Temperature and Nutrient Effects on Organic Exudate Production in Lingulaulax polyedra (Stein) Head et al., 2024 Cultures
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiments with Monoclonal Cultures of Lingulaulax polyedra
2.2. Determination of Exuded Material (TEP, POC, and PON)
2.3. Statistical Data Analysis
3. Results
3.1. Temperature and Nutrients (NO3, PO4) Effects on the Growth of L. polyedra Cultures
3.2. Effects of Temperature and Nutrients (NO3, PO4) on the Production of TEP, POC, PON, per Liter
3.2.1. Effect of Temperature and Nutrients (NO3, PO4) on TEP Production
3.2.2. Effect of Temperature and Nutrients (NO3, PO4) on POC Production
3.2.3. Effect of Temperature and Nutrients (NO3, PO4) on PON Production
3.2.4. SIMPER, and PERMANOVA Analysis of the Temperature and Nutrient (NO3, PO4) Treatments
3.3. Comparison of TEP, POC, and PON Concentrations per Cell in L. polyedra Cultures
3.3.1. Concentrations of TEP per Cell
3.3.2. Comparison of POC Concentrations per Cell
3.3.3. Comparison of PON Concentrations per Cell
3.3.4. SIMPER, and PERMANOVA Analysis of Temperature and Nutrient (NO3, PO4) Treatments in per Cell Calculations
3.4. POC:PON Ratio
4. Discussion
4.1. Effects of Temperature and Nutrients on the Cultures of L. polyedra
4.2. Effect of Temperature and Nutrients (NO3, PO4) on TEP Production
4.3. Effect of Temperature and Nutrients (NO3, PO4) on POC Production
4.4. POC:PON Ratio
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LN | Low nutrient |
HN | High nutrient |
TEP | Transparent Exopolymer Particles |
POC | Particulate Organic Carbon |
PON | Particulate Organic Nitrogen |
ANOVA | Analysis of Variance |
PERMANOVA | Permutational Multivariate Analysis of Variance |
SIMPER | Similarity Percentage |
HABs | Harmful Algal Blooms |
Appendix A
Component | Quantity Used | Notes/Stock Solution |
---|---|---|
Main F2 Medium components | ||
NaNO3 | 1 mL | Stock solution: 75 g · L−1 dH2O |
NaH2PO4 · H2O | 1 mL | Stock solution: 5 g · L−1 dH2O |
Na2SiO3 · 9H2O | 1 mL | Stock solution: 30 g · L−1 dH2O |
Trace Metals Solution | 1 mL | See detailed components below |
Vitamins Solution | 0.5 mL | See detailed components below |
Trace metals solution components | Dissolve in 950 mL dH2O, bring to 1 L. | |
FeCl3 · 6H2O | 3.15 g | |
Na2EDTA · 2H2O | 4.36 g | |
MnCl2 · 4H2O | 1 mL | Stock solution: 180.0 g · L−1 dH2O |
ZnSO4 · 7H2O | 1 mL | Stock solution: 22.0 g · L−1 dH2O |
CoCl2 · 6H2O | 1 mL | Stock solution: 10.0 g · L−1 dH2O |
CuSO4 · 5H2O | 1 mL | Stock solution: 9.8 g · L−1 dH2O |
Na2MoO4 · 2H2O | 1 mL | Stock solution: 6.3 g · L−1 dH2O |
Vitamins solution components | Dissolve in 950 mL dH2O, add 1 mL of primary stocks, bring to 1 L. Filter-sterilize and store frozen. | |
Thiamine · HCl (vitamin B1) | 200 mg | |
Biotin (vitamin H) | 1 mL | Stock solution: 1.0 g · L−1 dH2O |
Cyanocobalamin (vitamin B12) | 1 mL | Stock solution: 1.0 g · L−1 dH2O |
References
- Long, R.A.; Azam, F. Abundant protein-containing particles in the sea. Aquat. Microb. Ecol. 1996, 10, 213–221. [Google Scholar] [CrossRef]
- Passow, U. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 2002, 55, 287–333. [Google Scholar] [CrossRef]
- Engel, A.; Endres, S.; Galgani, L.; Schartau, M. Marvelous marine microgels: On the distribution and impact of gel-like particles in the oceanic water-column. Front. Mar. Sci. 2020, 7, 405. [Google Scholar] [CrossRef]
- Nagata, T.; Yamada, Y.; Fukuda, H. Transparent exopolymer particles in deep oceans: Synthesis and future challenges. Gels 2021, 7, 75. [Google Scholar] [CrossRef]
- Verdugo, P. Marine biopolymer dynamics, gel formation, and carbon cycling in the ocean. Gels 2021, 7, 136. [Google Scholar] [CrossRef]
- Alvarado-Quiroz, N.G.; Hung, C.C.; Santschi, P.H. Binding of thorium (IV) to carboxylate, phosphate and sulfate functional groups from marine exopolymeric substances (EPS). Mar. Chem. 2006, 100, 337–353. [Google Scholar] [CrossRef]
- Decho, A.W.; Gutierrez, T. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front. Microbiol. 2017, 8, 922. [Google Scholar] [CrossRef] [PubMed]
- Ho, Q.N.; Fettweis, M.; Spencer, K.L.; Lee, B.J. Flocculation with heterogeneous composition in water environments: A review. Water Res. 2022, 213, 118147. [Google Scholar] [CrossRef] [PubMed]
- Thornton, D.C. Coomassie stainable particles (CSP): Protein containing exopolymer particles in the ocean. Front. Mar. Sci. 2018, 5, 206. [Google Scholar] [CrossRef]
- Taylor, F.J.R. The Biology of Dinoflagellates (Botanical Monographs, Volume 21); Blackwell Scientific Publications: Oxford, UK, 1987; 785p. [Google Scholar]
- Fensome, R.A.; Taylor, F.J.R.; Norris, G.; Sarjeant, W.A.S.; Wharton, D.I.; Williams, G.L. A classification of living and fossil dinoflagellates. Micropaleontol. Spec. Publ. 1993, 7, 351. [Google Scholar]
- Stoecker, D.K. Mixotrophy among dinoflagellates 1. J. Eukaryot. Microbiol. 1999, 46, 397–401. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. Harmful algal blooms: A global overview. In Manual on Harmful Marine Microalgae; UNESCO Publishing: Paris, France, 2003; pp. 1–22. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000131711 (accessed on 1 June 2025).
- Sournia, A.; Chrdtiennot-Dinet, M.J.; Ricard, M. Marine phytoplankton: How many species in the world ocean? J. Plankton Res. 1991, 13, 1093–1099. [Google Scholar] [CrossRef]
- Simon, N.; Cras, A.L.; Foulon, E.; Lemée, R. Diversity and evolution of marine phytoplankton. C. R. Biol. 2009, 332, 159–170. [Google Scholar] [CrossRef]
- MacKenzie, L.; Sims, I.; Beuzenberg, V.; Gillespie, P. Mass accumulation of mucilage caused by dinoflagellate polysaccharide exudates in Tasman Bay, New Zealand. Harmful Algae 2002, 1, 69–83. [Google Scholar] [CrossRef]
- Roux, P.; Siano, R.; Collin, K.; Bilien, G.; Sinquin, C.; Marchand, L.; Zykwinska, A.; Delbarre-Ladrat, C.; Schapira, M. Bacteria enhance the production of extracellular polymeric substances by the green dinoflagellate Lepidodinium chlorophorum. Sci. Rep. 2021, 11, 4795. [Google Scholar] [CrossRef]
- Ai, X.-X.; Liang, J.-R.; Gao, Y.-H.; Lo, S.C.-L.; Lee, F.W.-F.; Chen, C.-P.; Luo, C.-S.; Du, C. MALDI-TOF MS analysis of the extracellular polysaccharides released by the diatom Thalassiosira pseudonana under various nutrient conditions. J. Appl. Phycol. 2015, 27, 673–684. [Google Scholar] [CrossRef]
- Aslam, S.N.; Strauss, J.; Thomas, D.N.; Mock, T.; Underwood, G.J. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice. ISME J. 2018, 12, 1237–1251. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, P.; Wang, X.; Xu, Y.; Paerl, H.W. Cyanobacteria in eutrophic waters benefit from rising atmospheric CO2 concentrations. Sci. Total Environ. 2019, 691, 1144–1154. [Google Scholar] [CrossRef]
- Moerdijk-Poortvliet, T.C.; Beauchard, O.; Stal, L.J.; Boschker, H.T. Production and consumption of extracellular polymeric substances in an intertidal diatom mat. Mar. Ecol. Prog. Ser. 2018, 592, 77–95. [Google Scholar] [CrossRef]
- Guo, K.; Chen, J.; Yuan, J.; Wang, X.; Xu, S.; Hou, S.; Wang, Y. Effects of temperature on transparent exopolymer particle production and organic carbon allocation of four marine phytoplankton species. Biology 2022, 11, 1056. [Google Scholar] [CrossRef]
- Gong, W.; Browne, J.; Hall, N.; Schruth, D.; Paerl, H.; Marchetti, A. Molecular insights into a dinoflagellate bloom. ISME J. 2017, 11, 439–452. [Google Scholar] [CrossRef]
- Claquin, P.; Probert, I.; Lefebvre, S.; Veron, B. Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat. Microb. Ecol. 2008, 51, 1–11. [Google Scholar] [CrossRef]
- Busch, M.; Caron, D.; Moorthi, S. Growth and grazing control of the dinoflagellate Lingulodininium polyedrum in a natural plankton community. Mar. Ecol. Prog. Ser. 2019, 611, 45–58. [Google Scholar] [CrossRef]
- Domingues, R.B.; Lima, M.J. Unusual red tide of the dinoflagellate Lingulodinium polyedra during an upwelling event off the Algarve coast (SW Iberia). Reg. Stud. Mar. Sci. 2023, 63, 102998. [Google Scholar] [CrossRef]
- Granados-Guzmán, A.; Hidalgo-González, R.M.; Álvarez-Borrego, S. Variabilidad Temporal de la Temperatura en las islas de Todos Santos y San Jerónimo, Baja California, Durante Mayo 1992 a Marzo de 1993; Informe Técnico CTECT9501; Comunicaciones Académicas, Serie Ecología; CICESE: Ensenada, Mexico, 1995; 24p. [Google Scholar]
- Guillard, R.R.; Ryther, J.H. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Guillard, R.R.L. Culture of phytoplankton for feeding marine invertebrate animals. In Culture of Marine Invertebrates—Selected Readings; Berg, C.J., Jr., Ed.; Hutchinson Ross: Stroudsberg, PA, USA, 1983; pp. 108–132. [Google Scholar]
- Tillmann, U.; Bantle, A.; Krock, B.; Elbrächter, M.; Gottschling, M. Recommendations for epitypification of dinophytes exemplified by Lingulodinium polyedra and molecular phylogenetics of the Gonyaulacales based on curated rRNA sequence data. Harmful Algae 2021, 104, 101956. [Google Scholar] [CrossRef]
- Head, M.J.; Mertens, K.N.; Fensome, R.A. Dual nomenclature in organic-walled dinoflagellate cysts I: Concepts, methods and applications. Palynology 2024, 48, 2290200. [Google Scholar] [CrossRef]
- Peña-Manjarrez, J.L.; Helenes, J.; Gaxiola-Castro, G.; Orellana-Cepeda, E. Dinoflagellate cysts and bloom events at todos Santos Bay, Baja California, México, 1999–2000. Cont. Shelf Res. 2005, 25, 1375–1393. [Google Scholar] [CrossRef]
- Peña-Manjarrez, J.L.; Gaxiola-Castro, G.; Helenes-Escamilla, J. Environmental factors influencing the variability of Lingulodinium polyedrum and Scrippsiella trochoidea (Dinophyceae) cyst production. Cienc. Mar. 2009, 35, 1–14. [Google Scholar] [CrossRef]
- Guillard, R.R.L. Division rates. In Culture Methods and Growth Measurements. Handbook of Phycological Methods; Stein, J.R., Ed.; Cambridge University Press: Cambridge, UK, 1973; pp. 289–313. [Google Scholar]
- Villacorte, L.O.; Ekowati, Y.; Calix-Ponce, H.N.; Schippers, J.C.; Amy, G.L.; Kennedy, M.D. Improved method for measuring transparent exopolymer particles (TEP) and their precursors in fresh and saline water. Water Res. 2015, 70, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Bittar, T.B.; Passow, U.; Hamaraty, L.; Bidle, K.D.; Harvey, E.L. An updated method for the calibration of transparent exopolymer particle measurements. Limnol. Oceanogr. Methods 2018, 16, 621–628. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple comparisons using rank sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 4. Available online: https://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 1 June 2025).
- Prego, R.; Bao, R.; Varela, M.; Carballeira, R. Naturally and Anthropogenically Induced Lingulodinium polyedra Dinoflagellate Red Tides in the Galician Rias (NW Iberian Peninsula). Toxins 2024, 16, 280. [Google Scholar] [CrossRef]
- Roy, S.; Letourneau, L.; Morse, D. Cold-Induced Cysts of the Photosynthetic Dinoflagellate Lingulodinium polyedrum Have an Arrested Circadian Bioluminescence Rhythm and Lower Levels of Protein Phosphorylation. Plant Physiol. 2014, 164, 966–977. [Google Scholar] [CrossRef]
- Barbosa, M.; Costa, P.; David, H.; Lage, S.; Amorim, A. Effect of temperature on growth and yessotoxin production of Protoceratium reticulatum and Lingulodinium polyedra (Dinophyceae) isolates from the Portuguese coast (NE Atlantic). Mar. Environ. Res. 2024, 194, 106321. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, A.M.; Hillebrand, H.; Lengfellner, K.; Sommer, U. Temperature effects on phytoplankton diversity—The zooplankton link. J. Sea Res. 2014, 85, 359–364. [Google Scholar] [CrossRef]
- Figueroa, R.I.; Bravo, I. Sexual reproduction and two different encystment strategies of Lingulodinium polyedrum (Dinophyceae) in culture. J. Phycol. 2005, 41, 370–379. [Google Scholar] [CrossRef]
- Padfield, D.; Yvon-Durocher, G.; Buckling, A.; Jennings, S.; Yvon-Durocher, G. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol. Lett. 2016, 19, 133–142. [Google Scholar] [CrossRef]
- Beng, K.C.; Cerbin, S.; Monaghan, M.T.; Wolinska, J. Long-term effects of surface-water temperature increase on plankton communities in artificially heated lakes: Insights from eDNA metabarcoding. Authorea Prepr. 2023. [Google Scholar] [CrossRef]
- Ortega-Retuerta, E.; Marrasé, C.; Muñoz-Fernández, A.; Sala, M.M.; Simó, R.; Gasol, J.M. Seasonal dynamics of transparent exopolymer particles (TEP) and their drivers in the coastal NW Mediterranean Sea. Sci. Total Environ. 2018, 631, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Passow, U. Production of transparent exopolymer particles (TEP) by phyto-and bacterioplankton. Mar. Ecol. Prog. Ser. 2002, 236, 1–12. [Google Scholar] [CrossRef]
- Wood, A.M.; Van Valen, L.M. Paradox lost? On the release of energy rich compounds by phytoplankton. Mar. Microb. Food Webs 1990, 4, 103–116. [Google Scholar]
- Underwood, G.J.; Boulcott, M.; Raines, C.A.; Waldron, K. Environmental effects on exopolymer production by marine benthic diatoms: Dynamics, changes in composition, and pathways of production 1. J. Phycol. 2004, 40, 293–304. [Google Scholar] [CrossRef]
- Chen, J.; Guo, K.; Thornton, D.; Wu, Y. Effect of temperature on the release of transparent exopolymer particles (TEP) and aggregation by marine diatoms (Thalassiosira weissflogii and Skeletonema marinoi). J. Ocean Univ. China 2021, 20, 56–66. [Google Scholar] [CrossRef]
- Borchard, C.; Engel, A. Organic matter exudation by Emiliania huxleyi under simulated future ocean conditions. Biogeosciences 2012, 9, 3405–3423. [Google Scholar] [CrossRef]
- Dagenais-Bellefeuille, S.; Morse, D. Putting the N in dinoflagellates. Front. Microbiol. 2013, 4, 369. [Google Scholar] [CrossRef] [PubMed]
- Zamanillo, M.; Ortega-Retuerta, E.; Nunes, S.; Estrada, M.; Sala, M.; Royer, S.; López-Sandoval, D.; Emelianov, M.; Vaqué, D.; Marrasé, C.; et al. Distribution of transparent exopolymer particles (TEP) in distinct regions of the Southern Ocean. Sci. Total Environ. 2019, 691, 736–748. [Google Scholar] [CrossRef]
- Wurl, O.; Miller, L.; Vagle, S. Production and fate of transparent exopolymer particles in the ocean. J. Geophys. Res. Oceans 2011, 116. [Google Scholar] [CrossRef]
- Callieri, C.; Sathicq, M.; Cabello-Yeves, P.; Eckert, E.; Hernández-Avilés, J. TEP production under oxidative stress of the picocyanobacterium Synechococcus. J. Limnol. 2019, 78, 271–283. [Google Scholar] [CrossRef]
- Bar-Zeev, E.; Passow, U.; Castrillon, S.; Elimelech, M. Transparent exopolymer particles: From aquatic environments and engineered systems to membrane biofouling. Environ. Sci. Technol. 2015, 49, 691–707. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Retuerta, E.; Sala, M.; Borrull, E.; Mestre, M.; Aparicio, F.; Gallisai, R.; Antequera, C.; Marrasé, C.; Peters, F.; Simó, R.; et al. Horizontal and vertical distributions of transparent exopolymer particles (TEP) in the NW Mediterranean Sea are linked to chlorophyll a and O2 variability. Front. Microbiol. 2017, 7, 2159. [Google Scholar] [CrossRef]
- Villacorte, L.O. Algal Blooms and Membrane Based Desalination Technology; IHE Delft Institute for Water Education: Delft, The Netherlands, 2014; 306p. [Google Scholar]
- López-Sandoval, D.C.; Rodríguez-Ramos, T.; Cermeño, P.; Marañón, E. Exudation of organic carbon by marine phytoplankton: Dependence on taxon and cell size. Mar. Ecol. Prog. Ser. 2013, 477, 53–60. [Google Scholar] [CrossRef]
- López-Sandoval, D.C.; Rodríguez-Ramos, T.; Cermeño, P.; Sobrino, C.; Marañón, E. Photosynthesis and respiration in marine phytoplankton: Relationship with cell size, taxonomic affiliation, and growth phase. J. Exp. Mar. Biol. Ecol. 2014, 457, 151–159. [Google Scholar] [CrossRef]
- Martinez-Mercado, M.; Cembella, A.; Sánchez-Castrejón, E.; Saavedra-Flores, A.; Galindo-Sánchez, C.; Durán-Riveroll, L. Functional diversity of bacterial microbiota associated with the toxigenic benthic dinoflagellate Prorocentrum. PLoS ONE 2024, 19, e0306108. [Google Scholar] [CrossRef]
- Sanchez-Garcia, S.; Wang, H.; Wagner-Döbler, I. The microbiome of the dinoflagellate Prorocentrum cordatum in laboratory culture and its changes at higher temperatures. Front. Microbiol. 2022, 13, 952238. [Google Scholar] [CrossRef]
- Zhu, W.; Gao, H.; Ge, Y.; Dai, J.; Yang, X.; Zhang, X.; Yang, Q. Alexandriicola marinus gen. nov.; sp. nov.; a new member of the family Rhodobacteraceae isolated from marine phycosphere. Antonie Van Leeuwenhoek 2022, 115, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Isaac, A.; Francis, B.; Amann, R.; Amin, S. Tight adherence (Tad) pilus genes indicate putative niche differentiation in phytoplankton bloom associated Rhodobacterales. Front. Microbiol. 2021, 12, 718297. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, M.; Chen, Y.; Tong, J.; Wang, L.; Xu, Y.; Hu, Z.; Chen, H. Epibiotic bacterial community composition in red-tide dinoflagellate Akashiwo sanguinea culture under various growth conditions. FEMS Microbiol. Ecol. 2019, 95, fiz057. [Google Scholar] [CrossRef]
- Zecher, K.; Hayes, K.; Philipp, B. Evidence of interdomain ammonium cross-feeding from methylamine-and glycine betaine-degrading Rhodobacteraceae to diatoms as a widespread interaction in the marine phycosphere. Front. Microbiol. 2020, 11, 533894. [Google Scholar] [CrossRef]
- Hold, G.L.; Smith, E.A.; Rappë, M.S.; Maas, E.W.; Moore, E.R.; Stroempl, C.; Stephen, J.R.; Prosser, J.I.; Birkbeck, T.; Gallacher, S. Characterization of bacterial communities associated with toxic and non-toxic dinoflagellates: Alexandrium spp. and Scrippsiella trochoidea. FEMS Microbiol. Ecol. 2001, 37, 161–173. [Google Scholar] [CrossRef]
- Osbeck, C.; Lundin, D.; Karlsson, C.; Teikari, J.; Moran, M.; Pinhassi, J. Divergent gene expression responses in two Baltic Sea heterotrophic model bacteria to dinoflagellate dissolved organic matter. PLoS ONE 2022, 17, e0243406. [Google Scholar] [CrossRef]
- Lee, M.; Yang, S.; Kim, Y.; Park, Y.; Park, M.; Kwon, K. Genome-based classification and phylogenetic revision of the family Colwelliaceae with proposals for new genera and species. Front. Ecol. Evol. 2025, 13, 1532186. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, Y.; Cheng, P.; Peng, Y.; Blom, J.; Xue, Q. Whole genome analysis calls for a taxonomic rearrangement of the genus Colwellia. Antonie Van Leeuwenhoek 2020, 113, 919–931. [Google Scholar] [CrossRef]
- Bowman, J.P. The family colwelliaceae. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2014; pp. 179–195. [Google Scholar]
- Guidi, F.; Pezzolesi, L.; Vanucci, S. Microbial dynamics during harmful dinoflagellate Ostreopsis cf. ovata growth: Bacterial succession and viral abundance pattern. MicrobiologyOpen 2018, 7, e00584. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Gao, P.; Li, Y.; Wang, C.; Ding, N.; Chen, J.; Song, Y.; Liu, C.; Song, L.; Wang, R. Microbial community coexisting with harmful alga Karenia mikimotoi and microbial control of algal bloom in laboratory. J. Oceanol. Limnol. 2022, 40, 1027–1038. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, B.; Sun, D.; Liu, W.; Sun, X.; Duan, S. The effect of protocatechuic acid on the phycosphere in harmful algal bloom species Scrippsiella trochoidea. Aquat. Toxicol. 2020, 227, 105591. [Google Scholar] [CrossRef]
- Dagenais-Bellefeuille, S.D. Nitrate Metabolism in the Dinoflagellate Lingulodinium Polyedrum. Ph.D. Thesis, Faculté des Arts et Sciences, Université de Montréal, Montreal, QC, Canada, 2015; p. 215. Available online: http://hdl.handle.net/1866/15897 (accessed on 1 June 2025).
- Dagenais-Bellefeuille, S.; Dorion, S.; Rivoal, J.; Morse, D. The dinoflagellate Lingulodinium polyedrum responds to N depletion by a polarized deposition of starch and lipid bodies. PLoS ONE 2014, 9, e111067. [Google Scholar] [CrossRef]
- Leong, S.C.Y.; Maekawa, M.; Taguchi, S. Carbon and nitrogen acquisition by the toxic dinoflagellate Alexandrium tamarense in response to different nitrogen sources and supply modes. Harmful Algae 2010, 9, 48–58. [Google Scholar] [CrossRef]
- Beauvais, S.; Pedrotti, M.L.; Egge, J.; Iversen, K.; Marrasé, C. Effects of turbulence on TEP dynamics under contrasting nutrient conditions: Implications for aggregation and sedimentation processes. Mar. Ecol. Prog. Ser. 2006, 323, 47–57. [Google Scholar] [CrossRef]
- Saba, G.K.; Steinberg, D.K.; Bronk, D.A.; Place, A.R. The effects of harmful algal species and food concentration on zooplankton grazer production of dissolved organic matter and inorganic nutrients. Harmful Algae 2011, 10, 291–303. [Google Scholar] [CrossRef]
- Chen, M.; Bi, R.; Chen, X.; Ding, Y.; Zhang, H.; Li, L.; Zhao, M. Stoichiometric and sterol responses of dinoflagellates to changes in temperature, nutrient supply and growth phase. Algal Res. 2019, 42, 101609. [Google Scholar] [CrossRef]
- Eberlein, T.; Van de Waal, D.B.; Brandenburg, K.M.; John, U.; Voss, M.; Achterberg, E.P.; Rost, B. Interactive effects of ocean acidification and nitrogen limitation on two bloom-forming dinoflagellate species. Mar. Ecol. Prog. Ser. 2016, 543, 127–140. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, B.; Zhou, Y.; Ma, X.; Liu, T.; Xu, H.; Xie, Z.; Liu, K.; Wang, D.; Xia, X. Multi-omics profiling reveals resource allocation and acclimation strategies to temperature changes in a marine dinoflagellate. Appl. Environ. Microbiol. 2022, 88, e01213-22. [Google Scholar] [CrossRef] [PubMed]
T °C | NO3 gL−1 | PO4 gL−1 |
---|---|---|
17-LN | 0.075 | 0.005 |
17-HN | 0.15 | 0.01 |
20-LN | 0.075 | 0.005 |
20-HN | 0.15 | 0.01 |
25-LN | 0.075 | 0.005 |
25-HN | 0.15 | 0.01 |
LN | HN | |
---|---|---|
25 °C | 0.45 d−1 | 0.43 d−1 |
20 °C | 0.37 d−1 | 0.38 d−1 |
17 °C | 0.42 d−1 | 0.41 d−1 |
μg-XG L−1 | mg POC L−1 | mg PON L−1 | Cell mL−1 | |
---|---|---|---|---|
17 °C LN | 379 ± 4.87 | 429 ± 75.82 | 33 ± 4.19 | 9283 ± 556 |
17 °C HN | 331 ± 14.51 | 396 ± 32.69 | 48 ± 3.41 | 8670 ± 306 |
20 °C LN | 492 ± 12.37 | 476 ± 36.61 | 50 ± 4.76 | 7920 ± 486 |
20 °C HN | 422 ± 1.66 | 449 ± 3.93 | 60 ± 3.18 | 7766 ± 143 |
25 °C LN | 592 ± 11.83 | 434 ± 6.14 | 49 ± 0.39 | 14,040 ± 85 |
25 °C HN | 362 ± 4.55 | 248 ± 11.46 | 40 ± 1.44 | 11,000 ± 158 |
μg-XG Cell | mg POC Cell | mg PON Cell | |
---|---|---|---|
17 °C LN | 0.041 ± 0.002 | 0.046 ± 0.005 | 0.0036 ± 0.0003 |
17 °C HN | 0.010 ± 0.005 | 0.044 ± 0.001 | 0.0056 ± 0.0001 |
20 °C LN | 0.040 ± 0.002 | 0.068 ± 0.003 | 0.0094 ± 0.0004 |
20 °C HN | 0.062 ± 0.001 | 0.059 ± 0.001 | 0.0083 ± 0.0004 |
25 °C LN | 0.050 ± 0.002 | 0.035 ± 0.001 | 0.0040 ± 0.0001 |
25 °C HN | 0.033 ± 0.000 | 0.022 ± 0.001 | 0.0036 ± 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañeda-Quezada, R.; Ruiz-de la Torre, M.C.; Samperio-Ramos, G.; García-Mendoza, E.; Matus-Hernández, M. Temperature and Nutrient Effects on Organic Exudate Production in Lingulaulax polyedra (Stein) Head et al., 2024 Cultures. Phycology 2025, 5, 42. https://doi.org/10.3390/phycology5030042
Castañeda-Quezada R, Ruiz-de la Torre MC, Samperio-Ramos G, García-Mendoza E, Matus-Hernández M. Temperature and Nutrient Effects on Organic Exudate Production in Lingulaulax polyedra (Stein) Head et al., 2024 Cultures. Phycology. 2025; 5(3):42. https://doi.org/10.3390/phycology5030042
Chicago/Turabian StyleCastañeda-Quezada, Rigel, Mary Carmen Ruiz-de la Torre, Guillermo Samperio-Ramos, Ernesto García-Mendoza, and Miguel Matus-Hernández. 2025. "Temperature and Nutrient Effects on Organic Exudate Production in Lingulaulax polyedra (Stein) Head et al., 2024 Cultures" Phycology 5, no. 3: 42. https://doi.org/10.3390/phycology5030042
APA StyleCastañeda-Quezada, R., Ruiz-de la Torre, M. C., Samperio-Ramos, G., García-Mendoza, E., & Matus-Hernández, M. (2025). Temperature and Nutrient Effects on Organic Exudate Production in Lingulaulax polyedra (Stein) Head et al., 2024 Cultures. Phycology, 5(3), 42. https://doi.org/10.3390/phycology5030042