Previous Issue
Volume 5, March
 
 

AppliedChem, Volume 5, Issue 2 (June 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
42 pages, 2570 KiB  
Article
Multimethodological Approach for the Evaluation of Tropospheric Ozone’s Regional Photochemical Pollution at the WMO/GAW Station of Lamezia Terme, Italy
by Francesco D’Amico, Giorgia De Benedetto, Luana Malacaria, Salvatore Sinopoli, Arijit Dutta, Teresa Lo Feudo, Daniel Gullì, Ivano Ammoscato, Mariafrancesca De Pino and Claudia Roberta Calidonna
AppliedChem 2025, 5(2), 10; https://doi.org/10.3390/appliedchem5020010 - 20 May 2025
Abstract
The photochemical production of tropospheric ozone (O3) is very closely linked to seasonal cycles and peaks in solar radiation occurring during warm seasons. In the Mediterranean Basin, which is a hotspot for climate and air mass transport mechanisms, boreal warm seasons [...] Read more.
The photochemical production of tropospheric ozone (O3) is very closely linked to seasonal cycles and peaks in solar radiation occurring during warm seasons. In the Mediterranean Basin, which is a hotspot for climate and air mass transport mechanisms, boreal warm seasons cause a notable increase in tropospheric O3, which unlike stratospheric O3 is not beneficial for the environment. At the Lamezia Terme (code: LMT) World Meteorological Organization—Global Atmosphere Watch (WMO/GAW) station located in Calabria, Southern Italy, peaks of tropospheric O3 were observed during boreal summer and spring seasons, and were consequently linked to specific wind patterns compatible with increased photochemical activity in the Tyrrhenian Sea. The finding resulted in the introduction of a correction factor for O3 in the O3/NOx (ozone to nitrogen oxides) ratio “Proximity” methodology for the assessment of air mass aging. However, some of the mechanisms driving O3 patterns and their correlation with other parameters at the LMT site remain unknown, despite the environmental and health hazards posed by tropospheric O3 in the area. In general, the issue of ozone photochemical pollution in the region of Calabria, Italy, is understudied. In this study, the behavior of O3 at the site is assessed with remarkable detail using nine years (2015–2023) of data and correlations with surface temperature and solar radiation. The evaluations demonstrate non-negligible correlations between environmental factors, such as temperature and solar radiation, and O3 concentrations, driven by peculiar patterns in local wind circulation. The northeastern sector of LMT, partly neglected in previous works, yielded higher statistical correlations with O3 than expected. The findings of this study also indicate, for central Calabria, the possibility of heterogeneities in O3 exposure due to local geomorphology and wind patterns. A case study of very high O3 concentrations reported during the 2015 summer season is also reported by analyzing the tendencies observed during the period with additional methodologies and highlighting drivers of photochemical pollution on larger scales, also demonstrating that near-surface concentrations result from specific combinations of multiple factors. Full article
16 pages, 2640 KiB  
Article
Exploring the Roles of Chelating/Fuel Agents in Shaping the Properties of Copper Ferrites
by Menka Sharma, Mayur Khan, Manika Khanuja and Neeraj Mishra
AppliedChem 2025, 5(2), 9; https://doi.org/10.3390/appliedchem5020009 - 28 Apr 2025
Viewed by 269
Abstract
In this study, copper ferrite nanoparticles, a type of ferrimagnetic spinel ferrite, were synthesized using the sol-gel auto-combustion method with three different fuels: citric acid, urea, and ethylene glycol. The crystal structures of the synthesized samples were analyzed using X-ray diffraction (XRD), and [...] Read more.
In this study, copper ferrite nanoparticles, a type of ferrimagnetic spinel ferrite, were synthesized using the sol-gel auto-combustion method with three different fuels: citric acid, urea, and ethylene glycol. The crystal structures of the synthesized samples were analyzed using X-ray diffraction (XRD), and the growth of secondary phases like Fe2O3 and CuO for samples prepared with urea and ethylene glycol indicated the presence of impurities. Additionally, we observed that the particle size varied significantly with the type of fuel, being the smallest for citric acid and the largest for urea. The electrical and magnetic properties showed strong correlations with the particle size and the presence of impurities. In particular, the optical band gap values, derived from UV-Vis spectroscopy, varied significantly with the choice of fuel, ranging from 2.06 to 3.75 eV. The highest band gap of 3.75 eV was observed in samples synthesized with citric acid. Magnetic properties were measured using a vibrating sample magnetometer (VSM), and it was found that the copper ferrite synthesized with citric acid exhibited the highest values of magnetic saturation and coercivity. These findings demonstrate that the choice of fuel during the synthesis process has substantial impacts on the structural, optical, and magnetic properties of CuFe2O4 nanoparticles. Full article
Show Figures

