Previous Issue
Volume 4, September
 
 

Microplastics, Volume 4, Issue 4 (December 2025) – 11 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
22 pages, 6640 KB  
Article
Application of Hybrid Ceramic Membranes for Microplastic and Nanoplastic Separation and Improved Wastewater Treatment
by Prashan M. Rodrigo, Emily M. Sims and Raghava R. Kommalapati
Microplastics 2025, 4(4), 76; https://doi.org/10.3390/microplastics4040076 - 15 Oct 2025
Viewed by 105
Abstract
Microplastics, pervasive environmental pollutants with significant health risks, present formidable challenges in wastewater treatment due to their persistence and resistance to conventional removal methods. This study investigates the efficacy of hybrid ceramic membrane filtration for the systematic removal of micro- and nanoplastics from [...] Read more.
Microplastics, pervasive environmental pollutants with significant health risks, present formidable challenges in wastewater treatment due to their persistence and resistance to conventional removal methods. This study investigates the efficacy of hybrid ceramic membrane filtration for the systematic removal of micro- and nanoplastics from wastewater, while evaluating the role of anaerobic digestion as a pretreatment to enhance membrane performance. This study systematically assesses the performance of the 1.4 μm pore-sized flat sheet ceramic membrane and the 1 kDa pore-sized tubular ceramic membrane, respectively, for microplastic and nanoplastic removal in wastewater. Also, the effect of anaerobic digestion was assessed in microplastic separation and quantification. Anaerobic digestion reduced suspended solids by 57–67%. The average microplastic concentration was ~1782 MP L−1. However, anaerobic digestion reduced the average concentration to ~913 MP L−1. The opposite trend was observed in nanoplastic concentrations, which were ~4268 and ~10,066 NP L−1, respectively, for the samples without and with anaerobic digestion. The ceramic membrane flux decreased from ~106.5 to ~25 L m−2 h−1 at a flow rate of 0.4 L min−1 during the collection of 2 L of filtrate. However, anaerobic digestion improved the flux approximately 3 times. The tubular ceramic membrane flux was ~6.1 L m−2 h−1 at a flow rate of 2.0 L min−1, which was reduced by 50% after the ceramic membrane treatment. By overcoming the limitations of conventional microplastic removal methods, such as the inefficiency of residual chemicals or byproducts, hybrid ceramic membrane filtration is a viable option for a scalable, efficient, and sustainable method in controlling microplastic and nanoplastic pollution. Full article
Show Figures

Figure 1

17 pages, 3073 KB  
Article
An Open-Source Computer-Vision-Based Method for Spherical Microplastic Settling Velocity Calculation
by Catherine L. Stacy, Md Abdul Baset Sarker, Abul B. M. Baki and Masudul H. Imtiaz
Microplastics 2025, 4(4), 75; https://doi.org/10.3390/microplastics4040075 - 14 Oct 2025
Viewed by 136
Abstract
Microplastics (particles ≤ 5 mm) are ubiquitous and persistent, posing threats to ecosystems and human health. Thus, the development of technologies for evaluating their dynamics is crucial. Settling velocity is a critical parameter for predicting the fate of microplastics in aquatic environments. Current [...] Read more.
Microplastics (particles ≤ 5 mm) are ubiquitous and persistent, posing threats to ecosystems and human health. Thus, the development of technologies for evaluating their dynamics is crucial. Settling velocity is a critical parameter for predicting the fate of microplastics in aquatic environments. Current methods for computing this metric are highly subjective and lack a standard. The goal of this research is to develop an objective, automated technique employing the technological advances in computer vision. In the laboratory, a camera recorded the trajectories of microplastics as they sank through a water column. The settling velocity of each microplastic was calculated using a YOLOv12n-based object detection model. The system was tested with three classes of spherical microplastics and three types of water. Ground truth settling times, recorded manually with a stopwatch, allowed for quantification of the system’s accuracy. When comparing the velocities calculated using the computer vision system to the stopwatch ground truth, the average error across all water types was 5.97% for the 3 mm microplastics, 7.14% for the 4 mm microplastics, and 6.15% for the 5 mm microplastics. This new method will enable the research community to predict microplastic distribution and transport patterns, as well as implement more timely strategies for mitigating pollution. Full article
Show Figures

Figure 1

21 pages, 2871 KB  
Article
Assessment of Microplastic and Heavy Metal Contamination in Durban Harbour Sediments: Ecological Implications for Grandidierella lignorum
by Refilwe Precious Mofokeng and David Glassom
Microplastics 2025, 4(4), 74; https://doi.org/10.3390/microplastics4040074 - 11 Oct 2025
Viewed by 168
Abstract
This study investigated how metal concentrations and microplastic abundance co-vary temporally and spatially in sediments in Durban Harbour, South Africa. The effects of sediment contamination on the amphipod Grandidierella lignorum was additionally investigated. Sediments from five sites in the harbour, namely Little Lagoon [...] Read more.
This study investigated how metal concentrations and microplastic abundance co-vary temporally and spatially in sediments in Durban Harbour, South Africa. The effects of sediment contamination on the amphipod Grandidierella lignorum was additionally investigated. Sediments from five sites in the harbour, namely Little Lagoon (LL), Yacht Bank (YB), Marina Bank (MB), Western Bank (WB), and Central Bank (CB), were analysed for metals using ICP-OES, and microplastic particles were counted. Sediment metal concentrations varied across sites and seasons, with Al and Fe dominating. Elevated levels of Cu, Zn, and Pb were observed, particularly in areas with high industrial activity, suggesting point-source contamination. Trace concentrations of As, Cd, and Ni were found and these metals were excluded from further analysis. Abundance ranged from 0.2 to 2.5 particles per gram dry weight, and differed significantly among sites (p < 0.01) with the highest concentrations in LL and YB. Amphipod survival rates following exposure to sediment did not significantly differ among sites but correlated moderately with microplastic abundance (p > 0.05, R2 = 0.57). Tissue analysis revealed selective metal accumulation, following the trend Al > Fe > Zn > Cu > Cr, with Mn, As, and Pb undetected. These results highlight the spatial heterogeneity of sediment contamination in Durban Harbour and demonstrate the bioaccumulation potential and ability to regulate metals in G. lignorum, particularly for essential metals like Fe and Zn. Despite no clear evidence linking microplastics to metal concentrations, the findings highlight the complex interactions between contaminants and their potential ecological impact. Full article
Show Figures

Figure 1

20 pages, 2294 KB  
Article
Pollution Sources, Distribution, and Health Risks of Microplastic in Road Dust of Industrial, Peri-Urban Areas and Capital City of Bangladesh
by Md. Sohel Rana, Qingyue Wang, Miho Suzuki, Weiqian Wang, Christian Ebere Enyoh, Md. Rezwanul Islam and Tochukwu Oluwatosin Maduka
Microplastics 2025, 4(4), 73; https://doi.org/10.3390/microplastics4040073 - 9 Oct 2025
Viewed by 1086
Abstract
Microplastic (MP) pollution in urban areas is a growing global concern due to its health risks and environmental effects. This study investigates the sources, spatial distribution, and health risks of MPs in road dust across industrial, capital city, and peri-urban areas of Bangladesh. [...] Read more.
Microplastic (MP) pollution in urban areas is a growing global concern due to its health risks and environmental effects. This study investigates the sources, spatial distribution, and health risks of MPs in road dust across industrial, capital city, and peri-urban areas of Bangladesh. Street dust samples were collected from 15 heavily congested traffic sites across Dhaka and its surrounding areas. The samples were analyzed using fluorescence microscopy and Fourier Transform Infrared (FTIR) spectroscopy to identify MP types and their morphological characteristics. We have identified six types of polymers, including Polyvinyl alcohol (PVA), Polyethylene (PE), Polypropylene (PP), Polystyrene (PS), Low-Density Polyethylene (LDPE) and High-Density Polyethylene (HDPE), with industrial areas exhibiting the highest levels of MPs followed by capital city and peri-urban zones. PP was the most prevalent MP polymer, with the highest level in industrial areas (14.1 ± 1.7 MPs/g), followed by capital city (9.6 ± 1.92 MPs/g) and peri-urban areas (7.2 ± 1.56 MPs/g). Principal Component Analysis (PCA) identified traffic emissions, industrial activities, and mismanaged plastic waste as the primary sources of MPs. Health risk evaluations indicated that children are more susceptible to MP exposure through ingestion and inhalation, with industrial areas posing the highest carcinogenic risk. The findings underscore the pressing demand for better waste management systems and stricter regulatory measures to mitigate MP pollution and safeguard public health in urban environments. Addressing these challenges is essential to reduce the growing threat of MPs and their long-term effects on ecosystems and human well-being. Full article
Show Figures

Figure 1

23 pages, 3347 KB  
Article
Bioluminescent ATP-Metry in Assessing the Impact of Various Microplastic Particles on Fungal, Bacterial, and Microalgal Cells
by Olga Senko, Nikolay Stepanov, Aysel Aslanli and Elena Efremenko
Microplastics 2025, 4(4), 72; https://doi.org/10.3390/microplastics4040072 - 3 Oct 2025
Viewed by 294
Abstract
The concentration of intracellular adenosine triphosphate (ATP) is one of the most important characteristics of the metabolic state of the cells of microorganisms and their viability. This indicator, monitored by bioluminescent ATP-metry, and accumulation of the suspension biomass in the medium were used [...] Read more.
The concentration of intracellular adenosine triphosphate (ATP) is one of the most important characteristics of the metabolic state of the cells of microorganisms and their viability. This indicator, monitored by bioluminescent ATP-metry, and accumulation of the suspension biomass in the medium were used to assess the effect of particles of different synthetic microplastics (MPs) (non-biodegradable and biodegradable) on the cells of yeast, filamentous fungi, bacteria and phototrophic microorganisms (microalgae and cyanobacteria) co-exposed with polymer samples in different environments and concentrations. It was found that the effect of MPs on microorganisms depends on the concentration of MPs (1–5 g/L), as well as on the initial concentration of cells (104 or 107 cells/mL) in the exposure medium with polymers. It was shown that the lack of a sufficient number of nutrition sources in the medium with MPs is not fatal for the cells. The study of the effect of MPs on the photobacteria Photobacterium phosphoreum, widely used as a bioindicator for assessing the ecotoxicity of various environments, demonstrated a correlation between the residual bioluminescence of these cells and the level of their intracellular ATP in media with biodegradable polycaprolactone and polylactide, which had an inhibitory effect on these cells. Marine representatives of phototrophic microorganisms showed the greatest sensitivity to the presence of MPs, which was confirmed by both a decrease in the level of intracellular ATP and the concentration of their biomass. Among the eight microorganisms studied, bacteria of the genus Pseudomonas turned out to be not only the most tolerant to the presence of the seven MP samples used in the work, but also actively growing in their presence. Full article
Show Figures

Figure 1

16 pages, 1811 KB  
Article
Detection and Quantification Limits for Polyethylene Particles Combining the Thermal Rock-Eval® Method with a Mathematical Extrapolation Procedure
by Maria-Fernanda Romero-Sarmiento, Daniela Bauer and Sébastien Rohais
Microplastics 2025, 4(4), 71; https://doi.org/10.3390/microplastics4040071 - 2 Oct 2025
Viewed by 474
Abstract
The main aim of this work is to define the limits of detection (LOD) and quantification (LOQ) for polyethylene (PE) particles using a pyrolysis and oxidation-based method, the thermal Rock-Eval® device, combined with a mathematical extrapolation procedure. The influences of particle size [...] Read more.
The main aim of this work is to define the limits of detection (LOD) and quantification (LOQ) for polyethylene (PE) particles using a pyrolysis and oxidation-based method, the thermal Rock-Eval® device, combined with a mathematical extrapolation procedure. The influences of particle size and shape on the thermal degradation of PE polymers are also investigated in this study. Thermal Total HC and Tpeak parameters, recently used to characterize polymer samples, are evaluated as a function of both polymer grain size and shape. Results indicate a LOD for the investigated PE polymers of around 1.7–2 μg in 60 mg of composite sediment (28–33 ppm). A conservative LOQ for the PE samples ranges between 5 and 6 μg (83–100 ppm). The LOQ is on the same order of magnitude for any size or shape of the studied PE polymers. By contrast, the LOD for the PE samples is slightly affected by both the polymer grain size and shape. Results also demonstrate that it is possible to detect PE nanoparticles of 79 nm in size. Finally, this study provides specific Rock-Eval® parameters, linear regressions, and a mathematical extrapolation procedure that can be used to better quantify very small PE mass contents, including nanoplastics in environmental samples. Full article
Show Figures

Figure 1

23 pages, 1286 KB  
Review
Occurrence and Control of Microplastics and Emerging Technological Solutions for Their Removal in Freshwaters: A Comprehensive Review
by Jeffrey Lebepe, Nana M. D. Buthelezi and Madira C. Manganyi
Microplastics 2025, 4(4), 70; https://doi.org/10.3390/microplastics4040070 - 2 Oct 2025
Viewed by 341
Abstract
Plastic remains a cheap material for numerous uses in households, industries, and engineering; however, it disintegrates in aquatic ecosystems to form smaller particles termed microplastics. Microplastics (MPs) have become a cause for concern due to their persistence and potential effects on freshwater ecosystems. [...] Read more.
Plastic remains a cheap material for numerous uses in households, industries, and engineering; however, it disintegrates in aquatic ecosystems to form smaller particles termed microplastics. Microplastics (MPs) have become a cause for concern due to their persistence and potential effects on freshwater ecosystems. Moreover, the toxicity of microplastics can be achieved through different mechanisms, including physical blockage and additive leaching, or they can function as vectors for other chemical pollutants. Microplastics were found to provide a growing surface for microbial communities, forming a biofilm termed the plastisphere. Microplastic pollution seems to need urgent attention globally; however, the comparability of results becomes a challenge due to the different techniques employed by different researchers. Moreover, the complete removal of MPs has proven to be an impossible task. This review explored MP occurrence in freshwater ecosystems, the role of microbial communities in the dynamics of microplastics, removal techniques, strategies for reduction in the environment, and their effect on freshwater ecosystems. Moreover, techniques to reduce microplastic release, such as recycling, plastic–fuel conversion, and biodegradable plastics, are explored. The review provides recommendations for reducing microplastic release and removal in freshwater ecosystems. This review stresses existing gaps to explore going forward in addressing microplastic pollution and possible removal techniques. Full article
Show Figures

Figure 1

22 pages, 3283 KB  
Article
A Domain-Adaptive Deep Learning Approach for Microplastic Classification
by Max Barker, Tanmay Singha, Meg Willans, Mark Hackett and Duc-Son Pham
Microplastics 2025, 4(4), 69; https://doi.org/10.3390/microplastics4040069 - 1 Oct 2025
Viewed by 342
Abstract
Microplastics pose a growing environmental concern, necessitating accurate and scalable methods for their detection and classification. This study presents a novel deep learning framework that integrates a transformer-based architecture with domain adaptation techniques to classify microplastics using reflectance micro-FTIR spectroscopy. A key challenge [...] Read more.
Microplastics pose a growing environmental concern, necessitating accurate and scalable methods for their detection and classification. This study presents a novel deep learning framework that integrates a transformer-based architecture with domain adaptation techniques to classify microplastics using reflectance micro-FTIR spectroscopy. A key challenge addressed in this work is the domain shift between laboratory-prepared reference spectra and environmentally sourced spectra, which can significantly degrade model performance. To overcome this, three domain-adaptation strategies—Domain Adversarial Neural Networks (DANN), Deep Subdomain-Adaptation Networks (DSAN), and Deep CORAL—were evaluated for their ability to enhance cross-domain generalization. Experimental results show that while DANN was unstable, DSAN and Deep CORAL improved target domain accuracy. Deep CORAL achieved 99% accuracy on the source and 94% on the target, offering balanced performance. DSAN reached 95% on the target but reduced source accuracy. Overall, statistical alignment methods outperformed adversarial approaches in transformer-based spectral adaptation. The proposed model was integrated into a reflectance micro-FTIR workflow, accurately identifying PE and PP microplastics from unlabelled spectra. Predictions closely matched expert-validated results, demonstrating practical applicability. This first use of a domain-adaptive transformer in microplastics spectroscopy sets a benchmark for high-throughput, cross-domain analysis. Future work will extend to more polymers and enhance model efficiency for field use. Full article
(This article belongs to the Collection Feature Papers in Microplastics)
Show Figures

Figure 1

24 pages, 3529 KB  
Review
Impacts of Nano- and Microplastic Contamination on Soil Organisms and Soil–Plant Systems
by Davi R. Munhoz and Nicolas Beriot
Microplastics 2025, 4(4), 68; https://doi.org/10.3390/microplastics4040068 - 1 Oct 2025
Viewed by 596
Abstract
Microplastic (MPL) and nanoplastic (NPL) contamination in soils is widespread, impacting soil invertebrates, microbial communities, and soil–plant systems. Here, we compiled the information from 100 research articles from 2018 onwards to enhance and synthesize the status quo of MPLs’ and NPLs’ impacts on [...] Read more.
Microplastic (MPL) and nanoplastic (NPL) contamination in soils is widespread, impacting soil invertebrates, microbial communities, and soil–plant systems. Here, we compiled the information from 100 research articles from 2018 onwards to enhance and synthesize the status quo of MPLs’ and NPLs’ impacts on such groups. The effects of these pollutants depend on multiple factors, including polymer composition, size, shape, concentration, and aging processes. Research on soil invertebrates has focused on earthworms and some studies on nematodes and collembolans, but studies are still limited to other groups, such as mites, millipedes, and insect larvae. Beyond soil invertebrates, plastics are also altering microbial communities at the soil–plastic interface, fostering the development of specialized microbial assemblages and shifting microbial functions in ways that remain poorly understood. Research has largely centered on bacterial interactions with MPLs, leaving understudied fungi, protists, and other soil microorganisms. Furthermore, MPLs and NPLs also interact with terrestrial plants, and their harmful effects, such as adsorption, uptake, translocation, and pathogen vectors, raise public awareness. Given the complexity of these interactions, well-replicated experiments and community- and ecosystem-level studies employing objective-driven technologies can provide insights into how MPLs and NPLs influence microbial and faunal diversity, functional traits, and soil ecosystem stability. Full article
Show Figures

