Farm-Scale Effectiveness of Feed Additives Supplied through a Mineral Mix for Beef Cattle Grazing Tropical Pastures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1 (Exp. 1)
2.1.1. Sites and Treatments
2.1.2. Animals, Paddocks’ Grass Species, and Management
2.1.3. Sward Monitoring and Animal Sampling
Site | Block | Pasture Species | Canopy Characteristics | Chemical Composition 6 | ||
---|---|---|---|---|---|---|
Height (cm) | Mass (kg DM/ha) | CP 7 (%) | NDF 8 (%) | |||
1 | 1 | Colonião guinea grass 1 | 45.8 | 8626 | 14.3 | 73.7 |
2 | Mombaça guinea grass 2 | 52.2 | 7205 | 13.3 | 65.3 | |
3 | Tanzânia guinea grass 3 | 35.6 | 8515 | 12.8 | 67.3 | |
4 | Xaraés palisade grass 4 | 24.3 | 6746 | 12.4 | 67.3 | |
2 | 5 | Coastcross Bermuda grass 5 | 20.8 | 2811 | 15.1 | 64.9 |
6 | Coastcross Bermuda grass 5 | 17.2 | 1491 | 15.1 | 64.9 |
2.2. Experiment 2 (Exp. 2)
2.3. Experiment 3 (Exp. 3)
2.4. Statistical Analysis
3. Results
3.1. Exp. 1
3.2. Exp. 2
3.3. Exp. 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bretschneider, G.; Elizalde, J.C.; Perez, F.A. The effect of feeding antibiotic growth promoters on the performance of beef cattle consuming forage-based diets: A review. Livest. Sci. 2008, 114, 135–149. [Google Scholar] [CrossRef]
- Marques, R.S.; Cooke, R.F. Effects of ionophores on ruminal function of beef cattle. Animals 2021, 11, 2871. [Google Scholar] [CrossRef]
- Nuñez, A.J.C.; Caetano, M.; Berndt, A.; Demarchi, J.J.A.A.; Leme, P.R.; Lanna, D.P.D. Combined use of ionophore and virginiamycin for finishing Nellore steers fed high concentrate diets. Sci. Agric. 2013, 70, 229–236. [Google Scholar] [CrossRef]
- Fonseca, M.P.; Borges, A.L.C.C.; Carvalho, P.H.A.; Silva, R.R.; Gonçalves, L.C.; Borges, I.; Lage, H.F.; Ferreira, A.L.; Saliba, E.O.S.; Jayme, D.G.; et al. Energy partitioning in cattle fed diets based on tropical forage with the inclusion of antibiotic additives. PLoS ONE 2019, 14, e0211565. [Google Scholar] [CrossRef]
- Polizel, D.M.; Marques, S.S.; Westphalen, M.F.; Gouvea, V.N.; Ferraz Junior, M.V.d.C.; Miszura, A.A.; Barroso, J.P.R.; Limede, A.C.; Ferreira, E.M.; Pires, A.V. Narasin inclusion for feedlot lambs fed a diet containing high amounts of ground flint corn. Sci. Agric. 2021, 78, e20200010. [Google Scholar] [CrossRef]
- Polizel, D.M.; Martins, A.S.; Miszura, A.A.; Ferraz Junior, M.V.C.; Bertoloni, A.V.; Oliveira, G.B.; Barroso, J.P.R.; Ferreira, E.M.; Pires, A.V. Low doses of monensin for lambs fed diets containing high level of ground flint corn. Sci. Agric. 2021, 78, e20190263. [Google Scholar] [CrossRef]
- Limede, A.C.; Marques, R.S.; Polizel, D.M.; Cappellozza, B.I.; Miszura, A.A.; Barroso, J.P.R.; Storti Martins, A.; Sardinha, L.A.; Baggio, M.; Pires, A.V. Effects of supplementation with narasin, salinomycin, or flavomycin on performance and ruminal fermentation characteristics of Bos indicus Nellore cattle fed with forage-based diets. J. Anim. Sci. 2021, 99, skab005. [Google Scholar] [CrossRef]
- Miszura, A.A.; Marques, R.S.; Polizel, D.M.; Cappellozza, B.I.; Cruz, V.A.; Ogg, M.A.; Barroso, J.P.R.; Oliveira, G.B.; Martins, A.S.; Limede, A.C.; et al. Effects of lasalocid, narasin, or virginiamycin supplementation on rumen parameters and performance of beef cattle fed forage-based diet. J. Anim. Sci. 2023, 101, skad108. [Google Scholar] [CrossRef]
- Da Silva, S.C.; Carvalho, P.C.F. Foraging Behaviour and Herbage Intake in the Favourable Tropics/Subtropics. In Grassland: A Global Resource, 1st ed.; McGilloway, D.A., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; Volume 1, pp. 81–96. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.511.4117&rep=rep1&type=pdf (accessed on 12 September 2023).
