Next Issue
Volume 5, June
Previous Issue
Volume 4, December
 
 

AppliedChem, Volume 5, Issue 1 (March 2025) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
12 pages, 2627 KiB  
Article
Effects of Li Salt and Additive Content on the Electrochemical Performance of [C4C1mim]-Based Ionic Liquid Electrolytes
by Yayun Zheng, Wenbin Zhou, Kui Cheng and Zhengfei Chen
AppliedChem 2025, 5(1), 6; https://doi.org/10.3390/appliedchem5010006 - 6 Mar 2025
Viewed by 238
Abstract
Ionic liquids based on imidazolium cations have attracted attention due to their high safety and exceptional ionic conductivity. However, imidazole-based ionic liquids exhibit poor electrochemical stability due to the strong reactivity of hydrogen atoms at the C-2 position of imidazole cations. In this [...] Read more.
Ionic liquids based on imidazolium cations have attracted attention due to their high safety and exceptional ionic conductivity. However, imidazole-based ionic liquids exhibit poor electrochemical stability due to the strong reactivity of hydrogen atoms at the C-2 position of imidazole cations. In this work, an ionic liquid 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ([C4C1mim][TFSA]), characterized by a methyl-substituted C-2 position and a butyl chain, was investigated in various Li+ environments created by different lithium salt concentrations and fluoroethylene carbonate (FEC) additives. Both optimal Li+ concentrations and the addition of reasonable FEC enable the improvement of ionic conductivity to 3.32 mS cm−1 at 25 °C and a maximum electrochemical window of 5.21 V. The ionic liquid electrolyte Li[TFSA]-[C4C1mim][TFSA] at a molar ratio of 2:8 with 5 wt% FEC addition demonstrates excellent thermal stability. The corresponding Li/LiFePO4 cell exhibits a mitigated polarization growth (increasing from 0.12 V to 0.25 V over 10 cycles) with a high initial discharge capacity of 169.3 mAh g−1. Full article
Show Figures

Figure 1

13 pages, 3515 KiB  
Article
Mechanochemical-Activated Organomontmorillonite for Uranium Pollution Protection
by Iryna Kovalchuk, Iryna Farbun, Volodymyr Sydorchuk, Andrey Lakhnik and Olena Diyuk
AppliedChem 2025, 5(1), 5; https://doi.org/10.3390/appliedchem5010005 - 24 Feb 2025
Viewed by 245
Abstract
The modification of the layered silicate with a structural type 2:1 montmorillonite by the cationic surfactant hexadecyltrimethylammonium bromide was carried out. The obtained organomontmorillonite was milled for 2–25 min in a high-energy planetary ball mill. The structural and physicochemical characteristics of the modified [...] Read more.
The modification of the layered silicate with a structural type 2:1 montmorillonite by the cationic surfactant hexadecyltrimethylammonium bromide was carried out. The obtained organomontmorillonite was milled for 2–25 min in a high-energy planetary ball mill. The structural and physicochemical characteristics of the modified montmorillonite and the mechanochemically activated montmorillonite were investigated using various methods such as X-ray diffraction, thermal analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and determination of the specific surface area as well as the parameters of the porous structure by the low-temperature adsorption–desorption of nitrogen. The modification of montmorillonite with the quaternary ammonium salt led to a slowdown of deformation and subsequent amorphization of the montmorillonite structure during the high-energy milling. Mechanochemical activation of the modified montmorillonite increased its sorption capacity nine times, with the maximum uranium sorption achieved after mechanochemical treatment for 10 min. Full article
Show Figures

Figure 1

11 pages, 545 KiB  
Article
Improved Antioxidant Capacity by Block Cryoconcentration of Opuntia ficus-indica L. Mill (Green and Red) Juice
by Carlos Alberto Márquez-Montes, José Alberto Gallegos-Infante, Guillermo Rodrigo Petzold-Maldonado, Patricio Antonio Orellana-Palma, Rubén Francisco González-Laredo, Nuria Elizabeth Rocha-Guzmán and Martha Rocío Moreno-Jiménez
AppliedChem 2025, 5(1), 4; https://doi.org/10.3390/appliedchem5010004 - 19 Feb 2025
Viewed by 505
Abstract
The presence of bioactives in prickly pear has been documented, including flavonoids and betalains, which are compounds highly unstable to thermal processing. An alternative to the thermal processing of foods is the use of cryoconcentration. The objective of this work was to use [...] Read more.
The presence of bioactives in prickly pear has been documented, including flavonoids and betalains, which are compounds highly unstable to thermal processing. An alternative to the thermal processing of foods is the use of cryoconcentration. The objective of this work was to use cryoconcentration assisted by centrifugation to obtain prickly pear (Opuntia ficus-indica L. Mill) concentrate from two ecotypes (green and red) and evaluate their impact on the polyphenol profile and betalains. Prickly pear juice was obtained and cryoconcentrated. The process parameters of cryoconcentration were obtained. The highest solute yield (Y) was observed for red prickly pear juice (0.42 ± 0.03 kg solute × kg initial solute−1), but the efficiency (η) did not show differences between ecotypes (green 51.0 ± 7.0 vs. red 55.0 ± 7.0%), physicochemical parameters (pH, titratable acididty, °Bx), reducing sugars, or color. The highest total phenolic content (TPC) (1843 ± 153), total flavonoid content (TFC) (759 ± 17), betanin (801.6 ± 19), and indicaxanthin (453.7 ± 19) were observed in cryoconcentrated red prickly pear juice, while the antioxidant activity (ABTS, FRAP, and ORAC) was higher in cryoconcentrated green prickly pear juice (except ABTS). Betalains showed a high correlation with the ABTS antioxidant results, and the TPC showed a high correlation with the ORAC results. Cryoconcentration technology has a high potential to process prickly pear juice, preserving its bioactives. Full article
Show Figures

Figure 1

14 pages, 3935 KiB  
Article
Thermo-Mechanical Properties of Polypropylene Blends with Esterified Lignin
by Rogerio Ramos de Sousa Junior, Guilherme Elias Saltarelli Garcia, Manuel Patricio da Silva Bisneto, Laura Gouveia de Freitas, Tamiris Basan Hubmann, Túlio Morás Coutinho and Demetrio Jackson dos Santos
AppliedChem 2025, 5(1), 3; https://doi.org/10.3390/appliedchem5010003 - 20 Jan 2025
Viewed by 952
Abstract
Lignin, a renewable and widely available biopolymer, has been explored as an additive in polyolefins to develop high value-added materials. However, its low compatibility with polymers like polypropylene (PP) often causes poor particle dispersion and compromised mechanical properties. Esterification has proven effective in [...] Read more.
Lignin, a renewable and widely available biopolymer, has been explored as an additive in polyolefins to develop high value-added materials. However, its low compatibility with polymers like polypropylene (PP) often causes poor particle dispersion and compromised mechanical properties. Esterification has proven effective in enhancing lignin-polyolefin interactions. This study evaluated the incorporation of kraft lignin (KL) and maleic anhydride-modified kraft lignin (MAKL) into PP, focusing on lignin dispersion and the blends’ thermal, mechanical, and viscoelastic properties. Thermal analyses showed that MAKL reduced PP crystallinity, indicating improved compatibility, supported by micrographs showing more uniform particle dispersion. Mechanically, low MAKL concentrations maintained yield strength similar to neat PP, while 5 wt% MAKL increased impact strength by up to 148%. This improvement was attributed to enhanced interfacial interaction, reduced crystallinity, and better energy dissipation. The findings demonstrate that esterification of lignin with maleic anhydride effectively overcomes compatibility limitations with PP, leading to significant gains in mechanical and viscoelastic properties. This work advances lignin’s sustainable use in polymer blends, emphasizing its potential as a renewable alternative in material development. Full article
Show Figures

Figure 1

23 pages, 4152 KiB  
Article
Extraction of Carotenoids from Pumpkin (Cucurbita moschata) and Spinach (Spinacia oleracea) Using Environmentally Friendly Deep Eutectic Solvents (DESs)
by Koray Tanrıver, Mehmet Bilgin, Selin Şahin Sevgili, İrem Toprakçı Yüksel and Ebru Kurtulbaş Şahin
AppliedChem 2025, 5(1), 2; https://doi.org/10.3390/appliedchem5010002 - 9 Jan 2025
Viewed by 729
Abstract
The annually wasted amount of food has surpassed 1 billion metric tons. Food waste is considered as an important source for the recovery of bioactive compounds, such as carotenoids. There is a demand for antioxidants, nutraceuticals and natural colorants in various industries and [...] Read more.
The annually wasted amount of food has surpassed 1 billion metric tons. Food waste is considered as an important source for the recovery of bioactive compounds, such as carotenoids. There is a demand for antioxidants, nutraceuticals and natural colorants in various industries and carotenoids are one of the commonly used compounds that fit this description. Pumpkin and spinach waste, whose combined amount is over 2 million metric tons, contains bioactive compounds and these wasted foods could be utilized for the recovery of carotenoids. Carotenoids are hydrophobic molecules; therefore, commercial extraction processes often use highly non-polar solvents, and these are rarely environmentally friendly. The aim of this research was to develop effective extraction processes for carotenoids from pumpkin and spinach using environmentally friendly green chemicals. A series of deep eutectic solvents (DESs) composed with L-menthol and carboxylic aliphatic acids were made for the extraction of carotenoids from pumpkin (Cucurbita moschata) and spinach (Spinacia oleracea) via mechanical mixing–assisted extraction (MMAE) and homogenization-assisted extraction (HAE). Response surface methodology (RSM) and analysis of variance (ANOVA) were used to analyze the data and optimization. The DESs composed from L-menthol and propionic acid had the best effect on the extraction of total carotenoid content (TCC) (represented as β-carotene) from pumpkin and spinach via solutions with 1:2 and 1:4 molar ratios, respectively. The yield of carotenoid extraction is expressed in μg-β-carotene/g of pumpkin or spinach. Under the calculated optimum conditions, the yields are estimated to be 11.528 μg-β-carotene/g-pumpkin for the MMAE method, 8.966 μg-β-carotene/g-pumpkin for the HAE method, 16.924 μg-β-carotene/g-spinach for the MMAE method and 18.870 μg-β-carotene/g-spinach for the HAE method. Full article
Show Figures

Graphical abstract

26 pages, 6302 KiB  
Review
A Comparative Review on Biodegradation of Poly(Lactic Acid) in Soil, Compost, Water, and Wastewater Environments: Incorporating Mathematical Modeling Perspectives
by Narjess Hajilou, Seyed Sepehr Mostafayi, Alexander L. Yarin and Tolou Shokuhfar
AppliedChem 2025, 5(1), 1; https://doi.org/10.3390/appliedchem5010001 - 30 Dec 2024
Cited by 1 | Viewed by 1131
Abstract
As the demand for environmentally friendly materials continues to rise, poly(lactic acid) (PLA) has emerged as a promising alternative to traditional plastics. The present review offers a comprehensive analysis of the biodegradation behavior of PLA in diverse environmental settings, with a specific focus [...] Read more.
As the demand for environmentally friendly materials continues to rise, poly(lactic acid) (PLA) has emerged as a promising alternative to traditional plastics. The present review offers a comprehensive analysis of the biodegradation behavior of PLA in diverse environmental settings, with a specific focus on soil, compost, water, and wastewater environments. The review presents an in-depth comparison of the degradation pathways and kinetics of PLA from 1990 to 2024. As the presence of different microorganisms in diverse environments can affect the mechanism and rate of biodegradation, it should be considered with comprehensive comparisons. It is shown that the mechanism of PLA biodegradation in soil and compost is that of enzymatic degradation, while the dominant mechanisms of degradation in water and wastewater are hydrolysis and biofilm formation, respectively. PLA reveals a sequence of biodegradation rates, with compost showing the fastest degradation, followed by soil, wastewater, accelerated landfill environments, and water environments, in descending order. In addition, mathematical models of PLA degradation were reviewed here. Ultimately, the review contributes to a broader understanding of the ecological impact of PLA, facilitating informed decision-making toward a more sustainable future. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop