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Abstract: According to the Food and Agriculture Organization, the world’s food production needs
to increase by 70 percent by 2050 to feed the growing population. However, the EU agricultural
workforce has declined by 35% over the last decade, and 54% of agriculture companies have cited
a shortage of staff as their main challenge. These factors, among others, have led to an increased
interest in advanced technologies in agriculture, such as IoT, sensors, robots, unmanned aerial vehicles
(UAVs), digitalization, and artificial intelligence (AI). Artificial intelligence and machine learning have
proven valuable for many agriculture tasks, including problem detection, crop health monitoring,
yield prediction, price forecasting, yield mapping, pesticide, and fertilizer usage optimization. In this
scoping mini review, scientific achievements regarding the main directions of agricultural technologies
will be explored. Successful commercial companies, both in the Russian and international markets,
that have effectively applied these technologies will be highlighted. Additionally, a concise overview
of various AI approaches will be presented, and our firsthand experience in this field will be shared.
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1. Introduction

The Earth’s population is growing rapidly, although not as fast as in the 20th century. Still,
by 2050, the population is projected to exceed 9 billion. According to the Food and Agriculture
Organization, global food production needs to increase by 70 percent by 2050. Meanwhile,
over the past few decades, the European agricultural workforce has declined by 35%. More
than 54% of agricultural companies have cited a shortage of staff as their main challenge in the
coming years. These factors have elevated the acceptance and necessity of advanced technolo-
gies in agriculture to a new level. Just as tractors and harvesters revolutionized agriculture
in the 20th century, UAVs, robots, and artificial intelligence are currently transforming the
industry. Intriguing applications of artificial intelligence have been found in various areas
related to agriculture, such as biology, genetics, chemistry, and animal husbandry. However,
this paper focuses specifically on farming and plant cultivation.

There are many interesting reviews related to specific technologies or sets of them. Xu
et al. published a review [1] on agricultural IoT technology. Rejeb et al. [2] conducted a
bibliometric analysis of publications related to drone applications in agriculture. Ojo et al. [3]
focused on deep learning methods in controlled environment agriculture. Mail et al. [4]
presented a review of agricultural harvesting robot technologies. Wang et al. [5] reviewed
the applications of machine vision in agricultural robot navigation. Dayioglu and Turker [6]
and Abbasi et al. [7] have published extensive reviews on Agriculture 4.0, which combines
the most advanced modern technologies. An excellent review on Artificial Intelligence in
Agriculture was conducted by Oliveira et al. [8]. The motivation behind this mini review is to
explore the main advanced technologies in agriculture and AI tasks related to them. The aim
is to showcase not only scientific achievements but also successful commercial companies in
both the Russian and international markets that have effectively applied these technologies.
Practitioners and researchers can use these reviews to find areas for applying their talents or
to discover technological and business solutions that elevate agriculture to a new level.

Let us briefly explore the main technologies in agriculture, progressing from the top to the
bottom. Satellite imagery enables soil classification [9–21], field monitoring [22–24], planning
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assistance [25], and yield prediction [26–29]. Open programs are mostly limited—both spa-
tially and temporally. At the same time, commercial missions offer imagery with a resolution
of less than 50 cm and the ability to obtain images of a specific area on demand. Depending
on the analyzed area, UAVs can offer similar capabilities to satellite imagery, but with higher
accuracy and flexibility. They can perform tasks such as soil analysis [30–32], seedling density
tracking [33,34], weed and pest detection and classification [35–38], yield prediction [39–41],
and harvest readiness assessment. In some rare cases, UAVs can be used for harvesting,
precision fertilization [42–44], pesticide injections [45–47], or even mechanical pest destruc-
tion. The Internet of Things and sensors provide farmers with real-time information on soil
parameters, temperature, gases in the air, weather conditions, and many other parameters,
which are often passed to cloud infrastructures and can then be used for analysis and predic-
tion [48–51]. Autonomous platforms (robots, unmanned ground vehicles (UGVs)) and tractors
can execute warehouse operations, as well as carry out common farming operations such as
planting [52], fertilization [53], pruning [54], weeding [55], hilling, and crop condition monitor-
ing [56–58]. When it comes to greenhouse farming, navigation becomes challenging, limiting
the application of UAVs and setting specific requirements for autonomous platforms, such as
moving on different types of surfaces, working in different light conditions, and processing
high-resolution imagery [59–62]. Controlled environment farming has experienced significant
advancements; however, it primarily serves markets with high demand for fresh products
and low electricity costs, such as the OAE region. On such farms, autonomous platforms and
UAVs are not as popular due to the limited working space, but a number of operations can
still be automated. Autonomous growing in a completely controlled environment looks highly
possible in the coming decades [3,63,64]. Digital platforms integrate information from various
sources, equipping farmers with convenient tools for planning, growing, control, prediction,
and even product placements and distribution [65–68].