Figure 1

22 pages, 1597 KB  
Article
The Plastic Signature: Microplastic Ingestion and Phthalate Exposure in Parapenaeus longirostris from Three Tyrrhenian Sites (Mediterranean Sea)
by Laura Ciaralli, Sara Vencato, Giuseppe Andrea de Lucia, Tommaso Valente, Eleonora Monfardini, Giovanni Libralato, Loredana Manfra, Martina Radicioli, Cecilia Silvestri, Sandro Dattilo, Paolo Maria Riccobene, Giorgia Gioacchini, Daniela Berto, Valentina Lombardi, Mariacristina Cocca and Marco Matiddi
Microplastics 2025, 4(4), 67; https://doi.org/10.3390/microplastics4040067 - 30 Sep 2025
Viewed by 430
Abstract
Microplastic pollution is pervasive in marine ecosystems and poses a growing threat to marine organisms and human health. This study simultaneously investigates microplastic ingestion and phthalate exposure in Parapenaeus longirostris, a commercially valuable and ecologically relevant Mediterranean crustacean occupying an intermediate trophic [...] Read more.
Microplastic pollution is pervasive in marine ecosystems and poses a growing threat to marine organisms and human health. This study simultaneously investigates microplastic ingestion and phthalate exposure in Parapenaeus longirostris, a commercially valuable and ecologically relevant Mediterranean crustacean occupying an intermediate trophic position. Specimens were collected from three coastal areas in the central Tyrrhenian Sea (Western Mediterranean): near the Tiber River mouth, one of the most polluted rivers in Italy, and two additional sites to the north and south. The frequency of individuals with ingested microplastics varied among locations: 78% near the Tiber River, 64% at site S, and 38% at site N, reflecting anthropogenic pressure gradients. Analyses confirmed the lower occurrence at site N, indicating higher ingestion near land-based pollution sources. Ingested microplastic polymer types varied among sites, reflecting location-specific contamination. Phthalates were present in shrimp muscle at all sites (5–1122 ng/g w.w.) with the highest average concentration (68.26 ± 55.74 ng/g) at the site with the highest microplastic ingestion. Although no statistical correlation was found, the similar spatial distribution of microplastics and phthalates suggests a potential link influenced by local pollution and individual variability. These findings provide novel evidence of microplastic and phthalate contamination in P. longirostris, highlighting its role as a trophic connector mediating contaminant transfer through the food web. While current levels suggest no potential risk to human health, continued monitoring and further studies on exposure along trophic pathways are recommended. Full article
(This article belongs to the Collection Feature Papers in Microplastics)
Show Figures

Figure 1

14 pages, 730 KB  
Article
Exploring the Role of Polystyrene Microplastics in Cu Binding in Sea Surface Waters: An Experimental Perspective for Future Research
by Eleni Tzempelikou, Luisa Galgani, Christina Zeri, Sotirios Karavoltsos, Stylianos Iliakis, Ioanna Kalantzi, Aikaterini Sakellari and Manolis Tsapakis
Microplastics 2025, 4(4), 66; https://doi.org/10.3390/microplastics4040066 - 23 Sep 2025
Viewed by 301
Abstract
The present study investigates the role of microplastics (MPs) (polystyrene (PS) microbeads) in copper (Cu) binding within the sea surface microlayer (SML) and underlying water (ULW). A mesocosm experiment was conducted, with both SML and ULW samples obtained daily, comparing mesocosms containing MPs [...] Read more.
The present study investigates the role of microplastics (MPs) (polystyrene (PS) microbeads) in copper (Cu) binding within the sea surface microlayer (SML) and underlying water (ULW). A mesocosm experiment was conducted, with both SML and ULW samples obtained daily, comparing mesocosms containing MPs with those free of them. The SML enrichment in dissolved Cu (Cu-D) and the Cu-complexing capacity (LT) were found to be significantly higher in the MP-treated mesocosms, with stability values of Cu-ligand complexes (logK′) being higher in the SML of MP treatments. Significant differences in Cu-D and LT between control and MP treatments were found in SML and ULW across treatments and over time. Cu-D was negatively correlated with transparent exopolymer particles (TEPs) in the ULW of both treatments, while LT was positively correlated with TEPs in the SML of MP treatments. Experimental data indicate that the co-existence of TEPs and MPs favors Cu binding with organic matter in the SML, suggesting that MPs may enhance this process. The impact of MPs on dissolved Cu complexation is probably attributed to the production of organic ligands, via enhanced TEP production, without excluding direct adsorption onto biofilm-coated MPs. The present study provides insight into the role of microplastics in Cu cycling in marine surface waters, focusing on the microenvironment of the SML. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop