Milking System Changeover and Effects Thereof on the Occurrence of Intramammary Infections in Dairy Cows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Quarter Milk Samples
2.2. Laboratory Procedures
2.3. Data Collection
2.3.1. Udder Hygiene
2.3.2. Teat-End Condition
2.4. Definitions
2.5. Statistical Analysis
3. Results
3.1. Cytomicrobiological Results of the Quarter Milk Samples and the Evaluation of the NIMIs with the Causative Pathogens
3.2. Most Frequently Isolated Pathogen Species
3.3. Prevalence of the Four Most Frequently Isolated Pathogen Species
3.4. New Intramammary Infection Rate
3.5. The Somatic Cell Count
3.6. Teat-End Condition
3.7. Udder Hygiene
3.8. Infection Rates
4. Discussion
4.1. Impact of the Milking System Changeover on the Somatic Cell Count, the New Intramammary Infections, and the Cultivated Pathogen Species
4.2. Teat-End Conditions and Udder Hygiene
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Østerås, O.; Solbu, H.; Refsdal, A.O.; Roalkvam, T.; Filseth, O.; Minsaas, A. Results and evaluation of thirty years of health recordings in the Norwegian dairy cattle population. J. Dairy Sci. 2007, 90, 4483–4497. [Google Scholar] [CrossRef] [PubMed]
- Hertl, J.A.; Schukken, Y.H.; Welcome, F.L.; Tauer, L.W.; Gröhn, Y.T. Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows. J. Dairy Sci. 2014, 97, 1465–1480. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, M.R.; Hazel, A.R.; Hansen, L.B.; Heins, B.J. Health Treatment Cost of Holsteins in Eight High-Performance Herds. Animals 2023, 13, 2061. [Google Scholar] [CrossRef] [PubMed]
- Hertl, J.A.; Schukken, Y.H.; Bar, D.; Bennett, G.J.; González, R.N.; Rauch, B.J.; Welcome, F.L.; Tauer, L.W.; Gröhn, Y.T. The effect of recurrent episodes of clinical mastitis caused by gram-positive and gram-negative bacteria and other organisms on mortality and culling in Holstein dairy cows. J. Dairy Sci. 2011, 94, 4863–4877. [Google Scholar] [CrossRef]
- Reyher, K.K.; Dohoo, I.R.; Muckle, C.A. Evaluation of clustering of new intramammary infections in the bovine udder, including the impact of previous infections, herd prevalence, and somatic cell count on their development. J. Dairy Sci. 2013, 96, 219–233. [Google Scholar] [CrossRef]
- Bulletin of the International Dairy Federation, 448/2011, Suggested Interpretation of Mastitis Terminology (Revision of Bulletin of IDF No 338/1999). Available online: https://fil-idf.org/wp-content/uploads/woocommerce_uploads/2011/03/Bulletin-of-the-IDF-No.-448_2011-Suggested-Interpretation-of-Mastitis-Terminology-revision-of-Bulletin-of-IDF-N%C2%B0-338_1999-1-fdvlh1.pdf (accessed on 1 July 2024).
