Melatonin and DNA Integrity: The Impact of Exogenous Administration in Exercise-Induced Oxidative Stress—A Systematic Review
Abstract
1. Introduction
1.1. Physiological Mechanisms of Exercise-Induced Oxidative Stress
1.2. Comprehensive Biomarker Profiling of Stress Responses to Exercise
1.2.1. Biochemical Biomarkers of Exercise-Induced Cellular Damage and Metabolic Stress
1.2.2. Biomarkers of Oxidative Stress: Assessing Redox Imbalance and Antioxidant Response
1.2.3. Molecular Markers of DNA Repair Pathways and Genomic Integrity
1.3. Biomarkers of Oxidative Stress: Assessing Redox Imbalance and Antioxidant Response
- Direct Biomarkers measure ROS or reactive nitrogen species (RNS) directly or their immediate products, providing a real-time snapshot of acute oxidative stress. Examples include fluorogenic probes for superoxide, hydrogen peroxide, or hydroxyl radicals. However, due to the short half-life and high reactivity of ROS, direct measurements are technically challenging and often fail to reflect cumulative oxidative burden during exercise [11,22,58,59].
- Indirect Biomarkers assess the downstream effects of oxidative stress by measuring stable end-products of macromolecular damage or changes in antioxidant defenses, offering an integrated view of oxidative stress over time [61]. In the included studies, indirect biomarkers were predominant and encompassed several categories:
- Biochemical Biomarkers: Indicators such as creatine kinase (CK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), and urea reflect muscle damage, metabolic stress, and organ function. These are indirect as they signal systemic stress and cellular injury resulting from ROS overproduction rather than measuring ROS themselves [62].
- ROS Oxidation Biomarkers: Markers like malondialdehyde (MDA) for lipid peroxidation, advanced oxidation protein products (AOPP) for protein oxidation, and antioxidant enzyme activities (e.g., superoxide dismutase [SOD], glutathione peroxidase [GPx], glutathione reductase [GR]) were frequently assessed. These are indirect because they measure the consequences of ROS activity or the body’s adaptive response rather than ROS directly [49,62].
- Other Indirect Markers: Total antioxidant capacity (TAC), oxygen radical absorbance capacity (ORAC), lipid peroxidation (LPO), nitric oxide metabolites (NOx), reduced glutathione (GSH), and oxidized glutathione (GSSG) were also reported, reflecting systemic redox balance and oxidative damage indirectly [62].
Biochemical Rationale and Clinical Correlation
1.4. Melatonin as a Pleiotropic Antioxidant in the Context of Exercise-Induced Oxidative Stress
2. Materials and Methods
2.1. PROSPERO Registration
2.2. Search Strategy
- PubMed: “melatonin” [MeSH Terms] OR “melatonin” [All Fields] OR “melatonin’s” [All Fields] OR “melatonine” [All Fields] OR “melatonins” [All Fields]
- Scopus: (melatonin OR n-acetyl-5-methoxytryptamine) AND oxidative AND dna AND (damage OR repair) AND (exercise OR exercises)
2.3. Study Selection
2.4. Inclusion and Exclusion Criteria
- Population: Focused Demographics and Health StatusThe Population component targets healthy humans undergoing intense physical exercise, excluding individuals with comorbidities (e.g., diabetes, cardiovascular diseases). This exclusion is biologically justified, as chronic conditions alter baseline redox homeostasis and DNA repair capacity through persistent inflammation, mitochondrial dysfunction, or metabolic dysregulation. Such confounders could obscure the transient oxidative perturbations induced by acute exercise, undermining the assessment of MLT-specific effects. By restricting the population to athletes or active individuals without comorbidities, the review isolates exercise-induced oxidative stress as the primary variable, ensuring internal validity and translational relevance to sports medicine.
- Intervention: Standardization of MLT SupplementationThe Intervention criterion mandates exogenous MLT administration across doses (5–100 mg), routes (oral/other), and timing (pre-/post-exercise). This flexibility accommodates variability in existing literature while maintaining focus on MLT’s pharmacodynamic actions. Excluding studies combining MLT with other antioxidants ensures the specificity of findings, as synergistic or antagonistic interactions could complicate mechanistic interpretations. For example, co-administration with vitamin C or E might amplify antioxidant effects but obscure MLT’s direct role in DNA repair pathways. By prioritizing standalone MLT interventions, the review clarifies its therapeutic potential in exercise contexts.
- Comparator: Ethical and Methodological RigorThe Comparator requirement for placebo or no-intervention control groups minimizes bias by isolating MLT’s effects from placebo responses or natural recovery processes. Uncontrolled designs were excluded because they preclude causal attribution, a critical limitation given the multifactorial nature of oxidative stress. Placebo-controlled trials, such as those using lactose or cellulose capsules, ensure blinding integrity and ethical feasibility, as MLT’s safety profile permits its use in athletic populations without significant risks.
- Outcomes: Biomarker Standardization and Mechanistic InsightsOutcomes were restricted to direct biomarkers of oxidative DNA damage (8-OHdG, comet assay), DNA repair indicators (BER enzyme activity), and systemic oxidative stress markers (MDA, SOD, GPx). This tripartite focus ensures a comprehensive evaluation of MLT’s dual role in preventing damage and enhancing repair. Exclusion of studies lacking quantitative biomarker data or employing non-validated methods (e.g., subjective fatigue scales) strengthens the review’s analytical robustness. For instance, the comet assay’s inclusion in only one study underscores the need for standardized DNA damage assessments in future research, a gap highlighted in the discussion.
2.5. Data Extraction
2.6. Eligibility for Synthesis
2.7. Risk of Bias
3. Results
3.1. Literature Search
3.2. Selection Criteria Studies
3.3. Study Characteristics
3.4. Results of Syntheses
3.5. Quality Assessment
3.5.1. Methodological Approach
- Bias arising from the randomization process
- Bias due to deviations from intended interventions
- Bias due to missing outcome data
- Bias in measurement of the outcome
- Bias in selecting the reported result
3.5.2. Results of Risk of Bias Assessment
- Lack of pre-registered protocols or statistical analysis plans (Domain 5)
- Incomplete reporting of randomization procedures in some studies, although baseline characteristics were generally balanced between groups
- Insufficient detail regarding allocation concealment methods
3.5.3. Implications for Evidence Interpretation
3.6. Convergent Synthesis of the Risk of Bias
3.7. Exclusion
4. Discussion
4.1. Classification of Biomarkers as Direct or Indirect
4.2. Physiological Conditions/Baseline
4.3. ROS
4.4. DNA Damage
4.5. Biological Pathways
- Direct free radical scavenging: MLT functions as a direct scavenger of reactive species, neutralizing radicals such as hydroxyl (-OH) and peroxynitrite (ONOO−), both of which are highly damaging to DNA. Studies, such as that by Farjallah et al. [66], have shown that MLT supplementation (6 mg/day) significantly reduces lipid peroxidation, measured by malondialdehyde (MDA), in athletes after exhaustive sprints (2.22 ± 1.30 vs. 2.89 ± 0.77 µmol/L in the placebo group; p < 0.05). This reduction in oxidative stress decreases the likelihood of DNA damage, as unneutralized free radicals can cause double-strand breaks and modifications of nitrogenous bases, such as the formation of 8-OHdG.
- Increased activity of endogenous antioxidant enzymes: MLT can modulate the expression and activity of antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT), reinforcing cellular defense against oxidative stress [27,54,98]. The study you mentioned observed an increase in GPx activity with MLT supplementation, which may contribute to DNA protection.
- Modulation of Inflammation: MLT demonstrates significant anti-inflammatory effects that complement its antioxidant mechanisms in protecting DNA during intense exercise. Strenuous physical activity induces inflammatory responses characterized by elevated leukocyte counts (WBC) and neutrophil (NE) activation, which exacerbate oxidative stress and genomic damage [7,9,45,66]. Experimental data reveal that MLT administration suppresses post-exercise leukocytosis, with placebo groups exhibiting markedly higher WBC levels (p < 0.001). This hormone also reduces neutrophil infiltration into tissues (p < 0.001) and lowers concentrations of systemic inflammatory markers such as us-CRP [7,9,45,66].
- At the molecular level, MLT inhibits the production of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), through suppression of nuclear factor-kappa B (NF-κB) signaling pathways [104]. This mechanism is particularly relevant during high-intensity exercise, which typically increases circulating levels of these inflammatory mediators. By attenuating NF-κB activation, MLT prevents the overexpression of cytokines responsible for exercise-induced muscle damage and subsequent oxidative stress. The combined action of direct free radical neutralization and indirect inflammatory pathway modulation enhances genomic stability under physiological stress conditions [27,54,98].
- Mitochondria protection: Mitochondria is an important source of ROS during exercise. MLT can protect mitochondria from oxidative damage, preserve their function and reduce the production of free radicals in this organelle, contributing to the protection of nuclear and mitochondrial DNA [6] (Figure 5). MLT improves mitochondrial function by reducing ROS production and enhancing ATP synthesis. Farjallah et al. [7,45,66] demonstrated that MLT increased mitochondrial membrane fluidity in hepatocytes (p < 0.05), likely via activation of sirtuin-1 (SIRT1), which regulates mitochondrial biogenesis and oxidative phosphorylation.
4.6. Strengths and Limitations
Risk of Bias and Methodological Limitations
4.7. Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MAS | Maximal Aerobic Speed |
CK | Creatine Kinase |
LDH | Lactate Dehydrogenase |
AST | Aspartate Aminotransferase |
ALT | Alanine Aminotransferase |
GGT | Gamma-Glutamyl Transferase |
FA | Alkaline Phosphatase |
TG | Triglycerides |
WBC | White Blood Cells |
NE | Neutrophils |
LY | Lymphocytes |
MO | Monocytes |
SOD | Superoxide Dismutase |
GPx | Glutathione Peroxidase |
GR | Glutathione Reductase |
TAC | Total Antioxidant Capacity |
ORAC | Oxygen Radical Absorbance Capacity |
LPO | Lipid Peroxidation |
NOx | Nitric Oxide Metabolites |
AOPP | Advanced Oxidation Protein Products |
GSH | Reduced Glutathione |
GSSG | Oxidized Glutathione |
PLA | Placebo |
RAST | Running-based Anaerobic Sprint Test |
us-CRP | Ultra-sensitive C-reactive Protein |
MDA | Malondialdehyde |
ROS | Reactive Oxygen Species |
RNS | Reactive Nitrogen Species |
BER | Base Excision Repair |
NHEJ | Non-Homologous End Joining |
HR | Homologous Recombination |
PARP | Poly(ADP-ribose) Polymerase |
NAD+ | Nicotinamide Adenine Dinucleotide |
SIRT3 | Sirtuin 3 |
AMPK | AMP-activated Protein Kinase |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
TNF-α | Tumor Necrosis Factor-alpha |
IL-6 | Interleukin-6 |
ELISA | Enzyme-Linked Immunosorbent Assay |
RCT | Randomized Controlled Trial |
CONSORT | Consolidated Standards of Reporting Trials |
PICOS | Population, Intervention, Comparator, Outcomes, Study Type |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
UHPLC-MS/MS | Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry |
cfDNA | Cell-free DNA |
MLT | Melatonin |
HIIT | High-Intensity Interval Training |
RET | Running Exercise Test |
PGC-1α | Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha |
OGG1 | 8-oxoguanine DNA glycosylase |
APE1 | Apurinic/apyrimidinic endonuclease 1 |
References
- Powers, S.K.; Deminice, R.; Ozdemir, M.; Yoshihara, T.; Bomkamp, M.P.; Hyatt, H. Exercise-Induced Oxidative Stress: Friend or Foe? J. Sport Health Sci. 2020, 9, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Melhuish Beaupre, L.M.; Brown, G.M.; Gonçalves, V.F.; Kennedy, J.L. Melatonin’s Neuroprotective Role in Mitochondria and Its Potential as a Biomarker in Aging, Cognition and Psychiatric Disorders. Transl. Psychiatry 2021, 11, 339. [Google Scholar] [CrossRef] [PubMed]
- Kruk, J.; Aboul-Enein, B.H.; Duchnik, E. Exercise-Induced Oxidative Stress and Melatonin Supplementation: Current Evidence. J. Physiol. Sci. 2021, 71, 27. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several Lines of Antioxidant Defense against Oxidative Stress: Antioxidant Enzymes, Nanomaterials with Multiple Enzyme-Mimicking Activities, and Low-Molecular-Weight Antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef]
- Berzosa, C.; Bascuas, P.J.; Piedrafita, E. Effects of Melatonin Administration on Physical Performance and Biochemical Responses Following Exhaustive Treadmill Exercise. Curr. Issues Mol. Biol. 2024, 46, 13647–13661. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Liu, Y.; Zhang, Z. Effects of Exercise-Induced ROS on the Pathophysiological Functions of Skeletal Muscle. Oxidative Med. Cell. Longev. 2021, 2021, 3846122. [Google Scholar] [CrossRef]
- Farjallah, M.A.; Ghattassi, K.; Ben Mahmoud, L.; Graja, A.; Boudaya, M.; Elleuch, H.; Jammoussi, K.; Sahnoun, Z.; Souissi, N.; Chtourou, H.; et al. Effect of Nocturnal Melatonin Intake on Cellular Damage and Recovery from Repeated Sprint Performance during an Intensive Training Schedule. Chronobiol. Int. 2020, 37, 686–698. [Google Scholar] [CrossRef]
- Leonardo-Mendonça, R.C.; Ocaña-Wilhelmi, J.; De Haro, T.; De Teresa-Galván, C.; Guerra-Hernández, E.; Rusanova, I.; Fernández-Ortiz, M.; Sayed, R.K.A.; Escames, G.; Acuña-Castroviejo, D. The Benefit of a Supplement with the Antioxidant Melatonin on Redox Status and Muscle Damage in Resistance-Trained Athletes. Appl. Physiol. Nutr. Metab. 2017, 42, 700–707. [Google Scholar] [CrossRef]
- Cheikh, M.; Makhlouf, K.; Ghattassi, K.; Graja, A.; Ferchichi, S.; Kallel, C.; Houda, M.; Souissi, N.; Hammouda, O. Melatonin Ingestion after Exhaustive Late-Evening Exercise Attenuate Muscle Damage, Oxidative Stress, and Inflammation during Intense Short Term Effort in the Following Day in Teenage Athletes. Chronobiol. Int. 2020, 37, 236–247. [Google Scholar] [CrossRef]
- Zanif, U.; Lai, A.S.; Parks, J.; Roenningen, A.; McLeod, C.B.; Ayas, N.; Wang, X.; Lin, Y.; Zhang, J.; Bhatti, P. Melatonin Supplementation and Oxidative DNA Damage Repair Capacity among Night Shift Workers: A Randomised Placebo-Controlled Trial. Occup. Environ. Med. 2025, 82, 1–6. [Google Scholar] [CrossRef]
- Pérez-Castillo, Í.M.; Rueda, R.; Bouzamondo, H.; López-Chicharro, J.; Mihic, N. Biomarkers of Post-Match Recovery in Semi-Professional and Professional Football (Soccer). Front. Physiol. 2023, 14, 1167449. [Google Scholar] [CrossRef]
- Liang, S.; Jin, Y.-X.; Yuan, B.; Zhang, J.-B.; Kim, N.-H. Melatonin Enhances the Developmental Competence of Porcine Somatic Cell Nuclear Transfer Embryos by Preventing DNA Damage Induced by Oxidative Stress. Sci. Rep. 2017, 7, 11114. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhou, P.-K. DNA Damage Repair: Historical Perspectives, Mechanistic Pathways and Clinical Translation for Targeted Cancer Therapy. Signal Transduct. Target. Ther. 2021, 6, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Al-Rawaf, H.A.; Gabr, S.A.; Iqbal, A.; Alghadir, A.H. Effects of High-Intensity Interval Training on Melatonin Function and Cellular Lymphocyte Apoptosis in Sedentary Middle-Aged Men. Medicina 2023, 59, 1201. [Google Scholar] [CrossRef]
- Anderson, E.; Durstine, J.L. Physical Activity, Exercise, and Chronic Diseases: A Brief Review. Sports Med. Health Sci. 2019, 1, 3–10. [Google Scholar] [CrossRef]
- Cai, M.; Wang, H.; Song, H.; Yang, R.; Wang, L.; Xue, X.; Sun, W.; Hu, J. Lactate Is Answerable for Brain Function and Treating Brain Diseases: Energy Substrates and Signal Molecule. Front. Nutr. 2022, 9, 800901. [Google Scholar] [CrossRef]
- Schirrmacher, V. Less Can Be More: The Hormesis Theory of Stress Adaptation in the Global Biosphere and Its Implications. Biomedicines 2021, 9, 293. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, Y.; Shen, Y.; Liu, Q.; Zhao, Z.; Sharma, R.; Reiter, R.J. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front. Endocrinol. 2019, 10, 249. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Gomez-Cabrera, M.C.; Salvador-Pascual, A.; Cabo, H.; Ferrando, B.; Viña, J. Redox Modulation of Mitochondriogenesis in Exercise. Does Antioxidant Supplementation Blunt the Benefits of Exercise Training? Free Radic. Biol. Med. 2015, 86, 37–46. [Google Scholar] [CrossRef]
- He, F.; Li, J.; Liu, Z.; Chuang, C.-C.; Yang, W.; Zuo, L. Redox Mechanism of Reactive Oxygen Species in Exercise. Front. Physiol. 2016, 7, 486. [Google Scholar] [CrossRef] [PubMed]
- Thirupathi, A.; Pinho, R.A.; Ugbolue, U.C.; He, Y.; Meng, Y.; Gu, Y. Effect of Running Exercise on Oxidative Stress Biomarkers: A Systematic Review. Front. Physiol. 2021, 11, 610112. [Google Scholar] [CrossRef]
- Powers, S.K.; Radak, Z.; Ji, L.L. Exercise-induced Oxidative Stress: Past, Present and Future. J. Physiol. 2016, 594, 5081–5092. [Google Scholar] [CrossRef]
- Collin, F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 2407. [Google Scholar] [CrossRef]
- Meyerstein, D. What Are the Oxidizing Intermediates in the Fenton and Fenton-like Reactions? A Perspective. Antioxidants 2022, 11, 1368. [Google Scholar] [CrossRef]
- Radak, Z.; Zhao, Z.; Koltai, E.; Ohno, H.; Atalay, M. Oxygen Consumption and Usage During Physical Exercise: The Balance Between Oxidative Stress and ROS-Dependent Adaptive Signaling. Antioxid. Redox Signal 2013, 18, 1208–1246. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.X.; Rosales-Corral, S.; Galano, A.; Jou, M.-J.; Acuna-Castroviejo, D. Melatonin Mitigates Mitochondrial Meltdown: Interactions with SIRT3. Int. J. Mol. Sci. 2018, 19, 2439. [Google Scholar] [CrossRef]
- Peng, Z.; Ma, J.; Christov, C.Z.; Karabencheva-Christova, T.; Lehnert, N.; Li, D. Kinetic Studies on the 2-Oxoglutarate/Fe(II)-Dependent Nucleic Acid Modifying Enzymes from the AlkB and TET Families. DNA 2023, 3, 65–84. [Google Scholar] [CrossRef]
- Damiani, A.P.; Strapazzon, G.; De Oliveira Sardinha, T.T.; Rohr, P.; Gajski, G.; De Pinho, R.A.; De Andrade, V.M. Melatonin Supplementation over Different Time Periods until Ageing Modulates Genotoxic Parameters in Mice. Mutagenesis 2020, 35, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Majidinia, M.; Sadeghpour, A.; Mehrzadi, S.; Reiter, R.J.; Khatami, N.; Yousefi, B. Melatonin: A Pleiotropic Molecule That Modulates DNA Damage Response and Repair Pathways. J. Pineal Res. 2017, 63, e12416. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.M.; Aliarab, A.; Goodarzi, G.; Shirzad, M.; Jafari, S.M.; Qujeq, D.; Samavarchi Tehrani, S.; Asadi, J. Melatonin: A Smart Molecule in the DNA Repair System. Cell Biochem. Funct. 2022, 40, 4–16. [Google Scholar] [CrossRef]
- Bouviere, J.; Fortunato, R.S.; Dupuy, C.; Werneck-de-Castro, J.P.; Carvalho, D.P.; Louzada, R.A. Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants 2021, 10, 537. [Google Scholar] [CrossRef]
- Canals-Garzón, C.; Guisado-Barrilao, R.; Martínez-García, D.; Chirosa-Ríos, I.J.; Jerez-Mayorga, D.; Guisado-Requena, I.M. Effect of Antioxidant Supplementation on Markers of Oxidative Stress and Muscle Damage after Strength Exercise: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 1803. [Google Scholar] [CrossRef]
- Reiter, R.J.; Ma, Q.; Sharma, R. Melatonin in Mitochondria: Mitigating Clear and Present Dangers. Physiology 2020, 35, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, J.L.; Lan, L.; Zou, L. DNA Repair Defects in Cancer and Therapeutic Opportunities. Genes Dev. 2022, 36, 278–293. [Google Scholar] [CrossRef]
- Di Meo, S.; Napolitano, G.; Venditti, P. Mediators of Physical Activity Protection against ROS-Linked Skeletal Muscle Damage. Int. J. Mol. Sci. 2019, 20, 3024. [Google Scholar] [CrossRef] [PubMed]
- Rahbarghazi, A.; Alamdari, K.A.; Rahbarghazi, R.; Salehi-Pourmehr, H. Co-Administration of Exercise Training and Melatonin on the Function of Diabetic Heart Tissue: A Systematic Review and Meta-Analysis of Rodent Models. Diabetol. Metab. Syndr. 2023, 15, 67. [Google Scholar] [CrossRef] [PubMed]
- Marzougui, H.; Ben Dhia, I.; Mezghani, I.; Maaloul, R.; Toumi, S.; Kammoun, K.; Chaabouni, M.N.; Ayadi, F.; Ben Hmida, M.; Turki, M.; et al. The Synergistic Effect of Intradialytic Concurrent Training and Melatonin Supplementation on Oxidative Stress and Inflammation in Hemodialysis Patients: A Double-Blind Randomized Controlled Trial. Antioxidants 2024, 13, 1290. [Google Scholar] [CrossRef]
- Celorrio San Miguel, A.M.; Roche, E.; Herranz-López, M.; Celorrio San Miguel, M.; Mielgo-Ayuso, J.; Fernández-Lázaro, D. Impact of Melatonin Supplementation on Sports Performance and Circulating Biomarkers in Highly Trained Athletes: A Systematic Review of Randomized Controlled Trials. Nutrients 2024, 16, 1011. [Google Scholar] [CrossRef] [PubMed]
- Kindermann, W. Creatine Kinase Levels After Exercise. Dtsch. Ärzteblatt Int. 2016, 113, 344. [Google Scholar] [CrossRef] [PubMed]
- Abu-Elfotuh, K.; Hussein, F.H.; Abbas, A.N.; Al-Rekabi, M.D.; Barghash, S.S.; Zaghlool, S.S.; El-Emam, S.Z. Melatonin and Zinc Supplements with Physical and Mental Activities Subside Neurodegeneration and Hepatorenal Injury Induced by Aluminum Chloride in Rats: Inclusion of GSK-3β-Wnt/β-Catenin Signaling Pathway. NeuroToxicology 2022, 91, 69–83. [Google Scholar] [CrossRef]
- Ben Dhia, I.; Maaloul, R.; Marzougui, H.; Ghroubi, S.; Kallel, C.; Driss, T.; Elleuch, M.H.; Ayadi, F.; Turki, M.; Hammouda, O. Melatonin Reduces Muscle Damage, Inflammation and Oxidative Stress Induced by Exhaustive Exercise in People with Overweight/Obesity. PhysInt 2022, 109, 78–89. [Google Scholar] [CrossRef]
- Flockhart, M.; Larsen, F.J. Continuous Glucose Monitoring in Endurance Athletes: Interpretation and Relevance of Measurements for Improving Performance and Health. Sports Med. 2024, 54, 247–255. [Google Scholar] [CrossRef]
- Kruk, J.; Kotarska, K.; Aboul-Enein, B.H. Physical Exercise and Catecholamines Response: Benefits and Health Risk: Possible Mechanisms. Free Radic. Res. 2020, 54, 105–125. [Google Scholar] [CrossRef]
- Farjallah, M.A.; Graja, A.; Ghattassi, K.; Ben Mahmoud, L.; Elleuch, H.; Ayadi, F.; Driss, T.; Jammoussi, K.; Sahnoun, Z.; Souissi, N.; et al. Melatonin Ingestion Prevents Liver Damage and Improves Biomarkers of Renal Function Following a Maximal Exercise. Res. Q. Exerc. Sport 2023, 94, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lai, W.; Wang, H. Recent Advances in High-Performance Liquid Chromatography Tandem Mass Spectrometry Techniques for Analysis of DNA Damage and Epigenetic Modifications. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2024, 896, 503755. [Google Scholar] [CrossRef] [PubMed]
- Cortez, J.R.; Migaud, M.E. Chemical Versus Enzymatic Nucleic Acid Modifications and Genomic Stability. DNA 2025, 5, 19. [Google Scholar] [CrossRef]
- Rzepka-Migut, B.; Paprocka, J. Melatonin-Measurement Methods and the Factors Modifying the Results. A Systematic Review of the Literature. Int. J. Environ. Res. Public Health 2020, 17, 1916. [Google Scholar] [CrossRef]
- Rigamonti, A.E.; Rubino, F.M.; Caroli, D.; Bondesan, A.; Mai, S.; Cella, S.G.; Centofanti, L.; Paroni, R.; Sartorio, A. Effects of Melatonin on Exercise-Induced Oxidative Stress in Adults with Obesity Undergoing a Multidisciplinary Body Weight Reduction Program. J. Clin. Med. 2024, 13, 5216. [Google Scholar] [CrossRef] [PubMed]
- Arabacı Tamer, S.; Altınoluk, T.; Emran, M.; Korkmaz, S.; Yüksel, R.G.; Baykal, Z.; Dur, Z.S.; Levent, H.N.; Ural, M.A.; Yüksel, M.; et al. Melatonin Alleviates Ovariectomy-Induced Cardiovascular Inflammation in Sedentary or Exercised Rats by Upregulating SIRT1. Inflammation 2022, 45, 2202–2222. [Google Scholar] [CrossRef]
- Sliwinski, T.; Rozej, W.; Morawiec-Bajda, A.; Morawiec, Z.; Reiter, R.; Blasiak, J. Protective Action of Melatonin against Oxidative DNA Damage: Chemical Inactivation versus Base-Excision Repair. Mutat. Res. 2007, 634, 220–227. [Google Scholar] [CrossRef]
- Mihanfar, A.; Yousefi, B.; Ghazizadeh Darband, S.; Sadighparvar, S.; Kaviani, M.; Majidinia, M. Melatonin Increases 5-Flurouracil-Mediated Apoptosis of Colorectal Cancer Cells through Enhancing Oxidative Stress and Downregulating Survivin and XIAP. Bioimpacts 2020, 11, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Franco, M.; Planells, E.; Quintero, B.; Acuña-Castroviejo, D.; Rusanova, I.; Escames, G.; Molina-López, J. Effect of Melatonin Supplementation on Antioxidant Status and DNA Damage in High Intensity Trained Athletes. Int. J. Sports Med. 2017, 38, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Mayo, J.C.; Tan, D.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an Antioxidant: Under Promises but over Delivers. J. Pineal Res. 2016, 61, 253–278. [Google Scholar] [CrossRef]
- Martin, J.H.; Bromfield, E.G.; Aitken, R.J.; Lord, T.; Nixon, B. Double Strand Break DNA Repair Occurs via Non-Homologous End-Joining in Mouse MII Oocytes. Sci. Rep. 2018, 8, 9685. [Google Scholar] [CrossRef] [PubMed]
- Lebedeva, N.A.; Anarbaev, R.O.; Maltseva, E.A.; Sukhanova, M.V.; Rechkunova, N.I.; Lavrik, O.I. DNA Repair Protein XRCC1 Stimulates Activity of DNA Polymerase λ under Conditions of Microphase Separation. Int. J. Mol. Sci. 2024, 25, 6927. [Google Scholar] [CrossRef] [PubMed]
- Cimen, B.; Uz, A.; Cetin, I.; Cimen, L.; Cetin, A. Melatonin Supplementation Ameliorates Energy Charge and Oxidative Stress Induced by Acute Exercise in Rat Heart Tissue. Acta Cardiol. Sin. 2017, 33, 530. [Google Scholar] [CrossRef]
- Demirci-Çekiç, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of Oxidative Stress and Antioxidant Defense. J. Pharm. Biomed. Anal. 2022, 209, 114477. [Google Scholar] [CrossRef]
- Gomez-Cabrera, M.C.; Carretero, A.; Millan-Domingo, F.; Garcia-Dominguez, E.; Correas, A.G.; Olaso-Gonzalez, G.; Viña, J. Redox-Related Biomarkers in Physical Exercise. Redox Biol. 2021, 42, 101956. [Google Scholar] [CrossRef]
- Reiter, R.J.; Sharma, R.; Ma, Q.; Rorsales-Corral, S.; De Almeida Chuffa, L.G. Melatonin Inhibits Warburg-Dependent Cancer by Redirecting Glucose Oxidation to the Mitochondria: A Mechanistic Hypothesis. Cell. Mol. Life Sci. 2020, 77, 2527–2542. [Google Scholar] [CrossRef]
- Ghezzi, P. Environmental Risk Factors and Their Footprints In Vivo—A Proposal for the Classification of Oxidative Stress Biomarkers. Redox Biol. 2020, 34, 101442. [Google Scholar] [CrossRef]
- Nikitaki, Z.; Hellweg, C.E.; Georgakilas, A.G.; Ravanat, J.-L. Stress-Induced DNA Damage Biomarkers: Applications and Limitations. Front. Chem. 2015, 3, 35. [Google Scholar] [CrossRef]
- Kim, T.; Cho, J. Melatonin as an Antioxidant Supplement in Athletes: A Literature Review of Current Evidence. Exerc. Sci. 2023, 32, 367–376. [Google Scholar] [CrossRef]
- Beresford, L.; Walker, R.; Stewart, L. Extent and Nature of Duplication in PROSPERO Using COVID-19-Related Registrations: A Retrospective Investigation and Survey. BMJ Open 2022, 12, e061862. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, D.P. Melatonin and Healthy Aging. Vitam. Horm. 2021, 115, 67–88. [Google Scholar] [CrossRef] [PubMed]
- Farjallah, M.; Graja, A.; Mahmoud, L.; Ghattassi, K.; Boudaya, M.; Driss, T.; Jamoussi, K.; Sahnoun, Z.; Souissi, N.; Hammouda, O. Effects of Melatonin Ingestion on Physical Performance and Biochemical Responses Following Exhaustive Running Exercise in Soccer Players. Biol. Sport 2022, 39, 473–479. [Google Scholar] [CrossRef]
- Martins, G.S.; Rosa, C.G.S.; Schemitt, E.G.; Colares, J.R.; Fonseca, S.R.; Brasil, M.S.; O Engeroff, M.; Marroni, N.P. Action of Melatonin and Physical Exercise on the Liver of Cirrhotic Rats: Study of Oxidative Stress and the Inflammatory Process. Hepatol. Forum 2024, 5, 184–192. [Google Scholar] [CrossRef]
- Knuiman, P.; Hopman, M.T.E.; Mensink, M. Glycogen Availability and Skeletal Muscle Adaptations with Endurance and Resistance Exercise. Nutr. Metab. 2015, 12, 59. [Google Scholar] [CrossRef]
- Rahman, M.M.; Yang, D.K. Melatonin Supplement Plus Exercise Effectively Counteracts the Challenges of Isoproterenol-Induced Cardiac Injury in Rats. Biomedicines 2023, 11, 428. [Google Scholar] [CrossRef]
- Beck, K.L.; Von Hurst, P.R.; O’Brien, W.J.; Badenhorst, C.E. Micronutrients and Athletic Performance: A Review. Food Chem. Toxicol. 2021, 158, 112618. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.-X.; Korkmaz, A.; Erren, T.C.; Piekarski, C.; Tamura, H.; Manchester, L.C. Light at Night, Chronodisruption, Melatonin Suppression, and Cancer Risk: A Review. Crit. Rev. Oncog. 2007, 13, 303–328. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Sosin, M.; Nahabedian, M.Y.; Bhanot, P. The Perfect Plane: A Systematic Review of Mesh Location and Outcomes, Update 2018. Plast. Reconstr. Surg. 2018, 142, 107S. [Google Scholar] [CrossRef]
- McInnes, M.D.F.; Moher, D.; Thombs, B.D.; McGrath, T.A.; Bossuyt, P.M.; PRISMA-DTA Group; Clifford, T.; Cohen, J.F.; Deeks, J.J.; Gatsonis, C.; et al. Preferred Reporting Items for a Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA 2018, 319, 388–396. [Google Scholar] [CrossRef]
- Mueen Ahmed, K.K.; Dhubaib, B.E.A. Zotero: A Bibliographic Assistant to Researcher. J. Pharmacol. Pharmacother. 2011, 2, 304–305. [Google Scholar] [CrossRef]
- Flemyng, E.; Moore, T.H.; Boutron, I.; Higgins, J.P.; Hróbjartsson, A.; Nejstgaard, C.H.; Dwan, K. Using Risk of Bias 2 to Assess Results from Randomised Controlled Trials: Guidance from Cochrane. BMJ Evid.-Based Med. 2023, 28, 260–266. [Google Scholar] [CrossRef]
- Freeman, S.C.; Saeedi, E.; Ordóñez-Mena, J.M.; Nevill, C.R.; Hartmann-Boyce, J.; Caldwell, D.M.; Welton, N.J.; Cooper, N.J.; Sutton, A.J. Data Visualisation Approaches for Component Network Meta-Analysis: Visualising the Data Structure. BMC Med. Res. Methodol. 2023, 23, 208. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Hopewell, S.; Chan, A.-W.; Collins, G.S.; Hróbjartsson, A.; Moher, D.; Schulz, K.F.; Tunn, R.; Aggarwal, R.; Berkwits, M.; Berlin, J.A.; et al. CONSORT 2025 Statement: Updated Guideline for Reporting Randomised Trials. BMJ 2025, 389, e081123. [Google Scholar] [CrossRef] [PubMed]
- Cuschieri, S. The CONSORT Statement. Saudi J. Anaesth. 2019, 13, 27. [Google Scholar] [CrossRef]
- McCoy, C.E. Understanding the Intention-to-Treat Principle in Randomized Controlled Trials. West. J. Emerg. Med. 2017, 18, 1075–1078. [Google Scholar] [CrossRef]
- Barcot, O.; Boric, M.; Poklepovic Pericic, T.; Cavar, M.; Dosenovic, S.; Vuka, I.; Puljak, L. Risk of Bias Judgments for Random Sequence Generation in Cochrane Systematic Reviews Were Frequently Not in Line with Cochrane Handbook. BMC Med. Res. Methodol. 2019, 19, 170. [Google Scholar] [CrossRef]
- Nejadghaderi, S.A.; Balibegloo, M.; Rezaei, N. The Cochrane Risk of Bias Assessment Tool 2 (RoB 2) versus the Original RoB: A Perspective on the Pros and Cons. Health Sci. Rep. 2024, 7, e2165. [Google Scholar] [CrossRef]
- Kamfar, W.W.; Khraiwesh, H.M.; Ibrahim, M.O.; Qadhi, A.H.; Azhar, W.F.; Ghafouri, K.J.; Alhussain, M.H.; Aldairi, A.F.; AlShahrani, A.M.; Alghannam, A.F.; et al. Comprehensive Review of Melatonin as a Promising Nutritional and Nutraceutical Supplement. Heliyon 2024, 10, e24266. [Google Scholar] [CrossRef]
- Monteiro, K.K.A.C.; Shiroma, M.E.; Damous, L.L.; Simões, M.D.J.; Simões, R.D.S.; Cipolla-Neto, J.; Baracat, E.C.; Soares, J.M., Jr. Antioxidant Actions of Melatonin: A Systematic Review of Animal Studies. Antioxidants 2024, 13, 439. [Google Scholar] [CrossRef] [PubMed]
- Virgolici, B.; Dobre, M.-Z.; Stefan, D.C.A. Bridging the Gap: Supplements Strategies from Experimental Research to Clinical Applications in Sarcopenic Obesity. Curr. Issues Mol. Biol. 2024, 46, 13418–13430. [Google Scholar] [CrossRef]
- Viana, S.M.d.N.R.; de Bruin, V.M.S.; Vasconcelos, R.S.; Nogueira, A.N.C.; Mesquita, R.; de Bruin, P.F.C. Melatonin Supplementation Enhances Pulmonary Rehabilitation Outcomes in COPD: A Randomized, Double-Blind, Placebo-Controlled Study. Respir. Med. 2023, 220, 107441. [Google Scholar] [CrossRef] [PubMed]
- De Aquino Lemos, V.; Dos Santos, R.V.T.; Antunes, H.K.M.; Behn, C.; Viscor, G.; Lira, F.S.; Bittar, I.G.L.; Caris, A.V.; Tufik, S.; De Mello, M.T. Melatonin and Sleep Responses to Normobaric Hypoxia and Aerobic Physical Exercise: A Randomized Controlled Trial. Physiol. Behav. 2018, 196, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Mason, S.A.; Trewin, A.J.; Parker, L.; Wadley, G.D. Antioxidant Supplements and Endurance Exercise: Current Evidence and Mechanistic Insights. Redox Biol. 2020, 35, 101471. [Google Scholar] [CrossRef]
- Joseph, T.T.; Schuch, V.; Hossack, D.J.; Chakraborty, R.; Johnson, E.L. Melatonin: The Placental Antioxidant and Anti-Inflammatory. Front. Immunol. 2024, 15, 1339304. [Google Scholar] [CrossRef]
- Li, J.; Pan, L.; Pan, W.; Li, N.; Tang, B. Recent Progress of Oxidative Stress Associated Biomarker Detection. Chem. Commun. 2023, 59, 7361–7374. [Google Scholar] [CrossRef]
- Plitta-Michalak, B.P.; Ramos, A.; Stepien, D.; Trusiak, M.; Michalak, M. The Comet Assay as a Method for Assessing Dna Damage in Cryopreserved Samples. Cryoletters 2024, 45, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Tryfidou, D.V.; McClean, C.; Nikolaidis, M.G.; Davison, G.W. DNA Damage Following Acute Aerobic Exercise: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 103–127. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martínez, J.; Ramírez-Casas, Y.; Yang, Y.; Aranda-Martínez, P.; Martínez-Ruiz, L.; Escames, G.; Acuña-Castroviejo, D. From Chronodisruption to Sarcopenia: The Therapeutic Potential of Melatonin. Biomolecules 2023, 13, 1779. [Google Scholar] [CrossRef]
- Rosa, C.G.S.; Colares, J.R.; da Fonseca, S.R.B.; Martins, G.D.S.; Miguel, F.M.; Dias, A.S.; Marroni, C.A.; Picada, J.N.; Lehmann, M.; Marroni, N.A.P. Sarcopenia, Oxidative Stress and Inflammatory Process in Muscle of Cirrhotic Rats—Action of Melatonin and Physical Exercise. Exp. Mol. Pathol. 2021, 121, 104662. [Google Scholar] [CrossRef]
- Ghosal, S.; Myers, B.; Herman, J.P. Role of Central Glucagon-like Peptide-1 in Stress Regulation. Physiol. Behav. 2013, 122, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Nordlie, R.C.; Foster, J.D.; Lange, A.J. REGULATION OF GLUCOSE PRODUCTION BY THE LIVER. Annu. Rev. Nutr. 1999, 19, 379–406. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.X.; Galano, A. Melatonin: Exceeding Expectations. Physiology 2014, 29, 325–333. [Google Scholar] [CrossRef]
- Harpsøe, N.G.; Andersen, L.P.H.; Gögenur, I.; Rosenberg, J. Clinical Pharmacokinetics of Melatonin: A Systematic Review. Eur. J. Clin. Pharmacol. 2015, 71, 901–909. [Google Scholar] [CrossRef]
- Mun, J.G.; Wang, D.; Doerflein Fulk, D.L.; Fakhary, M.; Gualco, S.J.; Grant, R.W.; Mitmesser, S.H. A Randomized, Double-Blind, Crossover Study to Investigate the Pharmacokinetics of Extended-Release Melatonin Compared to Immediate-Release Melatonin in Healthy Adults. J. Diet. Suppl. 2024, 21, 182–194. [Google Scholar] [CrossRef]
- Gooneratne, N.S.; Edwards, A.Y.; Zhou, C.; Cuellar, N.; Grandner, M.A.; Barrett, J.S. Melatonin Pharmacokinetics Following Two Different Oral Surge-Sustained Release Doses in Older Adults. J. Pineal Res. 2012, 52, 437–445. [Google Scholar] [CrossRef]
- Lemoine, P.; Garfinkel, D.; Laudon, M.; Nir, T.; Zisapel, N. Prolonged-Release Melatonin for Insomnia – an Open-Label Long-Term Study of Efficacy, Safety, and Withdrawal. Ther. Clin. Risk Manag. 2011, 7, 301–311. [Google Scholar] [CrossRef]
- Ishihara, R.; de Barros, M.P.; da Silva, C.M.; Borges, L.d.S.; Hatanaka, E.; Lambertucci, R.H. Melatonin Improves the Antioxidant Capacity in Cardiac Tissue of Wistar Rats after Exhaustive Exercise. Free Radic. Res. 2021, 55, 776–791. [Google Scholar] [CrossRef] [PubMed]
- Bernecker, C.; Scherr, J.; Schinner, S.; Braun, S.; Scherbaum, W.A.; Halle, M. Evidence for an Exercise Induced Increase of TNF-α and IL-6 in Marathon Runners. Scand. J. Med. Sci. Sports 2013, 23, 207–214. [Google Scholar] [CrossRef]
- Nuzzo, J.L.; Deaner, R.O. Men and Women Differ in Their Interest and Willingness to Participate in Exercise and Sports Science Research. Scand. J. Med. Sci. Sports 2023, 33, 1850–1865. [Google Scholar] [CrossRef]
- El-Gayar, D.; El-Abd, N.; Hassan, N.; Ali, R. Increased Free Circulating DNA Integrity Index as a Serum Biomarker in Patients with Colorectal Carcinoma. Asian Pac. J. Cancer Prev. 2016, 17, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Devries, M.C.; Jakobi, J.M. Importance of Considering Sex and Gender in Exercise and Nutrition Research. Appl. Physiol. Nutr. Metab. 2021, 46, iii–vii. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- PRISMA Statement. Available online: https://www.prisma-statement.org (accessed on 13 May 2025).
- Schiavo, J.H. PROSPERO: An International Register of Systematic Review Protocols. Med. Ref. Serv. Q. 2019, 38, 171–180. [Google Scholar] [CrossRef]
- Page, M.J.; Shamseer, L.; Tricco, A.C. Registration of Systematic Reviews in PROSPERO: 30,000 Records and Counting. Syst. Rev. 2018, 7, 32. [Google Scholar] [CrossRef]
- Sokolović, D.T.; Lilić, L.; Milenković, V.; Stefanović, R.; Ilić, T.P.; Mekić, B.; Ilić, I.; Stojanović, N.M.; Ilić, I.R. Effects of Melatonin on Oxidative Stress Parameters and Pathohistological Changes in Rat Skeletal Muscle Tissue Following Carbon Tetrachloride Application. Saudi Pharm. J. 2018, 26, 1044–1050. [Google Scholar] [CrossRef]
- Reiter, R.; Tan, D.; Rosales-Corral, S.; Galano, A.; Zhou, X.; Xu, B. Mitochondria: Central Organelles for Melatonin′s Antioxidant and Anti-Aging Actions. Molecules 2018, 23, 509. [Google Scholar] [CrossRef]
- Sánchez, A.; Calpena, A.; Clares, B. Evaluating the Oxidative Stress in Inflammation: Role of Melatonin. Int. J. Mol. Sci. 2015, 16, 16981–17004. [Google Scholar] [CrossRef] [PubMed]
- Nikoui, V.; Hosseinzadeh, A.; Khotab, S.J.; Mousavi, S.Z.; Abolmaali, M.; Mehrzadi, S. Antidepressant-like Properties of Melatonin and Atorvastatin Combinationfollowing the Restraint Stress in Mice: A Study of Oxidative StressFactors. Cent. Nerv. Syst. Agents Med. Chem. 2023, 23, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhai, R.; Lan, X.; Yang, S.; Tang, S.; Xiong, X.; He, Y.; Lin, J.; Feng, J.; Chen, D.; et al. The Influence of Sleep Disorders on Perioperative Neurocognitive Disorders among the Elderly: A Narrative Review. Ibrain 2024, 10, 197–216. [Google Scholar] [CrossRef]
- Maarman, G.J.; Andrew, B.M.; Blackhurst, D.M.; Ojuka, E.O. Melatonin Protects against Uric Acid-Induced Mitochondrial Dysfunction, Oxidative Stress, and Triglyceride Accumulation in C2 C12 Myotubes. J. Appl. Physiol. 2017, 122, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Veiga, E.C.d.A.; Samama, M.; Ikeda, F.; Cavalcanti, G.S.; Sartor, A.; Parames, S.F.; Baracat, E.C.; Ueno, J.; Soares Junior, J.M. Melatonin Improves Fertilization Rate in Assisted Reproduction: Systematic Review and Meta-Analysis. Clinics 2024, 79, 100397. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, M.R.; Chaudhary, S.; Sharma, Y.; Singh, T.A.; Mishra, A.K.; Sharma, S.; Mehdi, M.M. Aging, Oxidative Stress and Degenerative Diseases: Mechanisms, Complications and Emerging Therapeutic Strategies. Biogerontology 2023, 24, 609–662. [Google Scholar] [CrossRef]
- Zhao, W.; Yao, J.; Liu, Y.; Mao, L.; He, C.; Long, D. Protective Role of Melatonin against Radiation-Induced Disruptions in Behavior Rhythm of Zebrafish (Danio Rerio). Aquat. Toxicol. 2024, 276, 107106. [Google Scholar] [CrossRef]
- Cooper-Mullin, C.; McWilliams, S.R. The Role of the Antioxidant System during Intense Endurance Exercise: Lessons from Migrating Birds. J. Exp. Biol. 2016, 219, 3684–3695. [Google Scholar] [CrossRef]
MeSH/Descritores | Description/Definition in Study | Component |
---|---|---|
“Athletes”, “Exercise”, “Healthy Volunteers”, “Oxidative Stress”, “DNA Damage” | Healthy humans undergoing intense physical exercise protocols capable of inducing oxidative stress and DNA damage, including athletes or physically active individuals, without age or gender restrictions, if they do not have significant medical comorbidities. | P (Population) |
“MLT”, “Dietary Supplements”, “Administration, Oral”, “Antioxidants” | Exogenous administration of MLT, regardless of dose, route of administration (oral or other), pharmaceutical form, or timing of administration (before, during, or after exercise). | I (Intervention) |
“Placebo”, “Control Groups”, “No Intervention” | Control groups that received placebo or no MLT supplementation, allowing direct comparison of the effects of the intervention. | C (Comparator) |
Studies that assessed at least one of the following outcomes: | O (Outcomes) | |
“8-Hydroxy-2′-Deoxyguanosine”, “Comet Assay”, “DNA Breaks” | - Oxidative DNA damage Direct biomarkers such as 8-hydroxy-2′-deoxyguanosine (8-OHdG), comet assay, or DNA strand breaks. | |
“DNA Repair”, “Base Excision Repair”, “Enzymes” | - DNA repair mechanisms Expression of genes related to repair or repair enzyme activity (e.g., via BER). | |
“Oxidative Stress”, “Malondialdehyde”, “Superoxide Dismutase”, “Glutathione Peroxidase” | - Oxidative stress Systemic or local indicators such as malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), or other antioxidant markers. |
DNA Repair Biomarkers | ROS Oxidation Biomarkers | Biochemical Biomarkers | Intervention | Study Design | Number of Samples | Studies (Author- Year) |
---|---|---|---|---|---|---|
Indirect markers: Hcy ↓, us-CRP ↓, CK ↓, LDH ↓, AST ↓ Direct markers:― | MDA ↓, WBC ↓, NE ↓, LY ↓, La ∅, GL ∅ | CK, LDH, AST, Hcy, us-CRP, Glc, La, WBC, NE, LY, MO | 10 mg after evening exercise (10 pm), single dose | Double-blind, randomized, crossover, RAST test (Running-Based Anaerobic Sprint Test) | 14 males, teens, (14.5 ± 0.5 yrs) | Cheikh et al. [9] |
Indirect markers: Hcy ↓, us-CRP ↓, CK ↓, LDH ↓, AST ↓ Direct markers: ― | ASAT ↓, ALAT ↓, GGT ↓, CREA ↓, WBC ∅, NE ∅, LY ∅, La ∅, GL ∅ | ASAT, ALAT, GGT, CREA, TC, HDL, LDL, TG, GL, La, WBC, NE, LY, MO | 6 mg MLT, 30 min before exercise (17:00 h ± 30 min), single dose | Randomized double-blind, placebo-controlled (running exercise test (RET) at 100% of their MAS) | 12 males soccer players (17.54 ± 0.78 yrs) | Farjallah et al. [45] |
Direct markers: DNA damage in lymphocytes assessed by comet assay | TAC ↑ GPx ↑ SOD ∅ | MLT, Glc, CREA, UA, TC, TG, TBIL, TP, TRF, ALB | 20 mg/day of MLT, taken before exercise, 2-week | Double-blind, randomized, placebo; HIIT (High Intensity Interval Training) strength training | 14 male athletes (20–37 years old) | Ortiz-Franco et al. [53] |
Indirect markers: CK ↓, ASAT ↓, ALAT ↓ Direct markers: ― | AOPP ↓, GPx ↑, GR ↓, UA ∅, TBIL ↓, WBC ↓, NE ↓, LY ↓ | CK, LDH, UA, TBIL | 5 mg of MLT orally, taken daily at 7 pm after training, 6-day | Randomized double-blind, placebo-controlled | 20 male soccer players (18.81 ± 1.3 yrs) | Farjallah et al. [7] |
Indirect markers: CK ↓, LDH ↓ Direct markers: ― | MDA ↑, SOD ↓, GPx ↓, UA ∅, TBIL ∅ | CK, LDH, AST, ALT, CREA, Urea, Glc, WBC, NE, LY, MO | 6 mg of MLT, taken 30 min pre-exercise (17 h ± 30 min), single dose | Double-blind, randomized, crossover; intensive soccer training | 13 male, soccer players (17.5 ± 0.8 yrs) | Farjallah et al. [66] |
Indirect markers: GSH ↓, GSSG ↓, GSSG/GSH ↑, GPx ↑, GRd ↑, GPx/GR ↑, CK ↓, LDH ↓, TC ↓, CREA ↓ Direct markers: ― | ORAC ↑, LPO ↓, NOx ↓, AOPP ↖, GPx ↑, GRd ↘ | CK, LDH, CREA, TC, TG, Glc, Urea, UA, AST, ALT, WBC, NE, LY, MO | 100 mg/day of MLT, oral administration, 30–60 min before bed, 4 weeks | Double-blind, randomized, placebo-controlled; resistance training. | 24 male young adults | Leonardo-Mendonça et al. [8] |
Global Risk | Bias in Selecting Results | Bias in Measurement | Bias in Missing Data | Bias in Deviations | Bias in Randomization | Key Outcomes | Intervention | Authors (Year) |
---|---|---|---|---|---|---|---|---|
Low | Low | Low | Low | Low | Low | Muscle damage, oxidative stress | MLT 10 mg post-exercise | Cheikh et al. [9] |
Low | Low | Low | Low | Low | Low | Hepatic/ rhenaic markers | MLT 6 mg pre- exercise maximum | Farjallah et al. [45] |
Low | Low | Low | Low | Low | Low | Antioxidant capacity, DNA damage | MLT 20 mg/day + HIIT | Ortiz-Franco et al. [53] |
Some concerns | Some concerns | Low | Low | Low | Low | Oxidative stress, performance | MLT 5 mg during training | Farjallah et al. [7] |
Some concerns | Some concerns | Low | Low | Low | Low | Oxidative stress, muscle damage | MLT 6 mg pre-race | Farjallah et al. [66] |
Some concerns | Some concerns | Low | Low | Low | Low | Status redox, dano muscular | MLT 100 mg/day before bed | Leonardo-Mendonça et al. [8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertolucci, V.; Granado, N.M.M.; Sánchez-Luquez, K.Y. Melatonin and DNA Integrity: The Impact of Exogenous Administration in Exercise-Induced Oxidative Stress—A Systematic Review. DNA 2025, 5, 44. https://doi.org/10.3390/dna5030044
Bertolucci V, Granado NMM, Sánchez-Luquez KY. Melatonin and DNA Integrity: The Impact of Exogenous Administration in Exercise-Induced Oxidative Stress—A Systematic Review. DNA. 2025; 5(3):44. https://doi.org/10.3390/dna5030044
Chicago/Turabian StyleBertolucci, Vanessa, Nicole Maria Marino Granado, and Karen Y. Sánchez-Luquez. 2025. "Melatonin and DNA Integrity: The Impact of Exogenous Administration in Exercise-Induced Oxidative Stress—A Systematic Review" DNA 5, no. 3: 44. https://doi.org/10.3390/dna5030044
APA StyleBertolucci, V., Granado, N. M. M., & Sánchez-Luquez, K. Y. (2025). Melatonin and DNA Integrity: The Impact of Exogenous Administration in Exercise-Induced Oxidative Stress—A Systematic Review. DNA, 5(3), 44. https://doi.org/10.3390/dna5030044