Essential Oil Blends with or without Fumaric Acid Influenced In Vitro Rumen Fermentation, Greenhouse Gas Emission, and Volatile Fatty Acids Production of a Total Mixed Ration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Ethical Approval
2.2. Test Ingredients
2.3. Chemical Analysis
2.4. In Vitro Batch Culture Incubation
2.5. Sampling and Analyses of Gas Production and Digestibility
2.6. Estimation of Microbial Mass
2.7. Ammonia Nitrogen Determination
2.8. Volatile Fatty Acid Analysis
2.9. Statistical Analysis
3. Results
3.1. Dry Matter and Fiber Fractions Degradability
3.2. In Vitro Digestibility and Fermentation Parameters
3.3. Gas Production and GHG Emissions
3.4. Volatile Fatty Acids Production
4. Discussion
4.1. Dry Matter and Fiber Fractions Degradability
4.2. In Vitro Digestibility and Fermentation Parameters
4.3. Gas Production and GHG Emissions
4.4. Volatile Fatty Acid Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harirchi, S.; Wainaina, S.; Sar, T.; Nojoumi, S.A.; Parchami, M.; Parchami, M.; Varjani, S.; Khanal, S.K.; Wong, J.; Awasthi, M.K.; et al. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. Bioengineered 2022, 13, 6521–6557. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Li, Z.; Liu, N.; Cao, Y.; Jin, C.; Li, F.; Cai, C.; Yao, J. Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size. J. Anim. Sci. Biotechnol. 2018, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Remling, N.; Riede, S.; Meyer, U.; Beineke, A.; Breves, G.; Flachowsky, G.; Dänicke, S. Influence of fumaric acid on ruminal parameters and organ weights of growing bulls fed with grass or maize silage. Animal 2017, 11, 1754–1761. [Google Scholar] [CrossRef] [PubMed]
- Blanch, M.; Carro, M.D.; Ranilla, M.J.; Viso, A.; Vázquez-Anón, M.; Bach, A. Influence of a mixture of cinnamaldehyde and garlic oil on rumen fermentation, feeding behavior and performance of lactating dairy cows. Anim. Feed Sci. Technol. 2016, 219, 313–323. [Google Scholar] [CrossRef]
- Kholif, A.E.; Olafadehan, O.A. Essential oils and phytogenic feed additives in ruminant diet: Chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochem. Rev. 2021, 20, 1087–1108. [Google Scholar] [CrossRef]
- Lin, B.; Lu, Y.; Salem, A.Z.M.; Wang, J.H.; Liang, Q.; Liu, J.X. Effects of essential oil combinations on sheep ruminal fermentation and digestibility of a diet with fumarate included. Anim. Feed Sci. Technol. 2013, 184, 24–32. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 2012, 78, 4271–4280. [Google Scholar] [CrossRef]
- Brice, R.M.; Dele, P.A.; Ike, K.A.; Shaw, Y.A.; Olagunju, L.K.; Orimaye, O.E.; Subedi, K.; Anele, U.Y. Effects of essential oil blends on in vitro apparent and truly degradable dry matter, efficiency of microbial production, total short-chain fatty acids and greenhouse gas emissions of two dairy cow diets. Animals 2022, 12, 2185. [Google Scholar] [CrossRef]
- Metwally, A.; Deml, M.; Fahn, C.; Windisch, W. Effects of a specific blend of essential oil on rumen degradability, total tract digestibility and fermentation characteristics in rumen fistulated cows. J. Dairy Vet. Anim. Res. 2016, 2, 51–60. [Google Scholar] [CrossRef]