- German Veterinary Medical Association (GVA). Leitlinien Bekämpfung der Mastitis des Rindes als Bestandsproblem, [Guidelines for Combating Bovine Mastitis as a Stock Problem], 5th ed.; German Veterinary Medical Association: Gießen, Germany, 2012. [Google Scholar]
- Volling, O.; Krömker, V. Managementmassnahmen zur Senkung der bovinen Mastitisinzidenzrate im milcherzeugenden Betrieb [Udder health management practices in dairy enterprises to reduce the incidence of bovine mastitis]. Dtsch Tierarztl Wochenschr. 2008, 11, 410–420. [Google Scholar]
- Cogato, A.; Brščić, M.; Guo, H.; Marinello, F.; Pezzuolo, A. Challenges and Tendencies of Automatic Milking Systems (AMS): A 20-Years Systematic Review of Literature and Patents. Animals 2021, 11, 356. [Google Scholar] [CrossRef]
- Dufour, S.; Dohoo, I.R.; Barkema, H.W.; Descôteaux, L.; Devries, T.J.; Reyher, K.K.; Roy, J.P.; Scholl, D.T. Manageable risk factors associated with the lactational incidence, elimination, and prevalence of Staphylococcus aureus intramammary infections in dairy cows. J. Dairy Sci. 2012, 95, 1283–1300. [Google Scholar] [CrossRef]
- Deng, Z.; Koop, G.; Lam, T.J.G.M.; van der Lans, I.A.; Vernooij, J.C.M.; Hogeveen, H. Farm-level risk factors for bovine mastitis in Dutch automatic milking dairy herds. J. Dairy Sci. 2019, 102, 4522–4535. [Google Scholar] [CrossRef]
- Nitz, J.; Wente, N.; Zhang, Y.; Klocke, D.; Tho Seeth, M.; Krömker, V. Dry Period or Early Lactation-Time of Onset and Associated Risk Factors for Intramammary Infections in Dairy Cows. Pathogens 2021, 10, 224. [Google Scholar] [CrossRef]
- Zadoks, R.N.; Allore, H.G.; Barkema, H.W.; Sampimon, O.C.; Gröhn, Y.T.; Schukken, Y.H. Analysis of an outbreak of Streptococcus uberis mastitis. J. Dairy Sci. 2001, 84, 590–599. [Google Scholar] [CrossRef] [PubMed]
- de Pinho Manzi, M.; Nóbrega, D.B.; Faccioli, P.Y.; Troncarelli, M.Z.; Menozzi, B.D.; Langoni, H. Relationship between teat-end condition, udder cleanliness and bovine subclinical mastitis. Res. Vet. Sci. 2012, 93, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Zoche-Golob, V.; Haverkamp, H.; Paduch, J.H.; Klocke, D.; Zinke, C.; Hoedemaker, M.; Heuwieser, W.; Krömker, V. Longitudinal study of the effects of teat condition on the risk of new intramammary infections in dairy cows. J. Dairy Sci. 2015, 98, 910–917. [Google Scholar] [CrossRef] [PubMed]
- Schunig, R.; Busanello, M.; Nogara, K.F.; Zopollatto, M. Cow-level risk factors associated with the increase in somatic cell count and the occurrence of subclinical mastitis in Brazilian Holstein and Jersey dairy cows. Prev. Vet. Med. 2024, 227, 106208. [Google Scholar] [CrossRef] [PubMed]
- Klungel, G.H.; Slaghuis, B.A.; Hogeveen, H. The effect of the introduction of automatic milking systems on milk quality. J. Dairy Sci. 2000, 83, 1998–2003. [Google Scholar] [CrossRef]
- Weiss, D.; Helmreich, S.; Möstl, E.; Dzidic, A.; Bruckmaier, R.M. Coping capacity of dairy cows during the change from conventional to automatic milking. J. Anim. Sci. 2004, 82, 563–570. [Google Scholar] [CrossRef]
- Rasmussen, M.D.; Blom, J.Y.; Nielsen, L.A.H.; Justesen, P. Udder health of cows milked automatically. Livest. Prod. Sci. 2001, 72, 147–156. [Google Scholar] [CrossRef]
- Hovinen, M.; Rasmussen, M.D.; Pyörälä, S. Udder health of cows changing from tie stalls or free stalls with conventional milking to free stalls with either conventional or automatic milking. J. Dairy Sci. 2009, 92, 3696–3703. [Google Scholar] [CrossRef]
- In-Liner Everything-Robotic Milking. Available online: https://www.gea.com/en/assets/254971/ (accessed on 30 October 2024).
- German Veterinary Medical Association (GVA). Leitlinien Entnahme von Milchproben unter antiseptischen Bedingungen und Isolierung und Identifizierung von Mastitiserregern. In Guidelines for Antiseptic Milk Sampling and Guidelines to Isolate and Identify Mastitis Pathogens, 2nd ed.; Veterinärmed, G.V.D.D., Ed.; German Veterinary Medical Association (GVA): Gießen, Germany, 2009; pp. 1–92. [Google Scholar]
- Heeschen, W.; Reichmuth, J.; Tolle, A.; Zeider, H. Die Konservierung von Milchproben zur bakteriologischen, zytologischen und hemmstoffbiologischen Untersuchung. Milchwissenschaft 1969, 24, 729–734. [Google Scholar]
- Randall, L.P.; Lemma, F.; Koylass, M.; Rogers, J.; Ayling, R.D.; Worth, D.; Klita, M.; Steventon, A.; Line, K.; Wragg, P.; et al. Evaluation of MALDI-ToF as a method for the identification of bacteria in the veterinary diagnostic laboratory. Res. Vet. Sci. 2015, 101, 42–49. [Google Scholar] [CrossRef]
- Schreiner, D.A.; Ruegg, P.L. Effects of tail docking on milk quality and cow cleanliness. J. Dairy Sci. 2002, 85, 2503–2511. [Google Scholar] [CrossRef] [PubMed]
- Mein, G.A.; Neijenhuis, F.; Morgan, W.F.; Reinemann, D.J.; Hillerton, J.E.; Baines, J.R.; Ohnstad, I.; Rasmussen, M.D.; Timms, L.; Britt, J.S.; et al. Evaluation of bovine teat condition in commercial dairy herds: 1. Non-infectious factors. In Proceedings of the AABP-NMC International Symposium on Mastitis and Milk Quality, Vancouver, BC, Canada, 13–15 September 2001. [Google Scholar]
- Dalen, G.; Rachah, A.; Nørstebø, H.; Schukken, Y.H.; Gröhn, Y.T.; Barlow, J.W.; Reksen, O. Transmission dynamics of intramammary infections caused by Corynebacterium species. J. Dairy Sci. 2018, 101, 472–479. [Google Scholar] [CrossRef] [PubMed]
- van den Borne, B.H.P.; van Grinsven, N.J.M.; Hogeveen, H. Trends in somatic cell count deteriorations in Dutch dairy herds transitioning to an automatic milking system. J. Dairy Sci. 2021, 104, 6039–6050. [Google Scholar] [CrossRef]
- Woudstra, S.; Wente, N.; Zhang, Y.; Leimbach, S.; Gussmann, M.K.; Kirkeby, C.; Krömker, V. Strain diversity and infection durations of Staphylococcus spp. and Streptococcus spp. causing intramammary infections in dairy cows. J. Dairy Sci. 2023, 106, 4214–4231. [Google Scholar] [CrossRef]
- Zecconi, A.; Piccinini, R.; Casirani, G.; Binda, E.; Migliorati, L. Effects of automatic milking system on teat tissues, intramammary infections and somatic cell counts. Ital. J. Anim. Sci. 2003, 2, 275–282. [Google Scholar] [CrossRef]
- Petermann, M.; Wolter, W.; Rittershaus, C.; Kloppert, B.; Seufert, H.; Zschock, M. Automatic milking systems: Udder health and milk flow profiles. In Physiological and Technical Aspects of Machine Milking, Proceedings of the International Conference, Nitra, Slovak Republic, 26–27 June 2001; Rosati, A., Mihina, S., Mosconi, C., Eds.; ICAR: Rome, Italy, 2001. [Google Scholar]
- Hamann, J.; Reinecke, F. Machine milking effects on udder health—Comparison of a conventional with a robotic milking system. In Proceedings of the 1st North American Conference on Robotic Milking, Toronto, ON, Canada, 20–22 March 2002; Section IV. pp. 17–27. [Google Scholar]
- Katthöfer, P.; Zhang, Y.; Wente, N.; Preine, F.; Nitz, J.; Krömker, V. The Influence of Milk Leakage, Udder Pressure and Further Risk Factors on the Development of New Intramammary Infections during the Dry Period of Dairy Cows. Pathogens 2024, 13, 430. [Google Scholar] [CrossRef]
- Gonçalves, J.L.; Tomazi, T.; Barreiro, J.R.; Beuron, D.C.; Arcari, M.A.; Lee, S.H.; Martins, C.M.; Araújo Junior, J.P.; dos Santos, M.V. Effects of bovine subclinical mastitis caused by Corynebacterium spp. on somatic cell count, milk yield and composition by comparing contralateral quarters. Vet. J. 2016, 209, 87–92. [Google Scholar] [CrossRef]
- Heikkilä, A.M.; Liski, E.; Pyörälä, S.; Taponen, S. Pathogen-specific production losses in bovine mastitis. J. Dairy Sci. 2018, 101, 9493–9504. [Google Scholar] [CrossRef]
- Lücken, A.; Woudstra, S.; Wente, N.; Zhang, Y.; Krömker, V. Intramammary infections with Corynebacterium spp. in bovine lactating udder quarters. PLoS ONE 2022, 17, e0270867. [Google Scholar] [CrossRef]
- Piepers, S.; Opsomer, G.; Barkema, H.W.; de Kruif, A.; De Vliegher, S. Heifers infected with coagulase-negative staphylococci in early lactation have fewer cases of clinical mastitis and higher milk production in their first lactation than noninfected heifers. J. Dairy Sci. 2010, 93, 2014–2024. [Google Scholar] [CrossRef]
- Piepers, S.; Peeters, K.; Opsomer, G.; Barkema, H.W.; Frankena, K.; De Vliegher, S. Pathogen group specific risk factors at herd, heifer and quarter levels for intramammary infections in early lactating dairy heifers. Prev. Vet. Med. 2011, 99, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Hiitiö, H.; Simojoki, H.; Kalmus, P.; Holopainen, J.; Pyörälä, S.; Taponen, S. The effect of sampling technique on PCR-based bacteriological results of bovine milk samples. J. Dairy Sci. 2016, 99, 6532–6541. [Google Scholar] [CrossRef] [PubMed]
- Hamel, J.; Zhang, Y.; Wente, N.; Krömker, V. Non-S. aureus staphylococci (NAS) in milk samples: Infection or contamination? Vet. Microbiol. 2020, 242, 108594. [Google Scholar] [CrossRef] [PubMed]
- De Visscher, A.; Piepers, S.; Haesebrouck, F.; De Vliegher, S. Intramammary infection with coagulase-negative staphylococci at parturition: Species-specific prevalence, risk factors, and effect on udder health. J. Dairy Sci. 2016, 99, 6457–6469. [Google Scholar] [CrossRef]
- Piessens, V.; Van Coillie, E.; Verbist, B.; Supré, K.; Braem, G.; Van Nuffel, A.; De Vuyst, L.; Heyndrickx, M.; De Vliegher, S. Distribution of coagulase-negative Staphylococcus species from milk and environment of dairy cows differs between herds. J. Dairy Sci. 2011, 94, 2933–2944. [Google Scholar] [CrossRef]
- Kirkeby, C.; Halasa, T.; Farre, M.; Chehabi, G.N.; Græsbøll, K. Transmission Dynamics of Corynebacterium spp. Within Two Danish Dairy Cattle Herds. Front. Vet. Sci. 2021, 8, 735345. [Google Scholar] [CrossRef]
- Woudstra, S.; Lücken, A.; Wente, N.; Zhang, Y.; Leimbach, S.; Gussmann, M.K.; Kirkeby, C.; Krömker, V. Reservoirs of Corynebacterium spp. in the Environment of Dairy Cows. Pathogens 2023, 12, 139. [Google Scholar] [CrossRef]
- Schreiner, D.A.; Ruegg, P.L. Relationship between udder and leg hygiene scores and subclinical mastitis. J. Dairy Sci. 2003, 86, 3460–3465. [Google Scholar] [CrossRef]
Number of Cows (%) | |
---|---|
Number of lactations | |
1st lactation | 41 (29.7) |
2nd lactation | 31 (22.5) |
≥3rd lactation | 66 (47.8) |
Stage of lactation | |
<100 days in milk | 43 (31.2) |
100–180 days in milk | 38 (27.5) |
181–305 days in milk | 42 (30.4) |
>305 days in milk | 8 (5.8) |
Missing data | 7 (5.1) |
Milk yield (kg per day) | |
20–30 kg | 35 (25.4) |
31–40 kg | 54 (39.1) |
41–50 kg | 40 (29.0) |
51–60 kg | 9 (6.5) |
In total | 138 (100) |
Quarter Sample Status | % (Number of Quarters) | ||||||
---|---|---|---|---|---|---|---|
−14 Days 1 | −8 Days 1 | −2 Days 1 | +8 Days 1 | +15 Days 1 | +22 Days 1 | NIMIs 2 During the Entire Study | |
In total | 100 (552) | 100 (548) | 100 (524) | 100 (536) | 100 (536) | 100 (540) | 100 (558) |
No growth | 34.4 (190) | 50.5 (277) | 57.8 (303) | 78.9 (423) | 64.9 (348) | 76.3 (412) | |
Contaminated | 21.7 (120) | 9.9 (54) | 9.0 (47) | 1.9 (10) | 1.9 (10) | 2.6 (14) | |
NAS 3 | 28.6 (158) | 25.2 (138) | 18.7 (98) | 11.4 (61) | 17.5 (94) | 10.0 (54) | 60.8 (339) |
Mixed infections | 10.5 (58) | 10.5 (58) | 6.3 (33) | 4.1 (22) | 11.0 (59) | 4.6 (25) | 20.4 (114) |
Corynebacterium spp. | 2.7 (15) | 2.9 (16) | 6.5 (34) | 2.4 (13) | 2.4 (15) | 4.6 (25) | 15.8 (88) |
Streptococcus spp. | 0.9 (5) | 0.2 (1) | 0.4 (2) | 0.7 (4) | 0.6 (3) | 0.4 (2) | 0.4 (2) |
Yeasts | 0.4 (2) | 0.4 (2) | 0.6 (3) | 0.4 (2) | 0.7 (4) | 0.4 (2) | 0.7 (4) |
Other pathogens 4 | 0.4 (2) | 0.4 (2) | 0.4 (2) | 0.2 (1) | 0.4 (2) | 0.6 (3) | 0.9 (5) |
Gram-negative pathogens 5 | 0.2 (1) | 0.6 (3) | 0.9 (5) | ||||
Enterococcus spp. | 0.2 (1) | 0.2 (1) | 0.2 (1) |
% (Number of Quarters) | |||||
---|---|---|---|---|---|
−8 Days 1 | −2 Days 1 | +8 Days 1 | +15 Days 1 | +22 Days 1 | |
NIMI 2 | 28.6 (157) | 23.6 (124) | 11.0 (59) | 27.4 (147) | 13.1 (71) |
No NIMI 2 | 71.4 (391) | 76.3 (400) | 89.0 (477) | 72.6 (389) | 86.9 (469) |
In total | 100 (548) | 100 (524) | 100 (536) | 100 (536) | 100 (540) |
Pathogen Species | Number of Quarters | ||||
---|---|---|---|---|---|
−8 Days 1 | −2 Days 1 | +8 Days 1 | +15 Days 1 | +22 Days 1 | |
Staphylococcus sciuri | |||||
Susceptible quarters | 420 | 417 | 478 | 498 | 464 |
NIMI 2 | 61 | 22 | 19 | 62 | 19 |
NIMI 2 incidence | 14.5% | 5.3% | 4.0% | 12.4% | 4.1% |
Staphylococcus chromogenes | |||||
Susceptible quarters | 507 | 490 | 498 | 503 | 482 |
NIMI 2 | 28 | 20 | 15 | 40 | 11 |
NIMI 2 incidence | 5.5% | 4.1% | 3.0% | 8.0% | 2.3% |
Staphylococcus haemolyticus | |||||
Susceptible quarters | 517 | 502 | 515 | 523 | 508 |
NIMI 2 | 30 | 16 | 9 | 28 | 14 |
NIMI 2 incidence | 5.8% | 3.2% | 1.7% | 5.4% | 2.8% |
Corynebacterium amycolatum | |||||
Susceptible quarters | 541 | 533 | 514 | 522 | 522 |
NIMI 2 | 7 | 23 | 9 | 11 | 20 |
NIMI 2 incidence | 1.3% | 4.3% | 1.8% | 2.1% | 3.8% |
Dependent Variable | Independent Variable (Reference Category) | ß 1 | SE 2 | OR 3 | p-Value | 95% CI 4 (OR) |
---|---|---|---|---|---|---|
New intramammary infection rate | After the changeover 5 (before the changeover 6) | 0.548 | 13.261 | 0.578 | 0.988 | 0.000–1.002 |
After the changeover 5 (before the changeover 6) | 0 |
Dependent Variable | Independent Variable (Reference Category) | ß 1 | SE 2 | OR 3 | p-Value | 95% CI 4 (OR) |
---|---|---|---|---|---|---|
Teat-end condition | intercept | 0.693 | 0.914 | 2.0 | <0.001 | 1.672–2.392 |
−14 days 5 (teat-end condition +22 days) | 0.116 | 0.1299 | 1.124 | 0.370 | 0.871–1.449 | |
−2 days 5 (teat-end condition +22 days) | −0.134 | 0.1282 | 0.874 | 0.295 | 0.680–1.124 | |
+15 days 5 (teat-end condition +22 days) | 0.707 | 0.1419 | 2.028 | <0.001 | 1.536–2.679 | |
+22 days 5 (teat-end condition +22 days) | 0 |
Dependent Variable | Independent Variable (Reference Category) | ß 1 | SE 2 | OR 3 | p-Value | 95% CI 4 (OR) |
---|---|---|---|---|---|---|
Udder hygiene | intercept | 2.007 | 0.133 | 7.438 | <0.001 | 5.727–9.658 |
−14 days 5 (udder hygiene +22 days) | 0.109 | 0.1837 | 0.896 | 0.552 | 0.625–1.285 | |
−8 days 5 (udder hygiene +22 days) | 0.297 | 0.1784 | 0.743 | 0.096 | 0.523–1.054 | |
−2 days 5 (udder hygiene +22 days) | 0.143 | 0.1839 | 0.866 | 0.436 | 0.604–1.243 | |
+ 8 days 5 (udder hygiene +22 days) | 0.900 | 0.2356 | 2.459 | <0.001 | 1.549–3.902 | |
+15 days 5 (udder hygiene +22 days) | 1.098 | 0.2515 | 2.999 | <0.001 | 1.831–4.911 | |
+22 days 5 (udder hygiene +22 days) | 0 |
Pathogen | Poisson Estimate | Poisson Confidence Interval 2.5% | Poisson Confidence Interval 97.5% | AIC 1 Poisson with Offset | AIC 1 Poisson Without Offset |
---|---|---|---|---|---|
Staphylococcus sciuri | 0.07923525 | 0.06830256 | 0.0912758 | 74 | 106 |
Staphylocccus chromogenes | 0.07354711 | 0.06085905 | 0.08788587 | 52 | 59 |
Staphylococcus haemolyticus | 0.09644336 | 0.07850171 | 0.11692896 | 43 | 54 |
Corynebacterium amycolatum | 0.1013182 | 0.079399 | 0.1269408 | 48 | 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katthöfer, P.; Woudstra, S.; Zhang, Y.; Wente, N.; Nankemann, F.; Nitz, J.; Kortstegge, J.; Krömker, V. Milking System Changeover and Effects Thereof on the Occurrence of Intramammary Infections in Dairy Cows. Ruminants 2025, 5, 1. https://doi.org/10.3390/ruminants5010001
Katthöfer P, Woudstra S, Zhang Y, Wente N, Nankemann F, Nitz J, Kortstegge J, Krömker V. Milking System Changeover and Effects Thereof on the Occurrence of Intramammary Infections in Dairy Cows. Ruminants. 2025; 5(1):1. https://doi.org/10.3390/ruminants5010001
Chicago/Turabian StyleKatthöfer, Pauline, Svenja Woudstra, Yanchao Zhang, Nicole Wente, Franziska Nankemann, Julia Nitz, Jan Kortstegge, and Volker Krömker. 2025. "Milking System Changeover and Effects Thereof on the Occurrence of Intramammary Infections in Dairy Cows" Ruminants 5, no. 1: 1. https://doi.org/10.3390/ruminants5010001
APA StyleKatthöfer, P., Woudstra, S., Zhang, Y., Wente, N., Nankemann, F., Nitz, J., Kortstegge, J., & Krömker, V. (2025). Milking System Changeover and Effects Thereof on the Occurrence of Intramammary Infections in Dairy Cows. Ruminants, 5(1), 1. https://doi.org/10.3390/ruminants5010001