Feed Intake and Growth Performance of Vietnamese Yellow Calves Fed Silages from Intercropped Maize–Soybean and Guinea Grass
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Silage and Rice Straw Preparation
- Guinea grass silage: 97% guinea grass + 2.5% cornmeal + 0.5% salt.
- Guinea grass–soybean silage: 80% Guinea grass + 20% soybean.
- Maize–soybean silage: 80% maize + 20% soybean.
2.2. Experimental Design and Feed Compositions
2.3. Calculation of Feed Intake and Feed Analysis
2.4. Measurements of Live Weight and Body Conformation
2.5. Statistical Analyses
3. Results
3.1. Feed Intake
3.2. Live Weight Gain and Conversion Ratio
3.3. Body Conformation Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le, T.N.; Vu, H.V.; Okuda, Y.; Duong, H.T.; Nguyen, T.B.; Nguyen, V.H.; Le, P.D.; Kunieda, T. Genetic characterization of Vietnamese Yellow cattle using mitochondrial DNA and Y-chromosomal haplotypes and genes associated with economical traits. Anim. Sci. J. 2018, 89, 1641–1647. [Google Scholar] [CrossRef] [PubMed]
- Uyen, N.T.; Cuong, D.V.; Thuy, P.D.; Son, L.H.; Ngan, N.T.; Quang, N.H.; Tuan, N.D.; Hwang, I.H. A Comparative Study on the Adipogenic and Myogenic Capacity of Muscle Satellite Cells, and Meat Quality Characteristics between Hanwoo and Vietnamese Yellow Steers. Food Sci. Anim. Resour. 2023, 43, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Gioi, P.V.; Dung, D.V.; Son, P.V.; Lap, D.V.; Tiem, P.V. Effects of Brahman genetic resource proportion on growth performance traits of beef crossbreds in Western Highlands of Vietnam. Agric. Nat. Resour. 2023, 57, 677–688. [Google Scholar]
- Nguyen, D.V.; Tran, N.B.T.; Vang, M.A.; Le, H.T.T.; Nguyen, G.T.T.; Nguyen, Q.H.; Blanchard, M.; Bailey, A.; Ives, S. Live weight and body conformation responses of culled local Yellow cows fed maize silage and urea-treated rice straw in an intensive feedlot system in Northwest Vietnam. Adv. Anim. Vet. Sci. 2021, 9, 1283–1291. [Google Scholar]
- Dung, D.; Phung, L.; Roubik, H. Performance and estimation of enteric methane emission from fattening vietnamese yellow cattle fed different crude protein and concentrate levels in the diet. Adv. Anim. Vet. Sci. 2019, 7, 962–968. [Google Scholar] [CrossRef]
- Hue, P.T. Growth and development of VA06 grass and Ghine TD58 in Eakar district, Dak Lak province. CTU J. Sci. 2017, 51, 1–6. [Google Scholar]
- Nguyen, D.V.; Vu, C.C.; Nguyen, T.V. Current Possibilities and Treating Strategies of Rice Straw as a Ruminant Feed Source in Vietnam: A Review. Pak. J. Nutr. 2020, 19, 94–104. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Dang, L.H. Using treated fresh rice straw partly replacing grass in growing beef cattle diets. Asian J. Anim. Sci. 2020, 14, 6–24. [Google Scholar]
- Thiet, N.; Ngu, N.T. Effect of urea treatment and preservation duration on chemical composition of rice straw offer for growing Sind crossbred cattle. Livest. Res. Rural Dev. 2023, 35, 5. [Google Scholar]
- GSO. Statistical Yearbook of Vietnam; Statistical Publishing House: Hanoi, Vietnam, 2022.
- Belete, T.; Yadete, E. Effect of Mono Cropping on Soil Health and Fertility Management for Sustainable Agriculture Practices: A Review. J. Plant Sci. 2023, 11, 192–197. [Google Scholar] [CrossRef]
- Ha, T.M.; Voe, P.; Boulom, S.; Le, T.T.L.; Dao, C.D.; Yang, F.; Dang, X.P.; Hoang, T.T.H.; Abu Hatab, A.; Hansson, H. Factors associated with smallholders’ uptake of intercropping in Southeast Asia: A cross-country analysis of Vietnam, Laos, and Cambodia. Clim. Risk Manag. 2024, 45, 100646. [Google Scholar] [CrossRef]
- Raza, M.A.; Yasin, H.S.; Gul, H.; Qin, R.; Mohi Ud Din, A.; Khalid, M.H.B.; Hussain, S.; Gitari, H.; Saeed, A.; Wang, J. Maize/soybean strip intercropping produces higher crop yields and saves water under semi-arid conditions. Front. Plant Sci. 2022, 13, 1006720. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Sun, Z.; Zhang, L.; Feng, L.; Zheng, J.; Bai, W.; Gu, C.; Wang, Q.; Xu, Z.; van der Werf, W. Maize/peanut intercropping increases land productivity: A meta-analysis. Field Crops Res. 2021, 270, 108208. [Google Scholar] [CrossRef]
- Zeng, T.; Wu, Y.; Xin, Y.; Chen, C.; Du, Z.; Li, X.; Zhong, J.; Tahir, M.; Kang, B.; Jiang, D. Silage quality and output of different maize–soybean strip intercropping patterns. Fermentation 2022, 8, 174. [Google Scholar] [CrossRef]
- Garay-Martínez, J.R.; Godina-Rodríguez, J.E.; Maldonado-Jáquez, J.A.; Lucio-Ruíz, F.; Joaquín-Cancino, S.; Bautista-Martínez, Y.; Granados-Rivera, L.D. Nutritive value of maize and soybean silages at different ratio in a subtropical climate condition. Chil. J. Agric. Res. 2024, 84, 540–547. [Google Scholar]
- Bolson, D.C.; Jacovaci, F.A.; Gritti, V.C.; Bueno, A.V.I.; Daniel, J.L.P.; Nussio, L.G.; Jobim, C.C. Intercropped maize-soybean silage: Effects on forage yield, fermentation pattern and nutritional composition. Grassl. Sci. 2022, 68, 3–12. [Google Scholar] [CrossRef]
- Carpici, E.B. Nutritive values of soybean silages ensiled with maize at different rates. Legume Res. Int. J. 2016, 39, 810–813. [Google Scholar] [CrossRef]
- Parra, C.S.; Bolson, D.C.; Jacovaci, F.A.; Nussio, L.G.; Jobim, C.C.; Daniel, J.L.P. Influence of soybean-crop proportion on the conservation of maize-soybean bi-crop silage. Anim. Feed Sci. Technol. 2019, 257, 114295. [Google Scholar] [CrossRef]
- Li, L.; Zou, Y.; Wang, Y.; Chen, F.; Xing, G. Effects of corn intercropping with soybean/peanut/millet on the biomass and yield of corn under fertilizer reduction. Agriculture 2022, 12, 151. [Google Scholar] [CrossRef]
- Song, Y.; Lee, S.-H.; Woo, J.H.; Lee, K.-W. Evaluation of the growth characteristics, forage productivity, and feed value of the maize–soybean intercropping system under different fertilization levels. J. Crop Sci. Biotechnol. 2023, 26, 107–118. [Google Scholar] [CrossRef]
- Zaeem, M.; Nadeem, M.; Pham, T.H.; Ashiq, W.; Ali, W.; Gilani, S.S.M.; Elavarthi, S.; Kavanagh, V.; Cheema, M.; Galagedara, L. The potential of corn-soybean intercropping to improve the soil health status and biomass production in cool climate boreal ecosystems. Sci. Rep. 2019, 9, 13148. [Google Scholar] [CrossRef] [PubMed]
- Bolson, D.; Jobim, C.; Daniel, J.; Jacovaci, F.; Bueno, A.; Ribeiro, M.; Gritti, V. Performance of lambs fed maize, soybean or maize-soybean intercrop silages. Grassl. Resour. Extensive Farming Syst. Marg. Lands Major Driv. Future Scenar. 2017, 22, 112. [Google Scholar]
- Kang, J.; Song, J.; Marbun, T.D.; Kwon, C.H.; Kim, E.J. Effect of intercropped corn and soybean silage on nutritive values, in vitro ruminal fermentation, and milk production of Holstein dairy cows. J. Kor. Grassl. Forage. Sci. 2017, 37, 216–222. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Beef Cattle, Eighth Revised Edition; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990; Volume 489. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Jayanegara, A.; Ridla, M.; Laconi, E. Estimation and validation of total digestible nutrient values of forage and concentrate feedstuffs. IOP Conf. Ser. Mater. Sci. Eng. 2019, 546, 042016. [Google Scholar] [CrossRef]
- Minitab. Minitab 16 Statistical Software; Minitab, LLC: State College, PA, USA, 2010. [Google Scholar]
- Zhou, Z.; Meng, Q.; Li, S.; Jiang, L.; Wu, H. Effect of urea-supplemented diets on the ruminal bacterial and archaeal community composition of finishing bulls. Appl. Microbiol. Biotechnol. 2017, 101, 6205–6216. [Google Scholar] [CrossRef]
- Guo, Y.; Xiao, L.; Jin, L.; Yan, S.; Niu, D.; Yang, W. Effect of commercial slow-release urea product on in vitro rumen fermentation and ruminal microbial community using RUSITEC technique. J. Anim. Sci. Biotechnol. 2022, 13, 56. [Google Scholar] [CrossRef]
- Katoch, R. Forage Nutritional Quality Management. In Techniques in Forage Quality Analysis; Katoch, R., Ed.; Springer Nature Singapore: Singapore, 2023; pp. 211–221. [Google Scholar]
- Dewhurst, R.J.; Newbold, J.R. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 2022, 127, 847–849. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Ferret, A.; Reynolds, C.K.; Kristensen, N.B.; van Vuuren, A.M. Strategies for optimizing nitrogen use by ruminants. Animal 2010, 4, 1184–1196. [Google Scholar] [CrossRef]
- Weimer, P.J. Degradation of cellulose and hemicellulose by ruminal microorganisms. Microorganisms 2022, 10, 2345. [Google Scholar] [CrossRef]
- Aquino, D.; Del Barrio, A.; Trach, N.X.; Hai, N.T.; Khang, D.N.; Toan, N.T.; Van Hung, N. Rice Straw-Based Fodder for Ruminants. In Sustainable Rice Straw Management; Gummert, M., Hung, N.V., Chivenge, P., Douthwaite, B., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 111–129. [Google Scholar]
- Cheng, Q.; Li, P.; Xiao, B.; Yang, F.; Li, D.; Ge, G.; Jia, Y.; Bai, S. Effects of LAB inoculant and cellulase on the fermentation quality and chemical composition of forage soybean silage prepared with corn stover. Grassl. Sci. 2021, 67, 83–90. [Google Scholar] [CrossRef]
- Gandra, J.R.; Del Valle, T.A.; Takiya, C.S.; Oliveira, E.R.; Goes, R.H.; Batista, J.D.; Acosta, A.P.; Noia, I.Z.; Antônio, G.; Urio, G.S. Soybean silage in dairy heifers’ diets: Ruminal fermentation, intake and digestibility of nutrients. N. Z. J. Agric. Res. 2022, 65, 202–212. [Google Scholar] [CrossRef]
- Kearl, L.C. Nutrient Requirements of Ruminants in Developing Countries; International Feedstuffs Institute, Utah State University: Logan, UT, USA, 1982. [Google Scholar]
- Da Silva, L.; Pereira, O.; Da Silva, T.; Valadares Filho, S.; Ribeiro, K. Effects of silage crop and dietary crude protein levels on digestibility, ruminal fermentation, nitrogen use efficiency, and performance of finishing beef cattle. Anim. Feed Sci. Technol. 2016, 220, 22–33. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Xue, X.; Zhang, X.; Wang, H.; Gao, T.; Phillips, C. Effect of feeding a diet comprised of various corn silages inclusion with peanut vine or wheat straw on performance, digestion, serum parameters and meat nutrients in finishing beef cattle. Anim. Biosci. 2022, 35, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hoffland, E.; Kuyper, T.W.; Yu, Y.; Zhang, C.; Li, H.; Zhang, F.; van der Werf, W. Syndromes of production in intercropping impact yield gains. Nat. Plants 2020, 6, 653–660. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, H. Maize-soybean intercropping improved maize growth traits by increasing soil nutrients and reducing plant pathogen abundance. Front. Microbiol. 2023, 14, 1290825. [Google Scholar] [CrossRef]
- Kebede, E. Contribution, Utilization, and Improvement of Legumes-Driven Biological Nitrogen Fixation in Agricultural Systems. Front. Sustain. Food Syst. 2021, 5, 767998. [Google Scholar] [CrossRef]
- Thu, T.T.P.; Thiem, T.T.; Loan, N.T.; Van An, P. Effects of Baby Corn Density on the Crop and Weed Performance under Different Maize-Soybean Intercropping Systems: Effects of baby corn density on crop and weed performance under different maize-soybean intercropping systems. Vietnam J. Sci. Technol. 2021, 4, 1007–1020. [Google Scholar]
- Hoang, V.D.; Binh, H.T.T. Effect of maize-soybean intercropping and hand weeding on weed control. Vietnam J. Sci. 2015, 13, 354–363. [Google Scholar]
- Slayi, M.; Zhou, L.; Jaja, I.F. Exploring farmers’ perceptions and willingness to tackle drought-related issues in small-holder cattle production systems: A case of rural communities in the eastern cape, South Africa. Appl. Sci. 2023, 13, 7524. [Google Scholar] [CrossRef]
- Gonzales-Malca, J.A.; Tirado-Kulieva, V.A.; Abanto-López, M.S.; Aldana-Juárez, W.L.; Palacios-Zapata, C.M. Worldwide research on the health effects of bovine milk containing A1 and A2 β-casein: Unraveling the current scenario and future trends through bibliometrics and text mining. Curr. Res. Food Sci. 2023, 7, 100602. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.D.; Nguyen, C.O.; Chau, T.M.L.; Nguyen, D.Q.D.; Han, A.T.; Le, T.T.H. Goat production, supply chains, challenges, and opportunities for development in Vietnam: A Review. Animals 2023, 13, 2546. [Google Scholar] [CrossRef] [PubMed]
- Olmo, L.; Nguyen, H.V.; Nguyen, X.B.; Bui, T.N.; Ngo, C.T.K.; Nguyen, V.D.; Hoang, N.; Morales, L.E.; Walkden-Brown, S. Goat meat supply and demand in Vietnam: Global context and opportunities and risks for smallholder producers. Anim. Prod. Sci. 2024, 64, AN23416. [Google Scholar] [CrossRef]
Item | Concentrate | Urea-Treated Rice Straw | Fresh Guinea Grass | Guinea Grass Silage | Guinea Grass–Soybean Silage | Maize–Soybean Silage |
---|---|---|---|---|---|---|
Ingredient (g per kg) (as-fed basis) | ||||||
Corn flour | 595 | |||||
Rice bran | 260 | |||||
Soybean | 140 | |||||
Premix | 5 | |||||
Chemical composition | ||||||
Dry matter (DM) (%) | 88.6 | 42.3 | 19.3 | 32.0 | 30.3 | 29.2 |
Organic matter (%DM) | 96.0 | 86.6 | 88.5 | 87.4 | 87.2 | 94.4 |
Crude protein (%DM) | 12.3 | 8.3 | 6.1 | 5.9 | 7.5 | 7.9 |
Ether extract (%DM) | 6.5 | 2.1 | 2.6 | 2.7 | 3.2 | 3.3 |
Crude fibre (%DM) | 10.8 | 29.8 | 30.6 | 38.2 | 35.7 | 26.9 |
Neutral detergent fibre (%DM) | 17.7 | 68.9 | 49.3 | 48.6 | 49.7 | 53.0 |
Acid detergent fibre (%DM) | 6.1 | 37.6 | 28.4 | 24.2 | 26.3 | 24.1 |
Total ash (%DM) | 4.0 | 13.4 | 11.5 | 12.7 | 12.9 | 5.6 |
Non-fibrous carbohydrate (%DM) | 59.5 | 7.3 | 30.5 | 30.1 | 25.7 | 28.2 |
Total digestible nutrient | 81.0 | 47.4 | 53.6 | 52.0 | 53.9 | 58.2 |
Digestible energy (MJ·kg−1 DM) | 14.9 | 8.7 | 9.9 | 9.4 | 9.9 | 10.7 |
Metabolisable energy (MJ·kg−1 DM) | 12.2 | 7.2 | 8.0 | 7.6 | 8.2 | 8.7 |
Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4 | SEM | p | |
---|---|---|---|---|---|---|
(n = 4) | (n = 4) | (n = 4) | (n = 4) | |||
As-fed basis | ||||||
Concentrate (kg) | 0.68 | 0.69 | 0.75 | 0.66 | 0.02 | 0.878 |
Forage (kg) | 9.0 | 9.0 | 9.7 | 10.1 | 0.37 | 0.231 |
Total intake (kg) | 9.7 | 9.7 | 10.4 | 10.8 | 0.38 | 0.238 |
Dry matter basis | ||||||
Concentrate (kg) | 0.60 | 0.61 | 0.66 | 0.59 | 0.02 | 0.960 |
Forage (kg) | 3.1 | 2.7 | 2.9 | 3.0 | 0.11 | 0.875 |
DMI (kg) | 3.7 | 3.4 | 3.6 | 3.6 | 0.12 | 0.889 |
DMI/100 kg LW (kg) | 2.57 | 2.40 | 2.36 | 2.40 | 0.08 | 0.447 |
Daily CP intake (kg) | 0.31 | 0.26 | 0.29 | 0.30 | 0.01 | 0.933 |
Daily ME intake (MJ) | 30.2 | 28.4 | 30.3 | 30.6 | 1.00 | 0.705 |
Concentrate to forage ratio | 0.21 | 0.28 | 0.27 | 0.21 | 0.01 | 0.866 |
Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4 | SEM | p | |
---|---|---|---|---|---|---|
(n = 4) | (n = 4) | (n = 4) | (n = 4) | |||
Initial LW (kg) | 130.3 | 125.8 | 134.4 | 132.5 | 5.1 | 0.954 |
Final LW (kg) | 157.5 | 152.5 | 166.3 | 163.9 | 6.6 | 0.856 |
Total weight gain (kg) | 27.3 a | 26.8 a | 31.9 b | 31.4 b | 0.9 | 0.035 |
ADG (kg per day) | 0.32 a | 0.32 a | 0.38 b | 0.37 b | 0.01 | 0.035 |
Feed conversion ratio (kg DMI per kg ADG) | 11.5 a | 10.4 ab | 9.3 c | 9.6 bc | 0.35 | 0.047 |
Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4 | SEM | p | ||
---|---|---|---|---|---|---|---|
(n = 4) | (n = 4) | (n = 4) | (n = 4) | ||||
Initial | Chest girth | 120.5 | 117.0 | 121.0 | 122.0 | 1.8 | 0.813 |
Body length | 112.0 | 110.3 | 108.0 | 114.3 | 3.0 | 0.917 | |
Withers height | 99.5 | 101.3 | 101.8 | 101.3 | 1.4 | 0.954 | |
Final | Chest girth | 131.0 | 129.3 | 132.3 | 131.8 | 2.1 | 0.971 |
Body length | 128.3 | 120.3 | 129.0 | 126.5 | 3.0 | 0.784 | |
Withers height | 108.8 | 106.0 | 107.3 | 106.5 | 1.5 | 0.931 | |
Change | Chest girth | 10.5 | 12.3 | 11.3 | 9.8 | 1.0 | 0.870 |
Body length | 16.3 | 10.0 | 21.0 | 12.3 | 1.7 | 0.096 | |
Withers height | 9.3 | 4.8 | 5.5 | 5.0 | 0.8 | 0.179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, D.V.; Penrose, B.; Tran, N.B.T.; Le, H.T.T.; Trinh, H.T.; Ives, S. Feed Intake and Growth Performance of Vietnamese Yellow Calves Fed Silages from Intercropped Maize–Soybean and Guinea Grass. Ruminants 2024, 4, 602-612. https://doi.org/10.3390/ruminants4040041
Nguyen DV, Penrose B, Tran NBT, Le HTT, Trinh HT, Ives S. Feed Intake and Growth Performance of Vietnamese Yellow Calves Fed Silages from Intercropped Maize–Soybean and Guinea Grass. Ruminants. 2024; 4(4):602-612. https://doi.org/10.3390/ruminants4040041
Chicago/Turabian StyleNguyen, Don V., Beth Penrose, Ngoc B. T. Tran, Huyen T. T. Le, Hong T. Trinh, and Stephen Ives. 2024. "Feed Intake and Growth Performance of Vietnamese Yellow Calves Fed Silages from Intercropped Maize–Soybean and Guinea Grass" Ruminants 4, no. 4: 602-612. https://doi.org/10.3390/ruminants4040041
APA StyleNguyen, D. V., Penrose, B., Tran, N. B. T., Le, H. T. T., Trinh, H. T., & Ives, S. (2024). Feed Intake and Growth Performance of Vietnamese Yellow Calves Fed Silages from Intercropped Maize–Soybean and Guinea Grass. Ruminants, 4(4), 602-612. https://doi.org/10.3390/ruminants4040041