The Meshcheryakov Laboratory of Information Technologies [69] at the Joint Institute
for Nuclear Research [70] focuses on various areas of AI application in agriculture, mainly
in the field of classification and detection tasks. Unfortunately, the details of some executed
projects are subject to non-disclosure agreements (NDA). Therefore, this paper provides
an excellent opportunity to publish general information about our research. Our notable
achievement is the development of a plant disease detection platform along with its ac-
companying mobile application called DoctorP [71]. This platform is capable of classifying
more than 70 different diseases and incorporates 26 specialized models designed for specific
crops. Our approach utilizes one-shot learning, particularly employing Siamese neural
networks with the triplet loss function, in addition to other advanced training techniques.
The overall accuracy of our general model and specialized models reaches an impressive
97% [72]. Furthermore, we are actively involved in the detection of various diseases on
potatoes. In this regard, we employ RGB and hyperspectral images, as well as utilize
various YOLO-family networks, to tackle the detection task. Our aim is to propose practical
solutions that can be implemented in the field, providing valuable insights and aiding in
decision-making processes. Furthermore, we have conducted studies on the impact of light
on crop evolution during different phenophases. Our interests also encompass utilizing
computer vision and neural networks for monitoring tasks in greenhouse environments.

The remainder of the paper is organized as follows: Section 2 introduces advanced
technologies in agriculture, namely Section 2.1 Application of satellite imagery, Section 2.2
Application of unmanned aerial vehicles, Section 2.3 Application of autonomous platforms
and tractors, Section 2.4 Advances in controlled environment farming, and Section 2.5
General information about sensors and digitalization. Section 3 provides an overview of
the MLIT activities related to artificial intelligence in agriculture. Finally, the conclusion is
presented in Section 4.
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2. Advanced Technologies in Agriculture
2.1. Satellite Imagery

NASA [73] reports that, as of 30 April 2022, 5465 active artificial satellites are orbiting
the Earth. Figure 1A displays an artist’s depiction of Earth-orbiting satellites. Some notable
missions, such as Landsat [74], Sentinel [75], and Modis [76], provide their data for free.
The resolution of imagery from these programs starts at 15 m, and the spectral range of
the images is quite wide. However, the orbital cycle is relatively long, usually taking up
to 16–18 days, and no one can guarantee a cloudless sky. Nevertheless, this data can be
utilized to obtain various interesting information about territories.

Figure 1. (A) An artist’s depiction of satellites orbiting Earth [73]. (B) Planet.com active and planned
satellites and their characteristics [77].

Soil mapping and classification can be accomplished using this data via basic statistical
methods (support vector machine [9], random forest [10], gradient boosting [11], decision
tree [12], cubist algorithm [13], etc.) or sophisticated neural algorithms (artificial neural
network [14], recurrent neural network [15], deep recurrent neural network [16], deep
neural network [17], deep convolutional neural network [18–21], etc.). Effective land
utilization strategies can be created by analyzing not only fresh information, but also
historical data. Common users have the option to perform some analyses themselves using
Google Earth Engine [78], a cloud-based geospatial analysis platform; however, it requires
experience and some IT skills. Alternatively, using specialized services [79] may be a more
convenient approach.

The OneSoil project [80] serves as an excellent example of a free ready-to-use project
where satellite imagery, artificial intelligence, and digitalization serve farmers. The inter-
face of the OneSoil Yield mobile app is presented in Figure 2. Pasture.io [81] and GeoPard
Agriculture [82] are examples of commercial services that utilize satellite data for preci-
sion agriculture. The resolution of the methods is sufficient for general analysis, control,
planning assistance, and yield prediction. However, for more accurate data, commercial
satellite products are necessary.
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Figure 2. The Yield app interface showcasing NDVI and notes of a field [80].

Missions such as Maxar [83], Airbus [84] or Planet.com [77] provide high-resolution
imagery with tens of spectral channels. One can request images of a specific area at an
appropriate time. The Russian project known as Aerospace-agro [85] offers various tools for
precision farming, allowing enterprises to increase their yield and revenue. AgroScout [86]
is an Israeli company that provides agronomy services based on various sources of in-
formation, including Airbus high-resolution satellite data. The resolution of commercial
products can be 0.5 m or even less. Despite this, it may not always be enough for an
accurate diagnosis of many problems. Additionally, the cost of the data is relatively high.
Nonetheless, the ability to analyze vast territories and acquire data on demand makes
satellite imagery highly attractive for agronomy purposes.

2.2. Unmanned Aerial Vehicles

UAVs are incredibly useful for obtaining detailed information about fields. Equipped
with multispectral and high-resolution cameras, they excel in tasks such as object detection,
classification, and segmentation. Their resolution capabilities allow farmers to effectively
monitor seedling density [33,34], weed, and pest presence [35–38]. Multispectral cameras enable
the capture of NDVI (Normalized Difference Vegetation Index) and other essential indexes to
assess soil and plant conditions [87]. Specialized UAVs can handle precision fertilization [42–44],
pesticide application [45–47], harvesting, and even dealing with flying pests.

Despite their benefits, operating drones over fields can be challenging because it requires
obtaining various permissions and the expertise of specialists to ensure proper functioning.
Nevertheless, they remain one of the best options for farmers to monitor their enterprise and
predict crop yields. UAVs are becoming as commonplace as tractors on farms. A farmer can
purchase affordable devices suitable for basic analysis, learn how to operate them, and access
free specialized software to create field maps and evaluate their condition. For more complex
and professional analyses, farmers can utilize commercial services.

Geoscan [88] is a group of companies engaged in the development and production of
unmanned aerial vehicles and related devices, along with software for photogrammetric
data processing. Figure 3 presents the Geoscan Lite drone and a multispectral camera.
AssistAgro [89], on the other hand, is a digital platform designed for effective agribusiness
management, with a focus on tasks such as forecasting weed emergence and development,
calculating crop plant density and placement quality, predicting agricultural plant diseases,
etc. The AssistAgro software interface is presented in Figure 4.
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Figure 3. The UAV Geoscan lite (A) and multispectral camera (B) proposed by Geoscan [88].

Figure 4. Drone working route (A) and detection results of a model (B) in the AssistAgro software
interface [89].

On the international market, DJI [90], Wingtra [91], Parrot [92], Mica-Sense [93], and
Delair [94] are well-known producers of unmanned aerial vehicles and related devices.
Companies like Taranis [95], Aerobotics [96], See Tree [97], FarmAir [98], and UAV-IQ [99]
can be mentioned as services that provide different analysis options for farmers based on
drone imagery.

2.3. Autonomous Platforms and Tractors

In agriculture, autonomous platforms (unmanned ground vehicles, robots) assist with
various warehouse operations, as well as monitor fields and execute special agronomic
tasks. The payload capacity of surface-based platforms is significantly larger than that of
UAVs. However, drones have distinct advantages in monitoring and control operations
due to their mobility. On the other hand, autonomous platforms find their ideal application
in executing agrotechnical operations, such as planting [52], harvesting [4], fertilization [53],
pruning [54], weeding [55], watering [100], hilling, etc. While fully automated devices
are relatively rare, partly automated ones are more prevalent. These platforms come in
different sizes, complexities, and applications; nevertheless, they all employ computer
vision and neural algorithms to move, monitor the situation, and perform tasks with high
speed and precision. [101–103] For instance, platforms can deploy different tools, such as
pesticides, fire, electricity, brutal force, or lasers, to remove weeds and address issues much
faster and more effectively than humans [104–107].

