Supplementing Forage with Traditional Chinese Medicine Can Increase Microbial Protein Synthesis in Sheep
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of TCM
2.2. Animals, Diets, and Management
2.3. Collection of Urine, Feces, and Rumen Fluid
2.4. Isotope Dilution Method
2.5. Chemical Analysis
2.6. Calculations
2.7. Statistical Analysis
3. Results
3.1. Body Weight Gain, N Balance, and Ruminal Ammonia Concentration
3.2. Plasma Free Amino Acids
3.3. PD Excretion, MNS, and Plasma Leucine Kinetics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harmon, D.L.; Swanson, K.C. Review: Nutritional regulation of intestinal starch and protein assimilation in ruminants. Animal 2020, 14, s17–s28. [Google Scholar] [CrossRef] [PubMed]
- Stern, M.D.; Bach, A.; Calsamiglia, S. New concepts in protein nutrition of ruminants. In Proceedings of the 21st Annual Southwest Nutrition and Management Conference, Tempe, AZ, USA, 23–24 February 2006; pp. 45–66. [Google Scholar]
- Pathak, A.K. Various factors affecting microbial protein synthesis in the rumen. Vet. World 2008, 1, 186–189. [Google Scholar]
- Abdallah, A.; Zhang, P.; Zhong, Q.Z.; Sun, Z.W. Application of traditional Chinese herbal medicine by-products as dietary feed supplements and antibiotic replacements in animal production. Curr. Drug Metab. 2019, 20, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Lien, T.F.; Horng, Y.M.; Wu, C.P. Feasibility of replacing antibiotic feed promoters with the Chinese traditional herbal medicine Bazhen in weaned piglets. Livest. Sci. 2007, 107, 97–102. [Google Scholar] [CrossRef]
- Yin, F.; Yin, Y.; Kong, X.; Liu, Y.; He, Q.; Li, T.; Huang, R.; Hou, Y.; Shu, X.; Tan, L.; et al. Dietary supplementation with Acanthopanax senticosus extract modulates gut microflora in weaned piglets. Asian-Aust. J. Anim. Sci. 2008, 21, 1330–1338. [Google Scholar] [CrossRef]
- Lien, T.F.; Liao, C.M.; Lin, K.J. Effects of supplemental Chinese traditional herbal medicine complex on the growth performance, carcass characteristics, and meat quality of male Holstein calves. J. Appl. Anim. Res. 2014, 42, 222–227. [Google Scholar] [CrossRef]
- Liu, X.; Liu, F.; Yan, T.; Chang, S.; Wanapat, M.; Hou, F. Cistanche deserticola addition improves growth, digestibility, and metabolism of sheep fed on fresh forage from alfalfa/tall fescue pasture. Animals 2020, 10, 668. [Google Scholar] [CrossRef]
- Gong, J.; Yin, F.; Hou, Y.; Yin, Y. Review: Chinese herbs as alternatives to antibiotics in feed for swine and poultry production: Potential and challenges in application. Can. J. Anim. Sci. 2014, 94, 223–241. [Google Scholar] [CrossRef]
- Jin, Y.; Qu, C.; Tang, Y.; Pang, H.; Liu, L.; Zhu, Z.; Shang, E.; Huang, S.; Sun, D.; Duan, J.A. Herb pairs containing Angelicae Sinensis Radix (Danggui): A review of bio-active constituents and compatibility effects. J. Ethnopharmacol. 2016, 181, 158–171. [Google Scholar] [CrossRef]
- Chen, L.L.; Wang, Y.H.; Qi, J.; Dong, T.X.; Zhu, D.N.; Yu, B.Y. Identification and determination of absorbed components of Danggui-Shaoyao-San in rat plasma. Chin. J. Nat. Med. 2011, 9, 363–368. [Google Scholar] [CrossRef]
- Zhou, J.; Fang, L.; Wang, X.; Zhang, J.; Guo, L.P.; Huang, L.Q. Comparison of the volatile compounds of crude and processed Atractylodis rhizome analyzed by GC-MS. Afr. J. Pharm. Pharmacol. 2012, 6, 2155–2160. [Google Scholar] [CrossRef]
- Gopi, S.; Amalraj, A.; Kunnumakkara, A.; Thomas, S. Natural products with antiinflammatory activities against autoimmune myocarditis. In Inflammation and Natural Products; Nair, A., Gopi, S., Eds.; Academic Press Inc.: London, UK, 2021; pp. 21–38. [Google Scholar]
- Li, F.; Chai, R.J.; Fan, Q.L. Supplementing formulas. In Applications of Chinese Formula Compatibility; Iong, D., Garran, T.A., Deasy, L., Eds.; People’s Medical Publishing House: Beijing, China, 2019; pp. 372–440. [Google Scholar]
- Liang, X.; Bi, X.; Kamruzzaman, M.; Sano, H. Effect of Chinese herbal medicine on kinetics of plasma phenylalanine, tyrosine and whole body protein synthesis in sheep. Anim. Sci. J. 2019, 90, 533–538. [Google Scholar] [CrossRef] [PubMed]
- NRC (National Research Council). Nutrient Requirements of Sheep, 6th ed.; National Academy Press: Washington, DC, USA, 1985. [Google Scholar]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Chen, X.B.; Gomes, M.J. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives—An Overview of the Technical Details; Rowett Research Institute: Aberdeen, UK, 1992; pp. 1–21. [Google Scholar]
- Sano, H.; Kajita, M.; Fujita, T. Effect of dietary protein intake on plasma leucine flux, protein synthesis, and degradation in sheep. Comp. Biochem. Physiol. B 2004, 139, 163–168. [Google Scholar] [CrossRef]
- Wolfe, R.R. Tracers in metabolic research: Radioisotope and stable isotope/mass spectrometry methods. Lab. Res. Methods Biol. Med. 1984, 9, 1–287. [Google Scholar]
- Castillo, A.R.; Kebreab, E.; Beever, D.E.; Barbi, J.H.; Sutton, J.D.; Kirby, H.C.; France, J. The effect of protein supplementation on nitrogen utilization in lactating dairy cows fed grass silage diets. J. Anim. Sci. 2001, 79, 247–253. [Google Scholar] [CrossRef]
- Chao, S.C.; Young, D.G.; Oberg, C.J. Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. J. Essent. Oil Res. 2000, 12, 639–649. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferrt, A. Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef]
- Benchaar, C.; Calsamiglia, S.; Chaves, A.V.; Fraser, G.R.; Colombatto, D.; McAllister, T.A.; Beauchemin, K.A. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol. 2008, 145, 209–228. [Google Scholar] [CrossRef]
- Soltan, M.A.; Shewita, R.S.; Al-Sultan, S.I. Influence of essential oils supplementation on digestion, rumen fermentation, rumen microbial populations and productive performance of dairy cows. Asian J. Anim. Sci. 2009, 3, 1–12. [Google Scholar] [CrossRef]
- Yang, W.Z.; Benchaar, C.; Ametaj, B.N.; Chaves, A.V.; He, M.L.; McAllister, T.A. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. J. Dairy Sci. 2007, 90, 5671–5681. [Google Scholar] [CrossRef] [PubMed]
- Hart, K.J.; Yáñez-Ruiz, D.R.; Duval, S.M.; McEwan, N.R.; Newbold, C.J. Plant extracts to manipulate rumen fermentation. Anim. Feed Sci. Technol. 2008, 147, 8–35. [Google Scholar] [CrossRef]
- Fujita, T.; Kajita, M.; Sano, H. Responses of whole body protein synthesis, nitrogen retention and glucose kinetics to supplemental starch in goats. Comp. Biochem. Physiol. B 2006, 144, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M.; Boonnop, K.; Promkot, C.; Cherdthong, A. Effects of alternative protein sources on rumen microbes and productivity of dairy cows. Maejo Int. J. Sci. Technol. 2011, 5, 13–23. [Google Scholar]
- Chen, X.B.; Ørskov, E.R.; Hovell, F.D.D. Excretion of purine derivatives by ruminants: Endogenous excretion, differences between cattle and sheep. Br. J. Nutr. 1990, 63, 121–129. [Google Scholar] [CrossRef]
- Chen, X.B.; Chen, Y.K.; Franklin, M.F.; Ørskov, E.R.; Shand, W.J. The effect of feed intake and body weight on purine derivative excretion and microbial protein supply in sheep. J. Anim. Sci. 1992, 70, 1534–1542. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Liang, X.; Sekiguchi, N.; Sano, H. Effect of feeding garlic leaf on microbial nitrogen supply, kinetics of plasma phenylalanine, tyrosine and protein synthesis in sheep. Anim. Sci. J. 2014, 85, 542–548. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Ferret, A.; Losa, R. Effects of a specific blend of essential oil compounds and the type of diet on rumen microbial fermentation and nutrient flow from a continuous culture system. Anim. Feed Sci. Technol. 2005, 119, 29–41. [Google Scholar] [CrossRef]
- Benchaar, C.; Petit, H.V.; Berthiaume, R.; Ouellet, D.R.; Chiquette, J.; Chouinard, P.Y. Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage. J. Dairy Sci. 2007, 90, 886–897. [Google Scholar] [CrossRef]
- Zhong, R.Z.; Yu, M.; Liu, H.W.; Sun, H.X.; Cao, Y.; Zhou, D.W. Effects of dietary Astragalus polysaccharide and Astragalus membranaceus root supplementation on growth performance, rumen fermentation, immune responses, and antioxidant status of lambs. Anim. Feed Sci. Technol. 2012, 174, 60–67. [Google Scholar] [CrossRef]
- Yin, F.G.; Liu, Y.L.; Yin, Y.L.; Kong, X.F.; Huang, R.L.; Li, T.J.; Wu, G.Y.; Hou, Y. Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids 2009, 37, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.K.; Ogata, Y.; Sato, Y.; Sano, H. Effects of rice straw supplemented with urea and molasses on intermediary metabolism of plasma glucose and leucine in sheep. Asian-Aust. J. Anim. Sci. 2016, 29, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Wessels, R.H.; Titgemeyer, E.C.; St Jean, G. Effect of amino acid supplementation on whole-body protein turnover in Holstein steers. J. Anim. Sci. 1997, 75, 3066–3073. [Google Scholar] [CrossRef] [PubMed]
- Magni, F.; Arnoldi, L.; Galati, G.; Kienle, M.G. Simultaneous determination of plasma levels of α-ketoisocaproic acid and leucine and evaluation of α-[1-13C]ketoisocaproic acid and [1-13C]leucine enrichment by gas chromatography-mass spectrometry. Anal. Biochem. 1994, 220, 308–314. [Google Scholar] [CrossRef]
- Li, X.; Wei, W. Chinese Materia Medica: Combinations and Applications; Donica Publishing Ltd.: Herts, UK, 2002. [Google Scholar]
- Zhang, Q.; Zhu, L.L.; Chen, G.G.; Du, Y. Pharmacokinetics of astragaloside iv in beagle dogs. Eur. J. Drug Metab. Pharmacokinet. 2007, 32, 75–79. [Google Scholar] [CrossRef]
- Li, L.; Yu, H.; Pan, J. A study on protein metabolism in nephrotic patients treated with Chinese herbs. Zhonghua Nei Ke Za Zhi 1995, 34, 670–672. [Google Scholar]
- Lapierre, H.; Blouin, J.P.; Bernier, J.F.; Reynolds, C.K.; Dubreuil, P.; Lobley, G.E. Effect of supply of metabolizable protein on whole body and splanchnic leucine metabolism in lactating dairy cows. J. Dairy Sci. 2002, 85, 2631–2641. [Google Scholar] [CrossRef]
Hay-Diet | TCM-Diet | SEM | p-Value | |
---|---|---|---|---|
No. of sheep | 6 | 6 | - | - |
Body weight gain (g/d) | 21 | 29 | 9.2 | 0.19 |
Parameters of N balance (g/kg BW0.75/d) | ||||
N intake | 1.27 | 1.29 | 0.007 | <0.01 |
N in feces | 0.50 | 0.46 | 0.033 | 0.02 |
N in urine | 0.46 | 0.47 | 0.068 | 0.65 |
N retention | 0.31 | 0.35 | 0.042 | 0.17 |
N digestibility (%) | 61 | 64 | 1.1 | 0.02 |
Ruminal ammonia (mmol/L) | 10.0 | 11.9 | 0.92 | 0.08 |
Hay-Diet | TCM-Diet | SEM | p-Value | |
---|---|---|---|---|
No. of sheep | 6 | 6 | - | - |
Plasma amino acids (µmol/L) | ||||
Threonine | 245 | 210 | 16.8 | 0.03 |
Valine | 297 | 285 | 13.6 | 0.14 |
Methionine | 29 | 30 | 6.4 | 0.30 |
Iso-leucine | 116 | 83 | 10.0 | 0.06 |
Leucine | 160 | 111 | 19.1 | 0.08 |
Phenylalanine | 60 | 51 | 4.1 | 0.34 |
Histidine | 68 | 79 | 14.7 | 0.27 |
Lysine | 95 | 74 | 10.7 | 0.12 |
Serine | 178 | 139 | 25.3 | 0.06 |
Asparagine | 50 | 47 | 5.0 | 0.41 |
Glutamic acid | 91 | 88 | 10.8 | 0.45 |
Glutamine | 278 | 259 | 29.1 | 0.19 |
Glycine | 492 | 422 | 33.3 | 0.04 |
Alanine | 212 | 189 | 17.7 | 0.17 |
Tyrosine | 74 | 80 | 3.4 | 0.51 |
Tryptophan | 44 | 41 | 2.0 | 0.60 |
Arginine | 160 | 143 | 13.2 | 0.17 |
Proline | 101 | 84 | 20.3 | 0.33 |
Hay-Diet | TCM-Diet | SEM | p-Value | |
---|---|---|---|---|
No. of sheep | 6 | 6 | - | - |
Parameters of PD excretion (mmol/kg BW0.75/d) | ||||
Allantoin | 0.34 | 0.46 | 0.019 | <0.01 |
Uric acid | 0.03 | 0.05 | 0.006 | <0.01 |
Xanthine + hypoxanthine | 0.05 | 0.06 | 0.006 | <0.01 |
Total PD | 0.43 | 0.57 | 0.023 | <0.01 |
MNS (g/kg BW0.75/d) | 0.36 | 0.49 | 0.021 | <0.01 |
Plasma leucine kinetics | ||||
α-KIC concentration (µmol/L) | 14.7 | 12.9 | 1.17 | 0.09 |
LeuTR (µmol/kg BW0.75/h) | 373 | 437 | 16.3 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Bi, X.; Sano, H.; Jin, J. Supplementing Forage with Traditional Chinese Medicine Can Increase Microbial Protein Synthesis in Sheep. Ruminants 2024, 4, 613-622. https://doi.org/10.3390/ruminants4040042
Liang X, Bi X, Sano H, Jin J. Supplementing Forage with Traditional Chinese Medicine Can Increase Microbial Protein Synthesis in Sheep. Ruminants. 2024; 4(4):613-622. https://doi.org/10.3390/ruminants4040042
Chicago/Turabian StyleLiang, Xi, Xue Bi, Hiroaki Sano, and Jin Jin. 2024. "Supplementing Forage with Traditional Chinese Medicine Can Increase Microbial Protein Synthesis in Sheep" Ruminants 4, no. 4: 613-622. https://doi.org/10.3390/ruminants4040042
APA StyleLiang, X., Bi, X., Sano, H., & Jin, J. (2024). Supplementing Forage with Traditional Chinese Medicine Can Increase Microbial Protein Synthesis in Sheep. Ruminants, 4(4), 613-622. https://doi.org/10.3390/ruminants4040042