- Potter, E.L.; Muller, R.D.; Wray, M.I.; Carroll, L.H.; Meyer, R.M. Effect of monensin on the performance of cattle on pasture or fed harvested forages in confinement. J. Anim. Sci. 1986, 62, 583–592. [Google Scholar] [CrossRef]
- Kunkle, W.E.; Johns, J.T.; Poore, M.H.; Herd, D.B. Designing supplementation programs for beef cattle fed forage-based diets. J. Anim. Sci. 2000, 77, 1–12. [Google Scholar] [CrossRef]
- Bagley, C.P.; Feazel, J.I.; Morrison, D.G.; Lucas, D.M. Effects of salinomycin on ruminal characteristics and performance of grazing beef steers. J. Anim. Sci. 1988, 66, 792–797. [Google Scholar] [CrossRef]
- Cockwill, C.L.; McAllister, T.A.; Olson, M.E.; Milligan, D.N.; Ralston, B.J.; Huisma, C.; Hand, R.K. Individual intake of mineral and molasses supplements by cows, heifers and calves. Can. J. Anim. Sci. 2000, 80, 681–690. [Google Scholar] [CrossRef]
- Roso, C.; Restle, J. Lasalocida sódica suplementada via sal para fêmeas de corte mantidas em pastagem cultivada de estação fria. Rev. Bras. De Zootec. 2001, 30, 830–834. [Google Scholar] [CrossRef]
- Fieser, B.G.; Horn, G.W.; Edwards, J.T. Effects of energy and/or mineral supplementation in combination with monensin on performance of steers grazing winter wheat pasture. J. Anim. Sci. 2007, 85, 3470–3480. [Google Scholar] [CrossRef]
- Rode, L.M.; Lysyk, T.J.; Beauchemin, K.A. Intake of lasalocid-containing mineral supplements by grazing beef heifers. Can. J. Anim. Sci. 1994, 74, 77–82. [Google Scholar] [CrossRef]
- Silva, R.G.; Ferraz Junior, M.V.; Gouveia, V.N.; Polizel, D.M.; Santos, M.H.; Miszura, A.A.; Andrade, T.S.; Westphalen, M.F.; Biehl, M.V.; Pires, A.V. Effects of narasin in mineral mix to Nellore heifers fed with high forage. J. Anim. Sci. 2015, 93, 118. Available online: https://www.jtmtg.org/JAM/2015/abstracts/118.pdf (accessed on 12 September 2023).
- Richardson, C.R.; Nunnery, G.A.; Wester, D.B.; Cole, N.A.; Galyean, M.L. Power of test considerations for beef cattle experiments: A review. J. Anim. Sci. 2004, 82, e214–e222. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Fiems, L.O.; Boucqué, C.V.; Cottyn, B.G.; Moermans, R.J.; De Brabander, D.L. Effect of virginiamycin supplementation on the performance of young grazing cattle. Grass Forage Sci. 1992, 47, 36–40. [Google Scholar] [CrossRef]
- Cano, C.C.P.; Cecato, U.; Canto, M.W.; Santos, G.T.; Galbeiro, S.; Martins, E.M.; Mira, E.R.T. Nutritive value of Tanzaniagrass (Panicum maximum Jacq. cv. Tanzânia-1) grazed at different heights. Braz. J. Anim. Sci. 2004, 33, 1959–1968. [Google Scholar] [CrossRef]
- Sbrissia, A.F.; Schmitt, D.; Duchini, P.G.; Da Silva, S.C. Unravelling the relationship between a seasonal environment and the dynamics of forage growth in grazed swards. J. Agron. Crop Sci. 2020, 206, 630–639. [Google Scholar] [CrossRef]
- Fagundes, J.L.; Da Silva, S.C.; Pedreira, C.G.S.; Sbrissia, A.F.; Carnevalli, R.A.; Carvalho, C.A.B.; Pinto, L.F.M. Leaf area index, light extinction coefficient and herbage accumulation in Cynodon spp. swards under continuous stocking management. Pesqui. Agropecu. Bras. 2001, 36, 187–195. [Google Scholar] [CrossRef]
- Sbrissia, A.F.; Da Silva, S.C. Comparison of three methods for estimating leaf area index of marandu palisadegrass swards under continuous stocking. Braz. J. Anim. Sci. 2008, 37, 212–220. [Google Scholar] [CrossRef]
- Carvalho, C.A.B.; Da Silva, S.C.; Sbrissia, A.F.; Pinto, L.F.M.; Carnevalli, R.A.; Fagundes, J.L.; Pedreira, C.G.S. Tiller demography and dry matter accumulation rates in ‘Tifton 85’ swards under grazing. Sci. Agric. 2000, 57, 591–600. [Google Scholar] [CrossRef]
- Dixon, R.M.; Smith, D.R.; Porch, I.; Petherick, J.C. Effects of experience on voluntary intake of supplements by cattle. Aust. J. Exp. Agric. 2001, 41, 581–592. [Google Scholar] [CrossRef]
- Kahn, L.P. The use of lithium chloride for estimating supplement intake in grazing sheep: Estimates of heritability and repeatability. Aust. J. Agric. Res. 1994, 45, 1731–1739. [Google Scholar] [CrossRef]
- Gordon, H.M.; Whitlock, H.V. A new technique for counting nematode eggs in sheep faeces. J. Counc. Sci. Ind. Res. 1939, 1, 50–52. Available online: http://hdl.handle.net/102.100.100/339340?index=1 (accessed on 12 September 2023).
- Palmquist, D.L.; Conrad, H.R. Origin of plasma fatty acid in lactating dairy cows fed high fat diets. J. Dairy Sci. 1971, 54, 1025–1033. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Valadares Filho, S.d.C.; Lopes, S.A.; Silva, B.d.C.; Chizzotti, M.L.; Bissaro, L.Z. Tabelas Brasileiras de Composição de Alimentos para Ruminantes. 2018, CQBAL 4.0. Available online: www.cqbal.com.br (accessed on 15 September 2023).
- Bueno, I.C.S.; Filho, S.L.S.; Gobbo, S.P.; Louvandini, H.; Vitti, D.M.S.S.; Abdalla, A.L. Influence of inoculum source in a gas production method. Anim. Feed Sci. Technol. 2005, 123, 95–105. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1999, 48, 185–197. [Google Scholar] [CrossRef]
- Maurício, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S.; Theodorou, M.K. A semi-automated in vitro gas production technique for ruminants feedstuff evaluation. Anim. Feed Sci. Technol. 1999, 79, 321–330. [Google Scholar] [CrossRef]
- Preston, T.R. Tropical Animal Feeding: A Manual for Research Workers. In Animal Production and Health Paper; FAO: Rome, Italy, 1995; p. 126. [Google Scholar]
- El-Zaiat, H.M.; Araujo, R.C.; Soltan, Y.A.; Morsy, A.S.; Louvandini, H.; Pires, A.V.; Patino, H.O.; Correa, P.S.; Abdalla, A.L. Encapsulated nitrate and cashew nutshell liquid on blood and rumen constituents, methane emission, and growth performance of lambs. J. Anim. Sci. 2014, 92, 2214–2224. [Google Scholar] [CrossRef]
- R Core Team: A Language and Environment for Statistical Computing. 2013. Available online: https://www.R-project.org/ (accessed on 15 September 2023).
- Osborne, J. Improving your data transformations: Applying the Box-Cox transformation. Pract. Assess. Res. Eval. 2010, 15, 12. [Google Scholar] [CrossRef]
- Fisher, D.S. Defining the experimental unit in grazing trials. J. Anim. Sci. 2000, 77, 1–5. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. R Core Team. Nlme: Linear and Nonlinear Mixed Effects Models; R Package Version 3; 2014; pp. 1–117. Available online: http://CRAN.R-project.org/package=nlme (accessed on 10 September 2023).
- Duffield, T.F.; Merrill, J.K.; Bagg, R.N. Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain and dry matter intake. J. Anim. Sci. 2012, 90, 4583–4592. [Google Scholar] [CrossRef]
- Maciel, I.C.F.; Saturnino, H.M.; Barbosa, F.A.; Malacco, V.M.R.; Andrade Junior, J.M.C.; Maia Filho, G.H.B.; Costa, P.M. Virginiamycin and sodium monensin supplementation for beef cattle on pasture. Arq. Bras. Med. Vet. Zootec. 2019, 71, 1999–2008. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Gorocica-Buenfil, M.A. An assessment of the effectiveness of virginiamycin on liver abscess incidence and growth performance in feedlot cattle: A comprehensive statistical analysis. J. Anim. Sci. 2018, 96, 2474–2489. [Google Scholar] [CrossRef]
- Ferreira, S.F.; Fernandes, J.J.D.R.; Padua, J.T.; Bilego, U.O.; Lima, M.A.S.; Franca AFde, S.; Bento, E.A.; Oliveira, L.G.; Grandini, D. Desempenho e metabolismo ruminal em bovinos de corte em sistema de pastejo no periodo seco do ano recebendo virginiamicina na dieta. Semin. Cienc. Agrar. 2015, 36, 2067. [Google Scholar] [CrossRef]
- Malafaia, P.; Barbosa, J.D.; Brito, M.F.; Souza, V.C.; Costa, D.F.A. Phosphorus for Cattle and Buffaloes in Brazil: Clinical Signs and Diagnosis of Its Deficiency and Relevance, and Recommended Strategies to Alleviate Issues Observed under Grazing Conditions. Ruminants 2023, 3, 55–75. [Google Scholar] [CrossRef]
- Malafaia, P.; Garcia, F.Z.; Lopes, S.P.; Souza, V.C.; Canella Filho, C.F.C.; Costa, D.F.A.; Veiga, C.C.P. Evaluation of an inexpensive needle test for the diagnosis of phosphorus deficiency and management of phosphorus supplementation for cattle: A multiple case study. Acad. Bras. Cienc. 2018, 90, 3337–3352. [Google Scholar] [CrossRef]
- Malafaia, P.; Salcedo, Y.T.G.; Uscategui, R.A.R.; Souza, V.C.; Costa, D.F.A.; Berchielli, T.T. A simple and fast sampling method for chemical analyses and densitometry of bones through rib biopsies in cattle. Pesq. Vet. Bras. 2017, 37, 31–35. [Google Scholar] [CrossRef]
- Costa, D.F.A.; Correia, P.S.; Reboucas Dorea, J.R.; De Souza, J.; de Souza Congio, G.F.; Vaz Pires, A.; Malafaia, P.A.; Drouillard, J.; Dias, C.T.S.; Luchiari-Filho, A.; et al. Strategic supplementation of growing cattle on tropical pastures improves nutrient use and animal performance, with fewer days required on the finishing phase. Anim. Prod. Sci. 2020, 61, 480–493. [Google Scholar] [CrossRef]
- Ramalho, T.R.A.; Costa, D.F.A.; Da Silva, S.C.; Goulart, R.C.D.; Congio, G.F.d.S.; Santos, F.A.P. Supplementation of growing bulls grazing Panicum maximum cv. Coloniao increases average daily gain and does not impact subsequent performance in feedlot phase. Rev. Bras. Saúde Prod. Anim. 2020, 21, 1–17. [Google Scholar] [CrossRef]
- Costa, D.F.A.; Da Silva, S.C.; Bittar, C.M.; Takiya, C.; Dórea, J.R.R.; Del Valle, T.A.; Malafaia, P.; Santos, F.A.P. Citrus pulp-based supplement reduces the detrimental effects of high grazing pressure on the performance of beef cattle under a rotational system of Urochloa brizantha. Rev. Bras. Saúde Prod. Anim. 2019, 20, 14. [Google Scholar] [CrossRef]
Item | S 1 | CON 2 | SLI 2 | SHI 2 | VGN 2 | SEM | p-Value 3 |
---|---|---|---|---|---|---|---|
Non-eaters, % | 8 | 23.5 | 49.3 | 31.3 | 51.2 | 10.2 | 0.234 |
Mineral mixture intake, g DM/d | - | 36.1 b | 26.4 c | 56.8 a | 28.9 bc | 4.39 | <0.001 |
Active ingredient intake, mg DM/d | - | 0 c | 53.2 ab | 45.0 b | 58.1 a | 2.67 | <0.001 |
Average daily gain, kg/d | 79 | 0.547 b | 0.551 b | 0.557 ab | 0.616 a | 0.0814 | 0.037 |
Total short-chain fatty acids, mmol/L | 3 | 63.0 | 59.6 | 66.5 | 58.1 | 12.3 | 0.422 |
Acetate | 3 | 44.6 | 42.3 | 47.1 | 41.7 | 10.5 | 0.481 |
Propionate | 3 | 11.3 | 10.7 | 11.8 | 10.2 | 0.98 | 0.407 |
Butyrate | 3 | 7.01 | 6.61 | 7.49 | 6.23 | 0.96 | 0.358 |
Acetate:propionate | 3 | 3.95 | 3.95 | 3.90 | 3.97 | 0.68 | 0.997 |
Ammonia, mg/100 mL | 3 | 19.2 | 19.4 | 20.0 | 17.7 | 11.5 | 0.745 |
Strongylida spp., OpG | 79 | 122 | 126 | 128 | 106 | 69.9 | 0.258 |
Eimeria spp., OpG | 79 | 458 | 344 | 325 | 387 | 113.7 | 0.773 |
Item | s 1 | CON 2 | VGN 2 | SEM | p-Value |
---|---|---|---|---|---|
Mineral mixture intake, g DM/d | - | 43.0 | 39.0 | 2.44 | 0.062 |
Active ingredient intake, mg DM/d | - | 0 | 98.4 | - | - |
Average daily gain, kg/d | 154 | 0.636 | 0.703 | 0.066 | 0.031 |
Treatments | SEM | p-Value 1 | ||||
---|---|---|---|---|---|---|
T1–C 2 | T1 2 | T40 2 | T300 2 | |||
Total SCFA, mmol/L | 73.90 | 72.43 | 78.68 | 72.14 | 3.249 | 0.278 |
Acetate Propionate | 47.4 | 46.3 | 50.4 | 46.1 | 2.081 | 0.212 |
Propionate | 13.1 a | 16.2 b | 17.7 b | 16.1 b | 0.707 | <0.001 |
Butyrate | 10.37 a | 7.26 b | 7.70 b | 7.21 b | 0.422 | <0.001 |
Isobutyrate | 0.74 a | 0.59 b | 0.63 ab | 0.59 b | 0.045 | <0.005 |
Isovalerate | 1.27 | 1.17 | 1.27 | 1.19 | 0.099 | 0.715 |
Valerate | 0.86 | 0.83 | 0.87 | 0.84 | 0.043 | 0.799 |
Acetate:propionate | 3.61 a | 2.85 b | 2.84 b | 2.85 b | 0.041 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goulart, R.C.D.; Costa, D.F.A.; Silva, T.A.C.C.d.; Congio, G.F.d.S.; Marques, R.d.S.; Corsi, M. Farm-Scale Effectiveness of Feed Additives Supplied through a Mineral Mix for Beef Cattle Grazing Tropical Pastures. Ruminants 2023, 3, 483-494. https://doi.org/10.3390/ruminants3040039
Goulart RCD, Costa DFA, Silva TACCd, Congio GFdS, Marques RdS, Corsi M. Farm-Scale Effectiveness of Feed Additives Supplied through a Mineral Mix for Beef Cattle Grazing Tropical Pastures. Ruminants. 2023; 3(4):483-494. https://doi.org/10.3390/ruminants3040039
Chicago/Turabian StyleGoulart, Ricardo Cazerta Duarte, Diogo Fleury Azevedo Costa, Tiago Alves Corrêa Carvalho da Silva, Guilhermo Francklin de Souza Congio, Rodrigo da Silva Marques, and Moacyr Corsi. 2023. "Farm-Scale Effectiveness of Feed Additives Supplied through a Mineral Mix for Beef Cattle Grazing Tropical Pastures" Ruminants 3, no. 4: 483-494. https://doi.org/10.3390/ruminants3040039
APA StyleGoulart, R. C. D., Costa, D. F. A., Silva, T. A. C. C. d., Congio, G. F. d. S., Marques, R. d. S., & Corsi, M. (2023). Farm-Scale Effectiveness of Feed Additives Supplied through a Mineral Mix for Beef Cattle Grazing Tropical Pastures. Ruminants, 3(4), 483-494. https://doi.org/10.3390/ruminants3040039