring Robot System for Tomato Fruits in Hydroponic Greenhouses. Agronomy 2021, 11, 2211. [Google Scholar] [CrossRef]
- Wu, C.; Tang, X.; Xu, X. System Design, Analysis, and Control of an Intelligent Vehicle for Transportation in Greenhouse. Agriculture 2023, 13, 1020. [Google Scholar] [CrossRef]
- Rosero-Montalvo, P.D.; Gordillo-Gordillo, C.A.; Hernandez, W. Smart Farming Robot for Detecting Environmental Conditions in a Greenhouse. IEEE Access 2023, 11, 57843–57853. [Google Scholar] [CrossRef]
- Saddik, A.; Latif, R.; Taher, F.; El Ouardi, A.; Elhoseny, M. Mapping Agricultural Soil in Greenhouse Using an Autonomous Low-Cost Robot and Precise Monitoring. Sustainability 2022, 14, 15539. [Google Scholar] [CrossRef]
- Karanisa, T.; Achour, Y.; Ouammi, A. Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: Case study of Qatar. Environ. Syst. Decis. 2022, 42, 521–546. [Google Scholar] [CrossRef]
- Gan, C.I.; Soukoutou, R.; Conroy, D.M. Sustainability Framing of Controlled Environment Agriculture and Consumer Perceptions: A Review. Sustainability 2023, 15, 304. [Google Scholar] [CrossRef]
- Kenney, M.; Serhan, H.; Trystram, G. Digitization and Platforms in Agriculture: Organizations, Power Asymmetry, and Collective Action Solutions; SSRN Scholarly Paper ID 3638547; Social Science Research Network: Rochester, NY, USA, 2020; 50p. [Google Scholar] [CrossRef]
- Kolmykova, T.; Kazarenkova, N.; Merzlyakova, E.; Aseev, O.; Kovalev, P. Digital platforms in the new world of digital agricultural business. IOP Conf. Ser. Earth Environ. Sci. 2021, 941, 012008. [Google Scholar] [CrossRef]
- Borrero, J.D.; Mariscal, J. A Case Study of a Digital Data Platform for the Agricultural Sector: A Valuable Decision Support System for Small Farmers. Agriculture 2022, 12, 767. [Google Scholar] [CrossRef]
- Singh, N.; Kapoor, S. Configuring the agricultural platforms: Farmers’ preferences for design attributes. J. Agribus. Dev. Emerg. Econ. 2023. [Google Scholar] [CrossRef]
- The Meshcheryakov Laboratory of Information Technologies Site. Available online: https://lit.jinr.ru/ (accessed on 10 October 2023).
- The Joint Institute for Nuclear Research Site. Available online: http://www.jinr.ru/main-en/ (accessed on 10 October 2023).
- The DoctorP Project Site. Available online: https://doctorp.org/ (accessed on 10 October 2023).
- Uzhinskiy, A.; Ososkov, G.; Goncharov, P.; Nechaevskiy, A.; Smetanin, A. Oneshot learning with triplet loss for vegetation classification tasks. Comput. Opt. 2021, 45, 608–614. [Google Scholar] [CrossRef]
- The National Aeronautics and Space Administration Site. Available online: https://www.nasa.gov/ (accessed on 10 October 2023).
- The Landsat Mission Site. Available online: https://www.usgs.gov/landsat-missions (accessed on 10 October 2023).
- The Sentinel Mission Site. Available online: https://sentinels.copernicus.eu/ (accessed on 10 October 2023).
- The Modis Site. Available online: https://modis.gsfc.nasa.gov/ (accessed on 10 October 2023).
- The Panet Project Site. Available online: https://www.planet.com/ (accessed on 10 October 2023).
- The Google Earth Engine Project Site. Available online: https://earthengine.google.com/ (accessed on 10 October 2023).
- Mendes, J.; Pinho, T.M.; Neves dos Santos, F.; Sousa, J.J.; Peres, E.; Boaventura-Cunha, J.; Cunha, M.; Morais, R. Smartphone Applications Targeting Precision Agriculture Practices—A Systematic Review. Agronomy 2020, 10, 855. [Google Scholar] [CrossRef]
- The Onesoil Project Site. Available online: https://onesoil.ai/ (accessed on 10 October 2023).
- Pasture.io Site. Available online: https://pasture.io/ (accessed on 10 October 2023).
- GeoPard Agriculture Project Site. Available online: https://geopard.tech/ (accessed on 10 October 2023).
- Maxar Technologies Site. Available online: https://www.maxar.com/ (accessed on 10 October 2023).
- Airbus Satelite Project Site. Available online: https://www.intelligence-airbusds.com/imagery/ (accessed on 10 October 2023).
- Aerospace-Agro Projects Site. Available online: https://www.aerospace-agro.com/ (accessed on 10 October 2023).
- The AgroScout Company Site. Available online: https://agro-scout.com/ (accessed on 10 October 2023).
- Radočaj, D.; Šiljeg, A.; Marinović, R.; Jurišić, M. State of Major Vegetation Indices in Precision Agriculture Studies Indexed in Web of Science: A Review. Agriculture 2023, 13, 707. [Google Scholar] [CrossRef]
- The Geoscan Group Company Site. Available online: https://www.geoscan.ru/ (accessed on 10 October 2023).
- The Assist Agro Site. Available online: https://agroassist.ru/ (accessed on 10 October 2023).
- The DJI Company Site. Available online: https://ag.dji.com/ (accessed on 10 October 2023).
- The Wingtra Company Site. Available online: https://wingtra.com/ (accessed on 10 October 2023).
- The Parrot Company Site. Available online: https://www.parrot.com/ (accessed on 10 October 2023).
- The MicaSense Company Site. Available online: https://support.micasense.com/ (accessed on 10 October 2023).
- The Dalair Company Site. Available online: https://delair.aero/ (accessed on 10 October 2023).
- The Taranis Company Site. Available online: https://www.taranis.com/ (accessed on 10 October 2023).
- The Aerobotics Company Site. Available online: https://www.aerobotics.com/ (accessed on 10 October 2023).
- The See Tree Company Site. Available online: https://www.seetree.ai/ (accessed on 10 October 2023).
- The FarmAir Company Site. Available online: https://farmair.io/ (accessed on 10 October 2023).
- The UAV-IQ Site. Available online: https://www.uaviq.com/ (accessed on 10 October 2023).
- Hassan, A.; Asif, R.; Rehman, A.; Nishtar, Z.; Kaabar, M.; Afsar, K. Design and development of an Irrigation Mobile Robot. IAES Int. J. Robot. Autom. 2021, 10, 75–90. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Zhou, W.; Yao, Q.; Nie, J.; Qi, X. Robot Path Planning Navigation for Dense Planting Red Jujube Orchards Based on the Joint Improved A* and DWA Algorithms under Laser SLAM. Agriculture 2022, 12, 1445. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, B.; Xu, N.; Zhou, J.; Shi, J.; Diao, Z. Vision-based navigation and guidance for agricultural autonomous vehicles and robots: A review. Comput. Electron. Agric. 2023, 205, 107584. [Google Scholar] [CrossRef]
- Wang, H.; Gu, J.; Wang, M. A review on the application of computer vision and machine learning in the tea industry. Front. Sustain. Food Syst. 2023, 7, 1172543. [Google Scholar] [CrossRef]
- Wu, X.; Aravecchia, S.; Lottes, P.; Stachniss, C.; Pradalier, C. Robotic weed control using automated weed and crop classification. J. Field Robot. 2020, 37, 322–340. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Z.; Shuang, F.; Zhang, M.; Li, X. Key technologies of machine vision for weeding robots: A review and benchmark. Comput. Electron. Agric. 2022, 196, 106880. [Google Scholar] [CrossRef]
- Adeniji, A.; Jack, K.; Idris, M.; Oyewobi, S.; Musa, H.; Oyelami, A. Deployment of an Artificial Intelligent Robot for Weed Management in Legumes Farmland. ABUAD J. Eng. Res. Dev. 2023, 6, 28–38. [Google Scholar] [CrossRef]
- Droukas, L.; Doulgeri, Z.; Tsakiridis, N.L. A Survey of Robotic Harvesting Systems and Enabling Technologies. J. Intell. Robot. Syst. 2023, 107, 21. [Google Scholar] [CrossRef] [PubMed]
- The Naïo Technologies Site. Available online: https://www.naio-technologies.com/ (accessed on 10 October 2023).
- The AgXeed Company Site. Available online: https://www.agxeed.com/ (accessed on 10 October 2023).
- The John Deer Company Site. Available online: https://www.deere.com/ (accessed on 10 October 2023).
- The Agrointelli Company Site. Available online: https://agrointelli.com/ (accessed on 10 October 2023).
- The FarmDroid Company Site. Available online: https://farmdroid.dk/ (accessed on 10 October 2023).
- The Aigro Project Site. Available online: https://www.aigro.nl/ (accessed on 10 October 2023).
- The Latest News Related to the Siberian Tiger Project. Available online: http://agrofarm.vdnh.ru/news/379-kompaniya-agrirobot-predstavila-sel-skokhozyajstvennogo-robota-siberian-tiger-na-vdnkh (accessed on 10 October 2023).
- The Cognitive Technologies Company Site. Available online: https://cognitive.ru/ (accessed on 10 October 2023).
- The Autonomous Solutions, Inc. Company Site. Available online: https://asirobots.com/ (accessed on 10 October 2023).
- The AgJunction Inc. Company Site. Available online: https://www.agjunction.com/ (accessed on 10 October 2023).
- The CNH Industrial N.V. Company Site. Available online: https://www.cnhindustrial.com/ (accessed on 10 October 2023).
- The Mahindra & Mahindra Limited Company Site. Available online: https://www.mahindra.com/ (accessed on 10 October 2023).
- The Kubota Corporation Site. Available online: https://www.kubota.com/ (accessed on 10 October 2023).
- The Tevel Company Site. Available online: https://www.tevel-tech.com/ (accessed on 10 October 2023).
- The MetoMotion Company Site. Available online: https://metomotion.com/ (accessed on 10 October 2023).
- The AgroBot Company Site. Available online: https://www.agrobot.com/ (accessed on 10 October 2023).
- The Dogtooth Technologies Company Site. Available online: https://dogtooth.tech/ (accessed on 10 October 2023).
- Farhangi, H.; Mozafari, V.; Roosta, H.R. Optimizing growth conditions in vertical farming: Enhancing lettuce and basil cultivation through the application of the Taguchi method. Sci. Rep. 2023, 13, 6717. [Google Scholar] [CrossRef] [PubMed]
- Shasteen, K.; Kacira, M. Predictive Modeling and Computer Vision-Based Decision Support to Optimize Resource Use in Vertical Farms. Sustainability 2023, 15, 7812. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Xydis, G. Energy cost reduction by shifting electricity demand in indoor vertical farms with artificial lighting. Biosyst. Eng. 2021, 211, 219–229. [Google Scholar] [CrossRef]
- Ruli, R.; Seminar, K.; Wahjuni, S.; Santosa, E. Vertical Farming Perspectives in Support of Precision Agriculture Using Artificial Intelligence: A Review. Computers 2022, 11, 135. [Google Scholar] [CrossRef]
- The iFarm Company Site. Available online: https://ifarm.fi/ (accessed on 10 October 2023).
- The Mestnye Korni Company Site. Available online: https://localroots.ru/ (accessed on 10 October 2023).
- The GALAD Green Line Site. Available online: https://npcsvet.ru/ (accessed on 10 October 2023).
- The AeroFarms Company Site. Available online: https://www.aerofarms.com/ (accessed on 10 October 2023).
- The Bowery Farming Company Site. Available online: https://bowery.co/ (accessed on 10 October 2023).
- The Futurae Farms Company Site. Available online: https://www.futuraefarms.com/ (accessed on 10 October 2023).
- The Agritecture Company Site. Available online: https://www.agritecture.com/agricool (accessed on 10 October 2023).
- The CubicFarms Company Site. Available online: https://cubicfarms.com/ (accessed on 10 October 2023).
- The Russian Agricultural Bank Site. Available online: https://old.rshb.ru/ (accessed on 10 October 2023).
- Svoe Fermerstvo Projects Site. Available online: https://svoefermerstvo.ru/ (accessed on 10 October 2023).
- The AgraRoom Projects Site. Available online: https://agraroom.ru/ (accessed on 10 October 2023).
- The Pole.rf Projects Site. Available online: https://xn--e1alid.xn--p1ai/ (accessed on 10 October 2023).
- The Farmers Business Network Platform Site. Available online: https://www.fbn.com/ (accessed on 10 October 2023).
- The Agriconomy Platform Site. Available online: https://www.agriconomie.com/ (accessed on 10 October 2023).
- The Farmcart Platform Site. Available online: https://farmkartgroup.com/ (accessed on 10 October 2023).
- Kethineni, K.; Pradeepini, G. An Overview of Smart Agriculture Activities using Machine Learning and IoT; AIP Publishing: Melville, NY, USA, 2023. [Google Scholar] [CrossRef]
- Acharya, B.; Garikapati, K.; Yarlagadda, A.; Dash, S. Internet of Things (IoT) and Data Analytics in Smart Agriculture: Benefits and Challenges; Academic Press: San Diego, CA, USA, 2022. [Google Scholar] [CrossRef]
- Luyckx, M.; Reins, L. The Future of Farming: The (Non)-Sense of Big Data Predictive Tools for Sustainable EU Agriculture. Sustainability 2022, 14, 12968. [Google Scholar] [CrossRef]
- Cravero, A.; Sepúlveda, S. Use and Adaptations of Machine Learning in Big Data—Applications in Real Cases in Agriculture. Electronics 2021, 10, 552. [Google Scholar] [CrossRef]
- The Digital Agro Company Site. Available online: https://digitalagro.ru/ (accessed on 10 October 2023).
- The Agrosignal Digital Platform Site. Available online: https://agrosignal.com/ (accessed on 10 October 2023).
- The CropX Site. Available online: https://cropx.com/ (accessed on 10 October 2023).
- The Agrivi Site. Available online: https://www.agrivi.com/ (accessed on 10 October 2023).
- The Agworld Site. Available online: https://www.agworld.com/eu/ (accessed on 10 October 2023).
- The Farmbrite Site. Available online: https://www.farmbrite.com/ (accessed on 10 October 2023).
- The Harvest Profit Site. Available online: https://www.harvestprofit.com/ (accessed on 10 October 2023).
- Barrile, V.; Simonetti, S.; Citroni, R.; Fotia, A.; Bilotta, G. Experimenting Agriculture 4.0 with Sensors: A Data Fusion Approach between Remote Sensing, UAVs and Self-Driving Tractors. Sensors 2022, 22, 7910. [Google Scholar] [CrossRef]
- Cui, Z.; Li, K.; Kang, C.; Wu, Y.; Li, T.; Li, M. Plant and Disease Recognition Based on PMF Pipeline Domain Adaptation Method: Using Bark Images as Meta-Dataset. Plants 2023, 12, 3280. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.C.; Borges, L.A.B.; Borges, D.L. A Multi-Layer Feature Fusion Method for Few-Shot Image Classification. Sensors 2023, 23, 6880. [Google Scholar] [CrossRef] [PubMed]
- The World-Class Scientific Center “Agrotechnologies of the Future” Site. Available online: https://future-agro.ru/ (accessed on 10 October 2023).
- Kolhar, S.; Jagtap, J. Plant trait estimation and classification studies in plant phenotyping using machine vision—A review. Inf. Process. Agric. 2023, 10, 114–135. [Google Scholar] [CrossRef]
- The Doka-Gennyye Tekhnologii Company Site. Available online: https://dokagene.ru/ (accessed on 10 October 2023).
- Sinshaw, N.T.; Assefa, B.G.; Mohapatra, S.K.; Beyene, A.M. Applications of Computer Vision on Automatic Potato Plant Disease Detection: A Systematic Literature Review. Comput. Intell. Neurosci. 2022, 2022, 7186687. [Google Scholar] [CrossRef] [PubMed]
- Polder, G.; Blok, P.M.; de Villiers, H.A.C.; van der Wolf, J.M.; Kamp, J. Potato Virus Y Detection in Seed Potatoes Using Deep Learning on Hyperspectral Images. Front. Plant Sci. 2019, 10, 209. [Google Scholar] [CrossRef]
- Martin, J.; Ansuategi, A.; Maurtua, I.; Gutierrez, A.; Obregón, D.; Casquero, O.; Marcos, M. A Generic ROS-Based Control Architecture for Pest Inspection and Treatment in Greenhouses Using a Mobile Manipulator. IEEE Access 2021, 9, 94981–94995. [Google Scholar] [CrossRef]
- Tiwari, S.; Zheng, Y.; Pattinson, M.; Campo-Cossio, M.; Arnau, R.; Obregon, D.; Ansuategui, A. Approach for Autonomous Robot Navigation in Greenhouse Environment for Integrated Pest Management. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA, 20–23 April 2020; pp. 1286–1294. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzhinskiy, A. Advanced Technologies and Artificial Intelligence in Agriculture. AppliedMath 2023, 3, 799-813. https://doi.org/10.3390/appliedmath3040043
Uzhinskiy A. Advanced Technologies and Artificial Intelligence in Agriculture. AppliedMath. 2023; 3(4):799-813. https://doi.org/10.3390/appliedmath3040043
Chicago/Turabian StyleUzhinskiy, Alexander. 2023. "Advanced Technologies and Artificial Intelligence in Agriculture" AppliedMath 3, no. 4: 799-813. https://doi.org/10.3390/appliedmath3040043
APA StyleUzhinskiy, A. (2023). Advanced Technologies and Artificial Intelligence in Agriculture. AppliedMath, 3(4), 799-813. https://doi.org/10.3390/appliedmath3040043