Regarding fully automated platforms, companies like Naïo Technologies [108], AgX-
eed [109], John Deere [110], Agrointelli [111], FarmDroid [112], and Aigro [113] provide
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advanced solutions. As for the Russian market, there are no significant projects in the area
that can be mentioned. The Siberian tiger project [114] showed promising results, but no
production solution was deployed, leading to its discontinuation. Instead, the project team
shifted focus toward the commercial development of robotized platforms.

However, notable achievements have been made in auto-pilot systems, enabling trac-
tors to execute intelligent functions and replace human drivers with operators. Cognitive
Technologies [115] has installed artificial intelligence-based autonomous control systems on
more than 100 tractors in Russian agricultural enterprises from Pskov to Blagoveshchensk
since the spring of 2023. The Cognitive Technologies hardware installed in the cabin of the
tractor is presented in Figure 5.

Figure 5. Tractor cabin with the Cognitive Technologies hardware (A) and visualization of the camera
view from the Cognitive Technologies auto-pilot (B) [114].

The cost of such a system is estimated to be around 5–10% of the total machine cost.
Implementing this system allows for enhanced labor productivity (up to 25%), fuel savings
(7%), and the conservation of other resources. Companies like Autonomous Solutions
(Petersboro, UT, USA) [116], AgJunction Inc. (Scottsdale, AZ, USA) [117], CNH Industrial
N.V. (Basildon, UK) [118], Mahindra & Mahindra Limited (Mumbai, India) [119], and
Kubota (Osaka, Japan) [120] are top players in the international market.

When it comes to harvesting robots, fruits, vegetables, and berries are the primary
target [4,107]. The task involves detecting objects, assessing their state, recording their coordi-
nates, and passing this information to the harvesting mechanism. Both UAVs and autonomous
platforms can be utilized for harvesting yields. However, only a few research projects re-
lated to fruit harvesting are known on the national Russian market, and they are still far
from the production stage. On the international market, there are companies like Tevel [121],
MetoMotion [122], AgroBot [123], and Dogtooth Technologies [124] that provide solutions for
harvesting various crops. In Figure 6, a variation of harvesting robots is presented.

Figure 6. Harvesting robot drone by Tevel [120] (A), MetoMotion tomato harvesting robot [121] (B),
and strawberry-picking robot by AgroBot [123] (C).
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2.4. Controlled Environment Farming

Increased levels of growing technologies and the evolution of LED lights have enabled
the establishment of farms in commercial centers, parking lots, restaurants, and other locations.
Vertical farming has become a highly popular field, attracting significant investments from
many companies. The market has now stabilized. Some companies have had to downsize
their workforce and relocate to more suitable areas. The range of crops grown is currently
limited to lettuce, herbs, and berries, and the prices of these products can be several times
higher than those grown in traditional fields. Nonetheless, in places with low electricity
charges and high demand for fresh produce, this technology remains highly marketable.

Artificial intelligence plays a significant role in controlled environment farming, specif-
ically in tasks such as object detection, classification, and prediction [3]. Given the high
production costs, farm owners must accurately anticipate their yields and organize efficient
distribution. Neural (deep recurrent neural network, deep neural network) and statistical
(random forest, gradient boosting, decision tree, multivariate regression, association rule
learning) models are also applied to analyze the current situation and determine optimal
parameters to maximize crop yield [125–127]. Controlled environments allow owners to
adjust various factors, such as light, humidity, fertilizer levels in soil or solutions, and
more. Existing guidelines outline how to cultivate different crops and respond to changes
in various parameters on the farm. Consequently, a cohesive virtual agronomist software
suite aids in making well-informed decisions.

Controlled environment farming heavily relies on the automation of all processes.
Robots are capable of planting, moving, and harvesting crops. However, fully autonomous
farms are still a conceptual idea and have not yet been fully realized [63,64,128].

In the Russian market, there are several notable companies, such as iFarm [129] and
Mestnye korni [130], which have established themselves as experienced developers in this
field. GALAD Green Line [131] is conducting research on the influence of different light
spectra on the growth potential of various crops and offers its virtual agronomist cloud
solution. Photos from vertical farms are presented in Figure 7.

Figure 7. (A) Novosibirsk iFarm-powered vertical farm [129] and (B) GALAD Green Line-powered
farm in the Moscow restaurant Greenhouse [130].

The top players on the international market are AeroFarms [132], Bowery Farm-
ing [133], Futurae Farms [134], AgriCool [135], and CubicFarms [136].

2.5. Sensors and Digitalization

Digitalization is one of the main trends in agronomy. Notebooks, tablets, or phones
are as common tools for farmers as a shovel and watering can used to be. Different digital
systems cover all production phases from planning and seed selection to the distribution of
ready products. Open knowledge bases help to find the best solutions and share experiences.
Cloud-based systems help to connect farmers with consumers and provide government,
insurance companies, and banks with information about enterprise activities. In such systems,
a farmer can find appropriate suppliers, services, and a workforce [65–68]. The Russian
Agricultural Bank [137] is the primary provider of versatile digital platforms in the Russian
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agricultural sector. Its flagship project “Svoe Fermerstvo” [138] offers a comprehensive suite
of services and opportunities for efficient agribusiness. Agraroom [139] and Pole.rf [140] are
additional instances of functional and thriving digital platforms. Platforms such as Farmers
Business Network [141], Agriconomie [142], and Farmkart [143] serve as excellent illustrations
of multifunctional digital platforms for farmers in the international market.

Another aspect of digitalization is its ability to obtain detailed real-time data about
farms. Low-cost sensors placed on the field, in greenhouses, or vertical farms, as well
as sophisticated sensors placed on board of platforms or UAVs, can provide information
about humidity, soil moisture, salinity, temperature, and nutrient levels among other useful
metrics [1,48–51]. All this data is transferred to local or global cloud systems. Another
source of information about weather and prices, as well as historical data, is used to
generate a massive amount of data. Statistical and machine learning algorithms are utilized
for planning, forecasting, and finding the best way to maximize yield while minimizing
expense and environmental impact [144–147]. Data-driven precision agriculture allows
farmers to have a digital twin of their enterprise, providing real-time control and enabling
prompt action. This integration of technology and agriculture represents the future of the
industry. The Digital Agro company [148], the creator of the Agrosignal platform [149], is a
prominent leader in the digitalization of agriculture within the Russian market.

CropX [150], Agrivi [151], Agworld [152], Farmbrite [153], and Harvest profit [154]
are international companies providing useful software for smart farming.

Similar to the concept of Enterprise 4.0, Agriculture 4.0 leverages advanced technolo-
gies such as the Internet of Things (IoT), big data, artificial intelligence, unmanned aerial
vehicles (UAVs), robotics, and more to enhance, connect, accelerate, and optimize activ-
ities that impact the entire production chain. Agriculture 4.0 encompasses the tools and
strategies that enable the synergistic utilization of various technologies [155] to enhance
economic, environmental, and social sustainability, as well as the profitability of agricul-
tural processes. Notable comprehensive reviews on the subject of digital transformation in
agriculture have been authored by Dayioglu and Turker [6] and Abbasi et al. [7].

3. MLIT Activities Related to Artificial Intelligence in Agriculture

There are competent specialists in the field of machine learning and neural networks,
as well as a great source base for model training and algorithm verification, at the Meshch-
eryakov Laboratory of Information Technologies (MLIT) [69]. For this reason, collaboration
with MLIT attracts various companies and organizations, leading to the initiation of inter-
esting projects in different areas, including agriculture. When certain research projects are
subject to Non-Disclosure Agreements (NDAs), only limited, general information about
them can be disclosed.

One prominent project in this domain is the disease detection platform and its mo-
bile application called DoctorP [71]. This platform enables users to submit a photo of a
plant and receive predictions of possible diseases and treatment recommendations from
agronomists. The platform offers a web interface, a Telegram bot, a mobile application, and
an API for external services. Since the beginning of 2023, the platform has received over
80,000 user requests. The DoctorP mobile app interface is presented in Figure 8.

To identify the best approaches for model training, the MLIT team has tested dif-
ferent state-of-the-art neural network architectures, auto-augmentation policies, and loss
minimization functions, including contrastive, triplet, arcface, cosface, and sphereface. Cur-
rently, we use MobileNet as the architectural base for small models with less than 50 classes
and ConvNeXt for larger models. The Triplet loss function is employed for model training,
and augmentation and quantization are not used. As a result, all models achieve an impres-
sive accuracy of over 97% [72]. No research has been found where disease classification
is conducted on a self-collected dataset comprising more than 70 classes. However, the
research by Cui et al. [156] and Gomes et al. [157] employs very interesting techniques that
deserve mention.
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Figure 8. The DoctorP app interface demonstrating the overarching application logic [70].

The same classification approach was utilized in a joint project with the Temiryazev
Academy as part of the World-class Scientific Center “Agrotechnologies of the Future” [158].
In this collaboration, we focused on investigating how light in different spectra affected
crops during various phenophases. The trained models were successful in classifying
the degree of plant development and determining the weight group of each plant. For
studies involving classification in plant phenotyping, Kolhar and Jagtap have provided a
comprehensive review [159].

In another project, we tackled the control of lettuces on the growing line. To accomplish
this, we used a two-stage algorithm: YOLO architecture for lettuce detection, followed
by classification using a one-shot model. This approach significantly reduced the data
markup procedure and increased the accuracy to an impressive 99%. We also applied
similar methodologies to classify food on trunks with favorable outcomes.

Additionally, in collaboration with Doka–Gennyye Tekhnologii [160], we executed a
project focused on detecting different diseases in potatoes. Two main directions were pursued.
First, we developed methods for detecting diseases visible through RGB cameras, where
YOLO 8 and YOLO NAS demonstrated the most promising results for object detection
and instance segmentation tasks. We incorporated these solutions into portable computer
complexes mounted on sanitary tractors. The captured images from the cameras are processed
by our models, and the number of detected objects, along with geographical positions, is sent
to the server to generate a heat map of the field. Figure 9A presents the results of the models’
performance on images captured by a camera mounted on a tractor. Sinshaw et al. [161] have
authored an excellent review on methods for potato disease detection.

The second direction involved working with hyperspectral images of potatoes to
identify diseased plants before the appearance of visible symptoms. We explored various
image classification and pixel-level analysis algorithms to determine the most effective
approach. Polder et al. conducted noteworthy research [162] focused on detecting virus Y
using hyperspectral images.

We are also working on an automated analysis of plant states in greenhouse com-
plexes. Our goal is to simplify routine operations for agronomists and provide them with
convenient tools for monitoring plant health in these environments. A key challenge in
greenhouses is the identification of pests in their early stages and their precise location on
the leaves. Martin et al. [163] and Tiwari et al. [164] propose intriguing solutions; however,
they come with restrictions regarding operating heights and surfaces. Our project requires
the development of autonomous robotic platforms capable of moving on different surfaces
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and operating at heights of up to 4 m. We are currently working on various tasks, includ-
ing segmentation, classification, object detection, and tracking to achieve these objectives.
Several model outputs and experiments related to the project are displayed in Figure 10.

Figure 9. (A) The image captured by the tractor camera and processed by the model for identifying
potato diseases. (B) A visualization highlighting the differences in a specially selected index between
potatoes affected by the Y virus (top two images) and healthy potatoes (bottom two photos).