Figure 1

21 pages, 3629 KiB  
Article
Removal of Radio and Stable Isotopes of Cobalt and Cesium from Contaminated Aqueous Solutions by Isatin-Derived Ligand
by Riyam N. Khalaf, Sattar S. Ibrahim, Zeinab A. El-Shafiey, Abeer A. Faheim and Hosam M. Saleh
AppliedChem 2025, 5(2), 8; https://doi.org/10.3390/appliedchem5020008 - 3 Apr 2025
Viewed by 301
Abstract
This study investigated the effectiveness of a ligand known as (2-Mercapyo-phenylimino)-1,3-dihydro-indol-2-one-based ligand, in removing stable/radioactive cesium and cobalt from contaminated wastewater. Several parameters, such as contact duration, temperature, adsorbent quantity, pH of the medium, and concentration of adsorbate, have been investigated as primary [...] Read more.
This study investigated the effectiveness of a ligand known as (2-Mercapyo-phenylimino)-1,3-dihydro-indol-2-one-based ligand, in removing stable/radioactive cesium and cobalt from contaminated wastewater. Several parameters, such as contact duration, temperature, adsorbent quantity, pH of the medium, and concentration of adsorbate, have been investigated as primary active parameters impacting the adsorption process. Regarding the stable isotopes, the concentrations of Co2+ and Cs+ were measured before and after the treatment processes using the Optical Emissions Spectroscopy with Inductively Coupled Plasma (ICP-OES) technique. Additionally, kinetic and equilibrium isotherm models were applied to understand the equilibrium data. Both Cs+ and Co2+ were ideally eliminated after 120 and 60 min, respectively. The optimal pH for Cs+ was 6.3, while that for Co2+ was 5. The results indicate that the adsorption process is endothermic for Co2+ and exothermic for Cs+. Three thermodynamic parameters (∆G°, ∆H°, and ∆S°) were calculated. The reported R2 values for the Freundlich and Langmuir models showed that the adsorption process for Cs+ and Co2+ always followed these isotherms, regardless of the temperature used. For Cs+, the maximum single-layer capacity (qmax) was 15.10 mg g−1, while for Co2+, it was 62.11 mg g−1. When the aqueous medium was spiked with both radioisotopes individually, the elimination of 60Co and 134Cs achieved maximum values of 99 and 86%, respectively, within 120 min. It can be concluded that the ligand effectively removed cobalt and cesium from wastewater, with higher adsorption for cobalt. Full article
Show Figures

Figure 1

15 pages, 2522 KiB  
Article
Use of Sorbitan to Extract Capsaicinoids and Bioactive Compounds: Condition Optimization Study
by Andrea de J. Campos-Badillo, Edén A. Luna-Zapién, Juan A. Ascacio-Valdés, Jolanta E. Marszalek, Rafael Minjares-Fuentes, Armando Quintero-Ramos and Jorge A. Meza-Velázquez
AppliedChem 2025, 5(2), 7; https://doi.org/10.3390/appliedchem5020007 - 24 Mar 2025
Viewed by 309
Abstract
Capsaicinoids obtained from lyophilized serrano chili by sorbitan monooleate solutions were investigated. Sorbitan monooleate was as effective as methanol in extracting capsaicin and dihydrocapsaicin (DHC). Subsequently, a Box–Behnken design was used to optimize capsaicin, DHC, and polyphenol extraction, as well as to evaluate [...] Read more.
Capsaicinoids obtained from lyophilized serrano chili by sorbitan monooleate solutions were investigated. Sorbitan monooleate was as effective as methanol in extracting capsaicin and dihydrocapsaicin (DHC). Subsequently, a Box–Behnken design was used to optimize capsaicin, DHC, and polyphenol extraction, as well as to evaluate the antioxidant capacity of dehydrated serrano chili. Particle size (PS) (20–60 mesh), processing temperature (55–75 °C), and sorbitan concentration (1.5–2.5%) were selected as independent variables. The statistical analysis showed that the quadratic models adequately describe the response of the concentration of capsaicin and DHC, but not with polyphenols and antioxidant capacity. The highest extraction of capsaicin (~620 mg/100 g dw) and DHC (~520 mg/100 g dw) was achieved with the combination of sorbitan at 2%, temperature at 65 °C, and PS from 40 mesh. Experimental and predicted values were closely consistent. Meanwhile, extracts with the highest antioxidant potential (~7510 and ~5820 µM of Trolox Eq/100 g dw for ABTS and FRAP, respectively) were those extracted in sorbitan and PS from 40 mesh. In contrast, the highest values of polyphenols (~171 mg gallic acid Eq/100 g dw) were found in the extracts prepared at 75 °C. These results suggest that sorbitan monooleate solutions can be an effective, non-toxic, and environmentally responsible way to obtain capsaicinoids and bioactive compounds from dehydrated serrano chili. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop