Evaluation of the Occurrence of Multi-Mycotoxins in the Diet of Beef Cattle Feedlots in Brazil
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Property Selection
2.2. Experimental Design
2.3. Sampling
2.4. Reagents
2.5. Total Diet Extraction Procedure
2.6. Instrumentation
2.7. Results Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, S.Z. Mycotoxins in Food, Recent Development in Food Analysis and Future Challenges; a Review. Curr. Opin. Food Sci. 2021, 42, 237–247. [Google Scholar] [CrossRef]
- Gonçalves, B.L.; Rosim, R.E.; de Oliveira, C.A.F.; Corassin, C.H. The in Vitro Ability of Different Saccharomyces Cerevisiae—Based Products to Bind Aflatoxin B1. Food Control 2015, 47, 298–300. [Google Scholar] [CrossRef]
- Bovo, F.; Corassin, C.H.; Rosim, R.E.; de Oliveira, C.A.F. Efficiency of Lactic Acid Bacteria Strains for Decontamination of Aflatoxin M1 in Phosphate Buffer Saline Solution and in Skimmed Milk. Food Bioprocess Technol. 2013, 6, 2230–2234. [Google Scholar] [CrossRef]
- Fink-Gremmels, J. The Role of Mycotoxins in the Health and Performance of Dairy Cows. Vet. J. 2008, 176, 84–92. [Google Scholar] [CrossRef]
- Hajslova, J.; Zachariasova, M.; Cajka, T. Analysis of Multiple Mycotoxins in Food. Methods Mol. Biol. 2011, 747, 233–258. [Google Scholar] [PubMed]
- Paterson, R.R.M.; Lima, N.; Taniwaki, M.H. Coffee, Mycotoxins and Climate Change. Food Res. Int. 2014, 61, 1–15. [Google Scholar] [CrossRef]
- Boudergue, C.; Burel, C.; Dragacci, S.; Favrot, M.; Fremy, J.; Massimi, C.; Prigent, P.; Debongnie, P.; Pussemier, L.; Boudra, H.; et al. Review of Mycotoxin—Detoxifying Agents Used as Feed Additives: Mode of Action, Efficacy and Feed/Food Safety. EFSA Support. Publ. 2009, 6, 22E. [Google Scholar] [CrossRef]
- Alonso, V.A.; Pereyra, C.M.; Keller, L.A.M.; Dalcero, A.M.; Rosa, C.A.R.; Chiacchiera, S.M.; Cavaglieri, L.R. Fungi and Mycotoxins in Silage: An Overview. J. Appl. Microbiol. 2013, 115, 637–643. [Google Scholar] [CrossRef]
- McAllister, T.A.; Stanford, K.; Chaves, A.V.; Evans, P.R.; Eustaquio de Souza Figueiredo, E.; Ribeiro, G. Nutrition, Feeding and Management of Beef Cattle in Intensive and Extensive Production Systems. Anim. Agric. 2020, 1, 75–98. [Google Scholar]
- ABIEC Beef Report 2024—Perfil da Pecuária no Brasil. Available online: https://www.abiec.com.br/publicacoes/beef-report-2024-perfil-da-pecuaria-no-brasil/ (accessed on 14 January 2025).
- McManus, C.; Barcellos, J.O.J.; Formenton, B.K.; Hermuche, P.M.; De Carvalho, O.A.; Guimarães, R.; Gianezini, M.; Dias, E.A.; Do Nascimento Lampert, V.; Zago, D.; et al. Dynamics of Cattle Production in Brazil. PLoS ONE 2016, 11, e0147138. [Google Scholar] [CrossRef]
- Sulyok, M.; Krska, R.; Schuhmacher, R. A Liquid Chromatography/Tandem Mass Spectrometric Multi-Mycotoxin Method for the Quantification of 87 Analytes and Its Application to Semi-Quantitative Screening of Moldy Food Samples. Anal. Bioanal. Chem. 2007, 389, 1505–1523. [Google Scholar] [CrossRef]
- Franco, L.T.; Petta, T.; Rottinghaus, G.E.; Bordin, K.; Gomes, G.A.; Oliveira, C.A.F. Co-Occurrence of Mycotoxins in Maize Food and Maize-Based Feed from Small-Scale Farms in Brazil: A Pilot Study. Mycotoxin Res. 2019, 35, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Condotta, I.C.F.S.; Musgrave, J.A.; Brown-Brandl, T.M.; Mulliniks, J.T. Estimating Body Weight and Body Condition Score of Mature Beef Cows Using Depth Images. Transl. Anim. Sci. 2023, 7, txad085. [Google Scholar] [CrossRef]
- Cheli, F.; Pinotti, L.; Rossi, L.; Dell’Orto, V. Effect of Milling Procedures on Mycotoxin Distribution in Wheat Fractions: A Review. LWT Food Sci. Technol. 2013, 54, 307–314. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Martinez-Tuppia, C.; Queiroz, O.C.M.; Jiang, Y.; Drouin, P.; Wu, F.; Vyas, D.; Adesogan, A.T. Silage Review: Mycotoxins in Silage: Occurrence, Effects, Prevention, and Mitigation. J. Dairy Sci. 2018, 101, 4034–4059. [Google Scholar] [CrossRef] [PubMed]
- Sartori, A.F.; Reis, E.M.; Casa, R.T. Quantificação Da Transmissão de Fusarium Moniliforme de Sementes Para Plântulas de Milho. Fitopatol. Bras. 2004, 29, 456–458. [Google Scholar] [CrossRef]
- Leite, M.; Freitas, A.; Silva, A.S.; Barbosa, J.; Ramos, F. Maize Food Chain and Mycotoxins: A Review on Occurrence Studies. Trends Food Sci. Technol. 2021, 115, 307–331. [Google Scholar]
- Silvestre, A.M.; Millen, D.D. The 2019 Brazilian Survey on Nutritional Practices Provided by Feedlot Cattle Consulting Nutritionists. Rev. Bras. Zootec. 2021, 50, e20200189. [Google Scholar] [CrossRef]
- Custódio, L.; Prados, L.F.; Yiannikouris, A.; Holder, V.; Pettigrew, J.; Kuritza, L.; de Resende, F.D.; Siqueira, G.R. Mycotoxin Contamination of Diets for Beef Cattle Finishing in Feedlot. Rev. Bras. Zootec. 2019, 48, e20190079. [Google Scholar] [CrossRef]
- Edrington, T.S.; Kamps-Holtzapple, C.A.; Harvey, R.B.; Kubena, L.F.; Elissalde, M.H.; Rottinghaus, G.E. Acute Hepatic and Renal Toxicity in Lambs Dosed with Fumonisin-Containing Culture Material. J. Anim. Sci. 1995, 73, 508–515. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Rocha, A.; Sulyok, M.; Krska, R.; Mallmann, C.A. Natural Mycotoxin Contamination of Maize (Zea mays L.) in the South Region of Brazil. Food Control 2017, 73, 127–132. [Google Scholar] [CrossRef]
- Minervini, F.; Dell’Aquila, M.E. Zearalenone and Reproductive Function in Farm Animals. Int. J. Mol. Sci. 2008, 9, 2570–2584. [Google Scholar] [CrossRef] [PubMed]
- Pião, D.d.O.; Mello, M.R.B.d.; Barbero, M.M.D.; Silva, A.L.d.; Moura, A.M.; Barbero, R.P. Does the Mycotoxin Ingestion by Beef Heifers on Feedlot Change the Productive Parameters? Biosci. J. 2023, 39, e39048. [Google Scholar] [CrossRef]
- Ministério da Agricultura, Pecuária e Abastec. Instrução Normativa No 30, de 05 de Agosto de 2009; Diário Oficial da União: Brasília, DF, Brasil, 2009.
- FDA. US Food and Drug Administration Guidance for Industry and FDA: Advisory Levels for Deoxynivalenol (DON) in Finished Wheat Products for Human Consumption and Grains and Grain By-Products Used for Animal Feed; FDA: Rockville, MD, USA, 2018. [Google Scholar]
- Trenholm, H.L.; Thompson, B.K.; Martin, K.E.; Greenhalgh, R.; McAllister, A.J. Ingestion of Vomitoxin (Deoxynivalenol)-Contaminated Wheat by Nonlactating Dairy Cows. J. Dairy Sci. 1985, 68, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Payros, D.; Alassane-Kpembi, I.; Pierron, A.; Loiseau, N.; Pinton, P.; Oswald, I.P. Toxicology of Deoxynivalenol and Its Acetylated and Modified Forms. Arch. Toxicol. 2016, 90, 2931–2957. [Google Scholar] [CrossRef]
- Mansfield, M.A.; Kuldau, G.A. Microbiological and Molecular Determination of Mycobiota in Fresh and Ensiled Maize Silage. Mycologia 2007, 99, 269–278. [Google Scholar] [CrossRef]
- Gonçalves, L.; Dalla Rosa, A.; Gonzales, S.L.; Feltes, M.M.C.; Badiale-Furlong, E.; Dors, G.C. Incidence of Aflatoxin M1 in Fresh Milk from Small Farms. Food Sci. Technol. 2017, 37, 11–15. [Google Scholar] [CrossRef]
- Garrett, W.N.; Heitman, H.; Booth, A.N. Aflatoxin Toxicity in Beef Cattle. Exp. Biol. Med. 1968, 127, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Patterson, D.; Anderson, P. Recent Aflatoxin Feeding Experiments in Cattle. Vet. Rec. 1982, 110, 60. [Google Scholar] [CrossRef]
- Jones, M.; Ewart, J. Effects on Milk Production Associated with Consumption of Decorticated Extracted Groundnut Meal Contaminated with Aflatoxin. Vet. Rec. 1979, 105, 492–493. [Google Scholar] [CrossRef]
- Applebaum, R.S.; Brackett, R.E.; Wiseman, D.W.; Marth, E.H. Responses of Dairy Cows to Dietary Aflatoxin: Feed Intake and Yield, Toxin Content, and Quality of Milk of Cows Treated with Pure and Impure Aflatoxin. J. Dairy Sci. 1982, 65, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Penagos-Tabares, F.; Mahmood, M.; Sulyok, M.; Rafique, K.; Khan, M.R.; Zebeli, Q.; Krska, R.; Metzler-Zebeli, B. Outbreak of Aflatoxicosis in a Dairy Herd Induced Depletion in Milk Yield and High Abortion Rate in Pakistan. Toxicon 2024, 246, 107799. [Google Scholar] [CrossRef]
- Simas, M.M.S.; Botura, M.B.; Correa, B.; Sabino, M.; Mallmann, C.A.; Bitencourt, T.C.B.S.C.; Batatinha, M.J.M. Determination of Fungal Microbiota and Mycotoxins in Brewers Grain Used in Dairy Cattle Feeding in the State of Bahia, Brazil. Food Control 2007, 18, 404–408. [Google Scholar] [CrossRef]
- Bacon, C.W.; Nelson, P.E. Fumonisin Production in Corn by Toxigenic Strains of Fusarium Moniliforme and Fusarium Proliferatum. J. Food Prot. 1994, 57, 514–521. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef]
- Gabal, M.A.; Awad, Y.L.; Morcos, M.B.; Barakat, A.M.; Malik, G. Fusariotoxicoses of Farm Animals and Mycotoxic Leucoencephalomalacia of the Equine Associated with the Finding of Trichothecenes in Feedstuffs. Vet. Hum. Toxicol. 1986, 28, 207–212. [Google Scholar]
- Pier, A.C.; Cysewski, S.J.; Richard, J.L.; Baetz, A.L.; Mitchell, L. Experimental Mycotoxicoses in Calves with Aflatoxin, Ochratoxin, Rubratoxin, and T-2 Toxin. Proc. Annu. Meet. U S Anim. Health Assoc. 1976, 80, 130–148. [Google Scholar]
- European Union. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on Undesirable Substances in Animal Feed; European Comission: Brussels, Belgium, 2019; pp. 1–10. [Google Scholar]
- European Union. Commission Recommendation of 17 August 2006 on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding (2006/576/EC); European Comission: Brussels, Belgium, 2016; pp. 1–7. [Google Scholar]
- Borowsky, A.M.; Rosim, R.E.; Tonin, F.G.; de Oliveira, C.A.F.; Corassin, C.H. Co-Occurrence of Mycotoxins in the Diet and in the Milk of Dairy Cows from the Southeast Region of Brazil. Toxins 2024, 16, 492. [Google Scholar] [CrossRef]
- Abeni, F.; Migliorati, L.; Terzano, G.M.; Capelletti, M.; Gallo, A.; Masoero, F.; Pirlo, G. Effects of Two Different Blends of Naturally Mycotoxin-Contaminated Maize Meal on Growth and Metabolic Profile in Replacement Heifers. Animal 2014, 8, 1667–1676. [Google Scholar] [CrossRef]
- Kiyothong, K.; Rowlinson, P.; Wanapat, M.; Khampa, S. Effect of Mycotoxin Deactivator Product Supplementation on Dairy Cows. Anim. Prod. Sci. 2012, 52, 832–841. [Google Scholar] [CrossRef]
- Biscoto, G.L.; Salvato, L.A.; Alvarenga, É.R.; Dias, R.R.S.; Pinheiro, G.R.G.; Rodrigues, M.P.; Pinto, P.N.; Freitas, R.P.; Keller, K.M. Mycotoxins in Cattle Feed and Feed Ingredients in Brazil: A Five-Year Survey. Toxins 2022, 14, 552. [Google Scholar] [CrossRef]
- Jouany, J.P. Methods for Preventing, Decontaminating and Minimizing the Toxicity of Mycotoxins in Feeds. Anim. Feed Sci. Technol. 2007, 137, 342–362. [Google Scholar] [CrossRef]
- Taniwaki, M.H.; Pitt, J.I.; Copetti, M.V.; Teixeira, A.A.; Iamanaka, B.T. Understanding Mycotoxin Contamination across the Food Chain in Brazil: Challenges and Opportunities. Toxins 2019, 11, 411. [Google Scholar] [CrossRef] [PubMed]
- Birzele, B.; Prange, A.; Krämer, J. Deoxynivalenol and Ochratoxin A in German Wheat and Changes of Level in Relation to Storage Parameters. Food Addit. Contam. 2000, 17, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.J.; Dobson, A.D.W. Mycotoxin Production by Aspergillus, Fusarium and Penicillium Species. Int. J. Food Microbiol. 1998, 43, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhao, L.; Gong, G.; Zhang, L.; Shi, L.; Dai, J.; Han, Y.; Wu, Y.; Khalil, M.M.; Sun, L. Invited Review: Remediation Strategies for Mycotoxin Control in Feed. J. Anim. Sci. Biotechnol. 2022, 13, 19. [Google Scholar] [CrossRef]
- Vieira, D.J.C.; Fonseca, L.M.; Poletti, G.; Martins, N.P.; Grigoletto, N.T.S.; Chesini, R.G.; Tonin, F.G.; Cortinhas, C.S.; Acedo, T.S.; Artavia, I.; et al. Anti-Mycotoxin Feed Additives: Effects on Metabolism, Mycotoxin Excretion, Performance, and Total Tract Digestibility of Dairy Cows Fed Artificially Multi-Mycotoxin-Contaminated Diets. J. Dairy. Sci. 2024, 107, 7891–7903. [Google Scholar] [CrossRef]
- Chiminelli, I.; Spicer, L.J.; Maylem, E.R.S.; Caloni, F. Emerging Mycotoxins and Reproductive Effects in Animals: A Short Review. J. Appl. Toxicol. 2022, 42, 1901–1909. [Google Scholar] [CrossRef]
- Berthiller, F.; Crews, C.; Dall’Asta, C.; Saeger, S.D.; Haesaert, G.; Karlovsky, P.; Oswald, I.P.; Seefelder, W.; Speijers, G.; Stroka, J. Masked Mycotoxins: A Review. Mol. Nutr. Food Res. 2013, 57, 165–186. [Google Scholar] [CrossRef]
- Muñoz-Solano, B.; Lizarraga Pérez, E.; González-Peñas, E. Monitoring Mycotoxin Exposure in Food-Producing Animals (Cattle, Pig, Poultry, and Sheep). Toxins 2024, 16, 218. [Google Scholar] [CrossRef]
Mean 1 | Concentration Range 2 | n | % | PDI | |
---|---|---|---|---|---|
Aflatoxins | 5.7 ± 7.7 | 1.1–61.3 | 95 | 62.5 | 0.12 |
Deoxynivalenol | 371.9 ± 669.9 | 8.3–4752.3 | 54 | 35.5 | 7.51 |
Fumonisins | 2350.3 ± 2737.4 | 26.7–15,861.0 | 152 | 100.0 | 47.48 |
T-2 Toxin | 3.3 ± 3.5 | 1.0–9.2 | 13 | 8.6 | 0.07 |
HT-2 | <LOD | <LOD | 0 | 0.0 | 0.00 |
Zearalelone | 33.2 ± 108.5 | 1.1–857.8 | 121 | 79.6 | 0.67 |
MT—Mato Grosso | ||||||
---|---|---|---|---|---|---|
n = 46 | Mean 1 | Concentration Range 2 | n | % | PDI | |
Aflatoxins | 3.65 ± 3.98 | 1.1–19.7 | 26 | 56.5 | 0.07 | |
Deoxynivalenol | 103.50 ± 175.06 | 8.3–628.60 | 13 | 28.3 | 2.09 | |
Fumonisins | 2460.23 ± 3489.46 | 43.6–15,861.05 | 46 | 100.0 | 49.70 | |
T-2 Toxin | 4.71 ± 3.83 | 1.0–9.2 | 8 | 17.4 | 0.10 | |
HT-2 | <LOD | <LOD | 0 | 0.0 | 0.00 | |
Zearalelone | 34.06 ± 137.45 | 1.1–813.9 | 35 | 76.1 | 0.69 | |
MS—Mato Grosso do Sul | ||||||
n = 12 | Mean 1 | Concentration Range 2 | n | % | PDI | |
Aflatoxins | 5.54 ± 4.60 | 1.5–16.5 | 10 | 83.3 | 0.05 | |
Deoxynivalenol | 45.48 ± 34.45 | 16.4–86.4 | 5 | 41.7 | 9.50 | |
Fumonisins | 1568.04 ± 2433.60 | 71.1–7544.6 | 12 | 100.0 | 46.61 | |
T-2 Toxin | 1.00 ± 0.0 | 1.0–1.0 | 1 | 8.3 | 0.02 | |
HT-2 | <LOD | <LOD | 0 | 0.0 | 0.00 | |
Zearalelone | 8.57 ± 6.30 | 3.2–22.6 | 8 | 66.7 | 0.37 | |
TO—Tocantins | ||||||
n = 5 | Mean 1 | Concentration Range 2 | n | % | PDI | |
Aflatoxins | <LOD | <LOD | 0 | 0.0 | 0.00 | |
Deoxynivalenol | 185.65 ± 110.09 | 87.10–302.40 | 4 | 80.0 | 3.75 | |
Fumonisins | 894.00 ± 1015.03 | 284.09–2678.20 | 5 | 100.0 | 18.06 | |
T-2 Toxin | <LOD | <LOD | 0 | 0.0 | 0.00 | |
HT-2 | <LOD | <LOD | 0 | 0.0 | 0.00 | |
Zearalelone | 6.68 ± 4.78 | 1.11–13.28 | 5 | 100.0 | 0.13 | |
RS—Rio Grande do Sul | ||||||
n = 17 | Mean 1 | Concentration Range 2 | n | % | PDI | |
Aflatoxins | 2.40 ± 2.01 | 1.70–8.20 | 12 | 70.6 | 0.05 | |
Deoxynivalenol | 470.51 ± 1154.48 | 93.10–4752.29 | 15 | 88.2 | 9.50 | |
Fumonisins | 2307.33 ± 1337.94 | 877.47–6123.50 | 17 | 100.0 | 46.61 | |
T-2 Toxin | 1.00 ± 0.0 | 1.0–1.0 | 1 | 5.9 | 0.02 | |
HT-2 | <LOD | <LOD | 0 | 0.0 | 0.00 | |
Zearalelone | 18.26 ± 857.80 | 5.02–34.80 | 16 | 94.1 | 0.37 | |
MG—Minas Gerais | ||||||
n = 38 | Mean 1 | Concentration Range 2 | n | % | PDI | |
Aflatoxins | 10.87 ± 13.88 | 1.10–61.30 | 19 | 50.0 | 0.22 | |
Deoxynivalenol | 326.80 ± 340.40 | 89.4–903.7 | 5 | 13.2 | 6.60 | |
Fumonisins | 2634.91 ± 2991.61 | 26.76–14,883.3 | 38 | 100.0 | 53.23 | |
T-2 Toxin | 1.23 ± 0.0 | 1.23–1.23 | 1 | 2.6 | 0.02 | |
HT-2 | <LOD | <LOD | 0 | 0.0 | 0.00 | |
Zearalelone | 25.41 ± 33.41 | 1.54–117.9 | 26 | 68.4 | 0.51 | |
SP—São Paulo | ||||||
n = 13 | Mean 1 | Concentration Range 2 | n | % | PDI | |
Aflatoxins | 3.45 ± 3.63 | 1.50–12.20 | 8 | 61.5 | 0.07 | |
Deoxynivalenol | 293.10 ± 104.90 | 123.61–498.54 | 8 | 61.5 | 5.92 | |
Fumonisins | 1995.70 ± 1891.31 | 29.55–7071.85 | 13 | 100.0 | 40.31 | |
T-2 Toxin | <LOD | <LOD | 0 | 0.0 | 0.00 | |
HT-2 | <LOD | <LOD | 0 | 0.0 | 0.00 | |
Zearalelone | 30.64 ± 37.42 | 1.68–109.26 | 11 | 84.6 | 0.62 | |
GO—Goiás | ||||||
n = 21 | Mean 1 | Concentration Range 2 | n | % | PDI | |
Aflatoxins | 5.53 ± 6.00 | 1.70–22.80 | 20 | 95.2 | 0.11 | |
Deoxynivalenol | 628.55 ± 154.27 | 429.07–789.50 | 4 | 19.0 | 12.70 | |
Fumonisins | 2404.79 ± 2115.21 | 248.69–7938.51 | 21 | 100.0 | 48.58 | |
T-2 Toxin | 1.00 ± 0.0 | 1.00–1.00 | 2 | 9.5 | 0.02 | |
HT-2 | <LOD | <LOD | 0 | 0.0 | 0.00 | |
Zearalelone | 11.04 ± 6.12 | 1.1–22.77 | 20 | 95.2 | 0.22 |
Sample % | AF | DON | FB | T-2 | HT-2 | ZEA | |
---|---|---|---|---|---|---|---|
Corn Silage | 70.4% | 63% | 31% | 100% | 10% | 0% | 81% |
Sorghum Derivatives | 17.8% | 67% | 15% | 100% | 0% | 0% | 78% |
Grass Silage | 23.0% | 69% | 34% | 100% | 3% | 0% | 86% |
Wheat Silage | 3.3% | 60% | 100% | 100% | 0% | 0% | 100% |
Corn Derivatives | 77.6% | 61% | 35% | 100% | 11% | 0% | 77% |
Cotton Derivatives | 64.5% | 64% | 37% | 100% | 12% | 0% | 81% |
Soy Derivatives | 59.9% | 65% | 44% | 100% | 12% | 0% | 84% |
DDG | 55.9% | 54% | 28% | 100% | 5% | 0% | 73% |
WDG | 10.5% | 94% | 13% | 100% | 44% | 0% | 100% |
Barley | 2.0% | 33% | 0% | 100% | 0% | 0% | 67% |
Ground Oats | 7.9% | 67% | 100% | 100% | 0% | 0% | 100% |
Sugarcane Bagasse | 18.4% | 71% | 54% | 100% | 7% | 0% | 75% |
Citrus Pulp | 12.5% | 79% | 58% | 100% | 5% | 0% | 74% |
Mycotoxin Combination | Sample % 1 |
---|---|
ZEA + FB | 79.6% |
AF + FB | 62.5% |
AF + ZEA | 53.9% |
DON + FB | 35.5% |
DON + ZEA | 31.6% |
AF + DON | 23.0% |
FB + T-2 | 8.6% |
AF + T-2 | 7.9% |
ZEA + T-2 | 7.9% |
DON + T-2 | 2.6% |
AFB | DON | FB | T-2 | HT-2 | ZEA | |
---|---|---|---|---|---|---|
AFB | 1 | |||||
DON | −0.05113 | 1 | ||||
FB | 0.160569 | 0.052467 | 1 | |||
T-2 | −0.03522 | −0.050452 | −0.1184 | 1 | ||
HT-2 | - | - | - | - | 1 | |
ZEA | −0.04038 | * 0.685786 | 0.086238 | −0.04885 | - | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, R.D.; Alves e Silva, T.; Borowsky, A.M.; Cortinhas, C.S.; Carvalho, V.V.d.; Corassin, C.H. Evaluation of the Occurrence of Multi-Mycotoxins in the Diet of Beef Cattle Feedlots in Brazil. Ruminants 2025, 5, 12. https://doi.org/10.3390/ruminants5020012
Pires RD, Alves e Silva T, Borowsky AM, Cortinhas CS, Carvalho VVd, Corassin CH. Evaluation of the Occurrence of Multi-Mycotoxins in the Diet of Beef Cattle Feedlots in Brazil. Ruminants. 2025; 5(2):12. https://doi.org/10.3390/ruminants5020012
Chicago/Turabian StylePires, Rogério D’Antonio, Tobias Alves e Silva, Aline Moreira Borowsky, Cristina Simões Cortinhas, Victor Valério de Carvalho, and Carlos Humberto Corassin. 2025. "Evaluation of the Occurrence of Multi-Mycotoxins in the Diet of Beef Cattle Feedlots in Brazil" Ruminants 5, no. 2: 12. https://doi.org/10.3390/ruminants5020012
APA StylePires, R. D., Alves e Silva, T., Borowsky, A. M., Cortinhas, C. S., Carvalho, V. V. d., & Corassin, C. H. (2025). Evaluation of the Occurrence of Multi-Mycotoxins in the Diet of Beef Cattle Feedlots in Brazil. Ruminants, 5(2), 12. https://doi.org/10.3390/ruminants5020012