Figure 10. (A) Output of the cucumber top counter model. (B) Output of the cucumber problem
detection model. (C) Evaluation of the lifting mechanism prototype. (D) Full-scale robot prototype.

By the end of 2023, the testing of a prototype platform and system in one of the
greenhouse complexes in the Kaluga region is planned to begin.

4. Conclusions

To feed the growing population, agriculture companies must utilize the advanced
technologies of smart farming. Some of these technologies are still in the development
phase, while others are already being offered by commercial enterprises. Right now, farms
can leverage a range of cutting-edge tools, such as satellite data, UAVs, autonomous
platforms, sensors, and robots to acquire detailed information about the current status of
their crops and soil, as well as to perform common agronomic operations. Nevertheless,
the adoption of new agricultural technologies remains limited in many countries, creating
significant opportunities for both established businesses and startups.

Artificial intelligence plays a significant role in many modern agriculture technologies,
enabling solutions for various challenges, including crop health monitoring, yield predic-
tion, price forecasting, yield mapping, pesticide and fertilizer usage optimization, etc. While
state-of-the-art results have already been achieved in some areas, others require further
efforts. Tasks like detection and navigation in complex conditions, the execution of precise
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operations, and forecasting and control of multi-parameter systems offer opportunities for
researchers to apply their expertise.

Precision agriculture, with a focus on ensuring food security and optimizing resources
like water, fertilizers, and pesticides, as well as conducting comprehensive analysis and
control across the entire enterprise, represents the future of the industry. Over the next
few decades, fully autonomous devices operating on farms and autonomous cultivation in
controlled environments are likely to become a reality. At MLIT, we leverage our infrastruc-
ture to train classification, detection, and segmentation models that find applications in
various agricultural contexts. Our emphasis extends beyond developing scientific solutions
to creating readily deployable applications that benefit the agricultural community.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Xu, J.; Gu, B.; Tian, G. Review of agricultural IoT technology. Artif. Intell. Agric. 2022, 6, 10–22. [CrossRef]
2. Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in agriculture: A review and bibliometric analysis. Comput. Electron.

Agric. 2022, 198, 107017. [CrossRef]
3. Ojo, M.O.; Zahid, A. Deep Learning in Controlled Environment Agriculture: A Review of Recent Advancements, Challenges and

Prospects. Sensors 2022, 22, 7965. [CrossRef] [PubMed]
4. Mail, M.F.; Maja, J.M.; Marshall, M.; Cutulle, M.; Miller, G.; Barnes, E. Agricultural Harvesting Robot Concept Design and System

Components: A Review. AgriEngineering 2023, 5, 777–800. [CrossRef]
5. Wang, T.; Chen, B.; Zhang, Z.; Li, H.; Zhang, M. Applications of machine vision in agricultural robot navigation: A review.

Comput. Electron. Agric. 2022, 198, 107085. [CrossRef]
6. Dayioglu, M.A.; Turker, U. Digital transformation for sustainable future agriculture 4.0: A review. J. Agric. Sci. 2021, 27, 373–399.
7. Abbasi, R.; Martinez, P.; Ahmad, R. The digitization of agricultural industry—A systematic literature review on agriculture 4.0.

Smart Agric. Technol. 2022, 2, 100042. [CrossRef]
8. Oliveira, R.C.d.; Silva, R.D.d.S.e. Artificial Intelligence in Agriculture: Benefits, Challenges, and Trends. Appl. Sci. 2023, 13, 7405.

[CrossRef]
9. Li, X.; Sun, C.; Meng, H.; Ma, X.; Huang, G.; Xu, X. A Novel Efficient Method for Land Cover Classification in Fragmented

Agricultural Landscapes Using Sentinel Satellite Imagery. Remote Sens. 2022, 14, 2045. [CrossRef]
10. Forkuor, G.; Hounkpatin, O.K.; Welp, G.; Thiel, M. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in

South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models. PLoS ONE 2017, 12, e0170478.
[CrossRef]
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