- Bayaru, E.; Kanda, S.; Kamada, T.; Itabashi, H.; Andoh, S.; Nishida, T.; Ishida, M.; Itoh, T.; Nagara, K.; Isobe, Y. Effect of fumaric acid on methane production, rumen fermentation and digestibility of cattle fed roughage alone. Anim. Sci. J. 2001, 72, 139–146. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Olagunju, L.K.; Isikhuemhen, O.S.; Dele, P.A.; Anike, F.N.; Ike, K.A.; Shaw, Y.; Brice, R.M.; Orimaye, O.E.; Wuaku, M.; Essick, B.G.; et al. Effects of the Incubation Period of Pleurotus ostreatus on the Chemical Composition and Nutrient Availability of Solid-State-Fermented Corn Stover. Animals 2023, 13, 2587. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moreno, M.; Binversie, E.; Fessenden, S.W.; Stern, M.D. Mitigation of in vitro hydrogen sulfide production using bismuth subsalicylate with and without monensin in beef feedlot diets. J. Anim. Sci. 2015, 93, 5346–5354. [Google Scholar] [CrossRef]
- Castilejos, L.; Calsamiglia, S.; Ferret, A. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J. Dairy Sci. 2006, 89, 2649–2658. [Google Scholar] [CrossRef] [PubMed]
- Cobellis, G.; Petrozzi, A.; Forte, C.; Acuti, G.; Orrù, M.; Marcotullio, M.C.; Aquino, A.; Nicolini, A.; Mazza, V.; Trabalza-Marinucci, M. Evaluation of the effects of mitigation on methane and ammonia production by using Origanum vulgare L. and Rosmarinus officinalis L. essential oils on in vitro rumen fermentation systems. Sustainability 2015, 7, 12856–12869. [Google Scholar] [CrossRef]
- Yu, S.; Li, L.; Zhao, H.; Tu, Y.; Liu, M.; Jiang, L.; Zhao, Y. Characterization of the dynamic changes of ruminal microbiota colonizing citrus pomace waste during rumen incubation for volatile fatty acid production. Microbiol. Spectr. 2023, 11, e03517-22. [Google Scholar] [CrossRef]
- Molho-Ortiz, A.A.; Romero-Pérez, A.; Ramírez-Bribiesca, E.; Márquez-Mota, C.C.; Castrejón-Pineda, F.A.; Corona, L. Effect of essential oils and aqueous extracts of plants on in vitro rumen fermentation and methane production. J. Anim. Behav. Biometeorol. 2022, 10, 2210. [Google Scholar] [CrossRef]
- Benetel, G.; Silva, T.d.S.; Fagundes, G.M.; Welter, K.C.; Melo, F.A.; Lobo, A.A.G.; Muir, J.P.; Bueno, I.C.S. Essential oils as in vitro ruminal fermentation manipulators to mitigate methane emission by beef cattle grazing tropical grasses. Molecules 2022, 27, 2227. [Google Scholar] [CrossRef]
- Baraz, H.; Jahani-Azizabadi, H.; Azizi, O. Simultaneous use of thyme essential oil and disodium fumarate can improve in vitro ruminal microbial fermentation characteristics. Vet. Res. Forum 2018, 9, 193–198. [Google Scholar] [CrossRef]
- Baraka, T.A.M.; Abdl-Rahman, M.A. In vitro evaluation of sheep rumen fermentation pattern after adding different levels of eugenol—Fumaric acid combinations. Vet. World 2012, 5, 110–117. [Google Scholar] [CrossRef]
- Lin, B.; Wang, J.H.; Lu, Y.; Liang, Q.; Liu, J.X. In vitro rumen fermentation and methane production are influenced by active components of essential oils combined with fumarate. J. Anim. Physiol. Anim. Nutr. 2013, 97, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Carro, M.D.; Kamel, C. Effect of garlic oil and four of its compounds on rumen microbial fermentation. J. Dairy Sci. 2005, 88, 4393–4404. [Google Scholar] [CrossRef] [PubMed]
Corn Silage | Alfalfa Hay | Concentrate | Total Mixed Ration | |
---|---|---|---|---|
Dry Matter | 37.0 | 82.8 | 89.6 | 67.8 |
Organic matter | 96.5 | 91.0 | 83.3 | 93.0 |
Crude Protein | 6.72 | 17.0 | 16.6 | 13.6 |
Crude Fat | 4.63 | 3.26 | 8.62 | 4.89 |
Ash | 3.52 | 9.03 | 16.7 | 7.03 |
NDF | 58.9 | 49.7 | 74.4 | 61.9 |
ADF | 14.4 | 9.35 | 15.2 | 11.7 |
ADL | 10.4 | 18.2 | 10.4 | 13.7 |
Treatments | DMD (%) | NDFD (%) | ADFD (%) | ADLD (%) | HEMD (%) | CELD (%) |
---|---|---|---|---|---|---|
Control | 52.99 a | 70.72 a | 56.03 | 19.78 | 14.70 a | 36.25 |
EFA1 | 39.47 bc | 67.72 ab | 55.17 | 17.74 | 12.61 ab | 37.37 |
EFA2 | 40.35 bc | 67.37 ab | 54.40 | 17.80 | 12.97 ab | 36.60 |
EFA3 | 38.22 bc | 68.19 ab | 55.94 | 19.26 | 12.25 ab | 36.68 |
EFA4 | 36.80 c | 66.23 b | 56.30 | 17.97 | 9.94 b | 38.33 |
EOB1 | 38.89 bc | 68.46 ab | 56.96 | 19.09 | 11.50 ab | 37.87 |
EOB2 | 42.57 bc | 69.53 ab | 55.71 | 19.29 | 13.82 ab | 36.41 |
EOB3 | 44.03 b | 70.66 a | 56.06 | 17.46 | 14.60 a | 38.60 |
EOB4 | 39.51 bc | 66.62 ab | 55.38 | 20.37 | 11.24 ab | 35.01 |
SEM | 0.769 | 0.357 | 0.203 | 0.380 | 0.352 | 0.401 |
p value | ||||||
EOB | 0.1370 | 0.0353 | 0.3582 | 0.9066 | 0.0152 | 0.7103 |
FA | 0.0280 | 0.0543 | 0.1845 | 0.3142 | 0.2561 | 0.7603 |
EOB × FA | <0.001 | 0.0085 | 0.1539 | 0.6575 | 0.0116 | 0.5303 |
Treatments | pH | Undegraded DM | IVADDM | IVTDDM | PF | Mmass (g/kg DM) | NH3-N (mg/dL) |
---|---|---|---|---|---|---|---|
Control | 6.64 b | 0.159 b | 0.592 a | 0.693 a | 2.57 ab | 0.065 cd | 16.14 a |
EFA1 | 6.61 d | 0.184 a | 0.391 d | 0.636 b | 2.74 ab | 0.124 a | 12.21 ef |
EFA2 | 6.64 b | 0.182 a | 0.450 bcd | 0.644 b | 2.62 ab | 0.099 abc | 11.88 f |
EFA3 | 6.62 cd | 0.189 a | 0.523 ab | 0.628 b | 2.76 ab | 0.054 d | 12.61 def |
EFA4 | 6.64 bc | 0.186 a | 0.393 d | 0.631 b | 2.29 b | 0.120 a | 13.73 bcd |
EOB1 | 6.64 bc | 0.181 a | 0.423 cd | 0.644 b | 2.99 a | 0.113 ab | 14.01 bc |
EOB2 | 6.69 a | 0.183 a | 0.494 bc | 0.640 b | 2.85 ab | 0.074 bcd | 14.06 bc |
EOB3 | 6.62 bcd | 0.178 a | 0.498 bc | 0.647 b | 2.65 ab | 0.076 bcd | 14.85 b |
EOB4 | 6.69 a | 0.183 a | 0.399 d | 0.636 b | 2.96 a | 0.120 a | 13.39 cde |
SEM | 0.004 | 0.0014 | 0.0106 | 0.0029 | 0.034 | 0.0045 | 0.217 |
p value | |||||||
EOB | <0.001 | 0.8969 | <0.001 | 0.3819 | 0.3646 | <0.001 | 0.5107 |
FA | 0.0001 | 0.0901 | 0.4328 | 0.0601 | 0.0363 | 0.7162 | <0.001 |
EOB × FA | <0.001 | <0.001 | <0.001 | <0.001 | 0.0305 | <0.001 | <0.001 |
Treatments | Gas Volume (mL/g DM) | Methane (mg/g DM) | Carbon Dioxide (mg/g DM) | Ammonia (mmol/g DM) | Hydrogen Sulphide (mg/g DM) |
---|---|---|---|---|---|
Control | 181 a | 7.69 a | 37.3 a | 61.7 ab | 213 bc |
EFA1 | 128 d | 0.71 d | 12.9 b | 75.5 a | 511 a |
EFA2 | 158 abc | 5.18 ab | 27.2 ab | 73.1 a | 202 bc |
EFA3 | 160 ab | 5.36 ab | 29.5 ab | 58.3 ab | 179 bc |
EFA4 | 147 bcd | 4.42 abc | 24.7 ab | 26.6 b | 43.5 bc |
EOB1 | 123 d | 1.05 cd | 15.7 b | 90.1 a | 505 a |
EOB2 | 148 bcd | 5.10 ab | 25.3 ab | 80.2 a | 217 b |
EOB3 | 158 abc | 6.29 ab | 31.0 ab | 72.1 a | 217 b |
EOB4 | 133 cd | 3.95 bcd | 20.3 ab | 25.7 b | 38.3 c |
SEM | 2.3 | 0.379 | 1.62 | 3.86 | 24.85 |
p value | |||||
EOB | <0.001 | <0.001 | 0.003 | <0.001 | <0.001 |
FA | 0.077 | 0.808 | 0.883 | 0.316 | 0.857 |
EOB × FA | <0.001 | <0.001 | 0.004 | <0.001 | <0.001 |
Treatments | TVFA (mM) | Acetate | Propionate | Butyrate | Isobutyrate | Valerate | Isovalerate | APR |
---|---|---|---|---|---|---|---|---|
Control | 77.90 a | 0.678 bc | 0.201 bc | 0.104 e | 0.0049 a | 0.011 b | 0.0021 ab | 3.39 d |
EFA1 | 59.49 d | 0.579 f | 0.211 ab | 0.188 a | 0.0031 c | 0.017 a | 0.0014 e | 2.75 e |
EFA2 | 62.28 cd | 0.657 cd | 0.188 cd | 0.138 c | 0.0041 b | 0.011 b | 0.0019 bc | 3.50 cd |
EFA3 | 72.52 ab | 0.666 bcd | 0.198 bc | 0.120 d | 0.0039 b | 0.010 b | 0.0018 bc | 3.36 d |
EFA4 | 59.83 cd | 0.652 d | 0.166 ef | 0.166 b | 0.0039 b | 0.011 b | 0.0022 a | 3.94 b |
EOB1 | 59.46 d | 0.606 e | 0.216 a | 0.161 b | 0.0037 b | 0.011 b | 0.0017 d | 2.81 e |
EOB2 | 69.44 abc | 0.708 a | 0.151 f | 0.126 cd | 0.0038 b | 0.009 b | 0.0017 cd | 4.70 a |
EOB3 | 66.94 bcd | 0.683 b | 0.177 de | 0.123 d | 0.0041 b | 0.010 b | 0.0019 bcd | 3.86 bc |
EOB4 | 58.75 d | 0.662 bcd | 0.152 f | 0.169 b | 0.0039 b | 0.011 b | 0.0020 bc | 4.36 a |
SEM | 1.101 | 0.0054 | 0.0033 | 0.0038 | 0.00007 | 0.0004 | 0.00004 | 0.089 |
p value | ||||||||
EOB | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.0019 | <0.001 | <0.001 |
FA | 0.9547 | 0.0210 | 0.0199 | 0.2520 | 0.1967 | 0.0580 | 0.7181 | 0.0047 |
EOB × FA | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabi, J.O.; Okedoyin, D.O.; Anotaenwere, C.C.; Wuaku, M.; Gray, D.; Adelusi, O.O.; Ike, K.A.; Olagunju, L.K.; Dele, P.A.; Anele, U.Y. Essential Oil Blends with or without Fumaric Acid Influenced In Vitro Rumen Fermentation, Greenhouse Gas Emission, and Volatile Fatty Acids Production of a Total Mixed Ration. Ruminants 2023, 3, 373-384. https://doi.org/10.3390/ruminants3040031
Alabi JO, Okedoyin DO, Anotaenwere CC, Wuaku M, Gray D, Adelusi OO, Ike KA, Olagunju LK, Dele PA, Anele UY. Essential Oil Blends with or without Fumaric Acid Influenced In Vitro Rumen Fermentation, Greenhouse Gas Emission, and Volatile Fatty Acids Production of a Total Mixed Ration. Ruminants. 2023; 3(4):373-384. https://doi.org/10.3390/ruminants3040031
Chicago/Turabian StyleAlabi, Joel O., Deborah O. Okedoyin, Chika C. Anotaenwere, Michael Wuaku, DeAndrea Gray, Oludotun O. Adelusi, Kelechi A. Ike, Lydia K. Olagunju, Peter A. Dele, and Uchenna Y. Anele. 2023. "Essential Oil Blends with or without Fumaric Acid Influenced In Vitro Rumen Fermentation, Greenhouse Gas Emission, and Volatile Fatty Acids Production of a Total Mixed Ration" Ruminants 3, no. 4: 373-384. https://doi.org/10.3390/ruminants3040031
APA StyleAlabi, J. O., Okedoyin, D. O., Anotaenwere, C. C., Wuaku, M., Gray, D., Adelusi, O. O., Ike, K. A., Olagunju, L. K., Dele, P. A., & Anele, U. Y. (2023). Essential Oil Blends with or without Fumaric Acid Influenced In Vitro Rumen Fermentation, Greenhouse Gas Emission, and Volatile Fatty Acids Production of a Total Mixed Ration. Ruminants, 3(4), 373-384. https://doi.org/10.3390/ruminants3040031