Food, Climate Change, and the Challenge of Innovation
Definition
:1. Introduction
2. Defining the Approach: Climate Change under the Food System Lens
3. Threats to Food Security: Understanding the Relationships between Food Security, Food Systems, and Climate Change
3.1. Climate Change Impacts on Food Availability
3.2. Climate Change Impacts on Food Access
3.3. Climate Change Impacts Food Utilization
3.4. Climate Change Impacts Food Stability
4. The Challenge of Innovation and the Role of Policies
- (a)
- Digital agriculture is also known as smart agriculture or e-agriculture. It refers to digital tools that help collect, store, analyze, and share data or information about relevant agriculture variables. These tools allow farmers to determine the health status of plants and animals in the field, and facilitate the relationships of the actors involved in agriculture, such as farmers and consumers. Some examples of digital agriculture technologies are apps using machine learning to predict food supply and demand in a specific geographical range. On the other hand, sensors for collecting agriculture data, or drones equipped with the internet of things, help to quickly determine the health of a plantation through high-resolution photography [81].
- (b)
- Agriculture 5.0, or artificial intelligence and deep learning, refers to systems that help farmers to detect diseases, pests, and poor nutrition on farms. Sensors can collect information on the field, such as pests, and then decide which herbicide to apply based on the knowledge of the region, types of crops, etc. These solutions are cheap and fast for farmers because they only need a smartphone and help to face climate change, especially for small farmers of low income [82].
- (c)
- Blockchain enables the traceability of information in the food supply chain, helping farmers efficiently and safely use the data collected by smart agriculture systems [83].
- (d)
- Vertical farming is the practice of growing plants in vertical layers. This type of farming often incorporates controlled environment agriculture technologies and farming techniques, such as hydroponics, aquaponics, and aeroponics. Therefore, vertical farming helps to face the negative impacts of climate change on agriculture [84].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carle, J. Climate Change Seen as Top Global Threat. Pew Research Centre. 14 July 2015. Available online: https://www.pewresearch.org/global/2015/07/14/climate-change-seen-as-top-global-threat/ (accessed on 6 March 2023).
- Byg, A.; Salick, J. Local perspectives on a global phenomenon—Climate change in Eastern Tibetan villages. Glob. Environ. Chang. 2009, 19, 156–166. [Google Scholar] [CrossRef]
- Dellink, R.; Lanzi, E.; Chateau, J. The Sectoral and Regional Economic Consequences of Climate Change to 2060. Environ. Resour. Econ. 2019, 72, 309–363. [Google Scholar] [CrossRef]
- Seaman, J.A.; Sawdon, G.E.; Acidri, J.; Petty, C. The Household Economy Approach. Managing the impact of climate change on poverty and food security in developing countries. Clim. Risk Manag. 2014, 4, 59–68. [Google Scholar] [CrossRef]
- Akerlof, K.L.; Delamater, P.L.; Boules, C.R.; Upperman, C.R.; Mitchell, C.S. Vulnerable populations perceive their health as at risk from climate change. Int. J. Environ. Res. Public Health 2015, 12, 15419–15433. [Google Scholar] [CrossRef] [Green Version]
- Benevolenza, M.A.; DeRigne, L.A. The impact of climate change and natural disasters on vulnerable populations: A systematic review of literature. J. Hum. Behav. Soc. Environ. 2019, 29, 266–281. [Google Scholar] [CrossRef]
- Füssel, H.M.; Klein, R.J.T. Climate Change Vulnerability Assessments: An Evolution of Conceptual Thinking. Clim. Chang. 2006, 75, 301–329. [Google Scholar] [CrossRef]
- Mbow, C.C.; Rosenzweig, L.G.; Barioni, T.G.; Benton, M.; Herrero, M.; Krishnapillai, E.; Liwenga, P.; Pradhan, M.G.; Rivera-Ferre, T. Food Security. In Climate Change and Land; An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Bach, C.; Aborisade, B. Assessing the Pillars of Sustainable Food Security. Eur. Int. J. Sci. Technol. 2014, 3, 117–125. [Google Scholar]
- Ericksen, P.J.; Ingram, J.S.; Liverman, D.M. Food security and global environmental change: Emerging challenges. Environ. Sci. Policy 2009, 12, 373–377. [Google Scholar] [CrossRef]
- Fraser, E.D.G.; Mabee, W.; Figge, F. A framework for assessing the vulnerability of food systems to future shocks. Futures 2005, 37, 465–479. [Google Scholar] [CrossRef]
- Ericksen, P.J. What Is the Vulnerability of a Food System to Global Environmental Change? Ecol. Soc. 2008, 13, 14. Available online: https://hdl.handle.net/10568/35042 (accessed on 18 March 2023). [CrossRef] [Green Version]
- Damanpour, F. Organizational Complexity and Innovation: Developing and Testing Multiple Contingency Models. Manag. Sci. 1996, 42, 693–716. Available online: http://www.jstor.org/stable/2634460 (accessed on 12 March 2023). [CrossRef]
- Sivaram, V.; Norris, T. The clean energy revolution: Fighting climate change with innovation. Foreign Aff. 2016, 95, 147–156. [Google Scholar]
- Venkataraman, S. Fighting Climate Change. Available at SSRN 3837541. 2020. Available online: http://dx.doi.org/10.2139/ssrn.3837541 (accessed on 15 March 2023).
- Fanzo, J.; Davis, C.; McLaren, R.; Choufani, J. The effect of climate change across food systems: Implications for nutrition outcomes. Glob. Food Secur. 2018, 18, 12–19. [Google Scholar] [CrossRef]
- International Food Policy Research Institute (IFPRI). 2022 Global Food Policy Report: Climate Change and Food Systems; IFPRI: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Crnčević, T.; Orlović-Lovren, V. Displacement and climate change: Improving planning policy and increasing community resilience. Int. J. Clim. Chang. Strateg. Manag. 2018, 10, 105–120. [Google Scholar] [CrossRef]
- Aktürk, G.; Lerski, M. Intangible cultural heritage: A benefit to climate-displaced and host communities. J. Environ. Stud. Sci. 2021, 11, 305–315. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change and Land; An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture: Alternative Pathways to 2050; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; 228p. [Google Scholar]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Van Dingenen, R.; Leip, A. Air pollutant emissions from global food systems are responsible for environmental impacts, crop losses and mortality. Nat. Food 2022, 3, 942–956. [Google Scholar] [CrossRef]
- UN DESA. World Population Prospects 2022 Summary of Results. 2022. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed on 20 March 2023).
- Mayén, A.L.; Marques-Vidal, P.; Paccaud, F.; Bovet, P.; Stringhini, S. Socioeconomic determinants of dietary patterns in low-and middle-income countries: A systematic review. Am. J. Clin. Nutr. 2014, 100, 1520–1531. [Google Scholar] [CrossRef] [Green Version]
- Sans, P.; Combris, P. World meat consumption patterns: An overview of the last fifty years (1961–2011). Meat Sci. 2015, 109, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Nunes, R.; Silva, V.L.; Consiglio-Kasemodel, M.G.; Polizer, Y.J.; Saes, M.S.M.; Favaro-Trindade, C.S. Assessing global changing food patterns: A country-level analysis on the consumption of food products with health and wellness claims. J. Clean. Prod. 2020, 264, 121613. [Google Scholar] [CrossRef]
- Valin, H.; Sands, R.D.; Van der Mensbrugghe, D.; Nelson, G.C.; Ahammad, H.; Blanc, E.; Willenbockel, D. The future of food demand: Understanding differences in global economic models. Agric. Econ. 2014, 45, 51–67. [Google Scholar] [CrossRef]
- Flies, E.J.; Brook, B.W.; Blomqvist, L.; Buettel, J.C. Forecasting future global food demand: A systematic review and meta-analysis of model complexity. Environ. Int. 2018, 120, 93–103. [Google Scholar] [CrossRef] [PubMed]
- FAO. Livestock and Landscapes: Sustainability Pathways; Food and Agriculture Organizations of the United Nations: Rome, Italy, 2012; Available online: https://www.fao.org/3/ar591e/ar591e.pdf (accessed on 16 January 2023).
- Cheng, M.; McCarl, B.; Fei, C. Climate change and livestock production: A literature review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- FAO. Global Agriculture Towards 2050; High level expert Forum; FAO: Rome, Italy, 2009. [Google Scholar]
- HLPE. Food Security and Climate Change; A Report by the (HLPE) on Food Security and Nutrition of the Committee on World Food Security; HLPE: Rome, Italy, 2012. [Google Scholar]
- EEA. A Year in Brief, Web Report No. 02/2022; European Environment Agency: Copenhagen, Denmark, 2022. [Google Scholar] [CrossRef]
- Warren, R.; Price, J.; Fischlin, A.; de la Nava, S.; Midgley, G. Increasing impacts of climate change upon ecosystems with increasing global mean temperature rise. Clim. Chang. 2011, 106, 141–177. [Google Scholar] [CrossRef]
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Ortiz-Bobea, A.; Ault, T.R.; Carrillo, C.M.; Chambers, R.G.; Lobell, D.B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Chang. 2021, 11, 306–312. [Google Scholar] [CrossRef]
- Rasmussen, L.V.; Coolsaet, B.; Martin, A.; Mertz, O.; Pascual, U.; Corbera, E.; Dawson, N.; Fisher, J.A.; Franks, P.; Ryan, C.M. Social-ecological outcomes of agricultural intensification. Nat. Sustain. 2018, 1, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, C.; Mbow, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Portugal-Pereira, J. Climate change responses benefit from a global food system approach. Nat. Food 2020, 1, 94–97. [Google Scholar] [CrossRef] [Green Version]
- Ingram, J. A food systems approach to researching food security and its interactions with global environmental change. Food Secur. 2011, 3, 417–431. [Google Scholar] [CrossRef]
- Ericksen, P.; Stewart, B.; Dixon, J.; Barling, D.; Loring, P.; Anderson, M.; Ingram, J. The value of a food system approach. In Food Security and Global Environmental Change; Routledge: London, UK, 2012; pp. 45–65. [Google Scholar]
- FAO. Policy Brief: Food Security; FAO: Rome, Italy, 2006. [Google Scholar]
- Gomez-Zavaglia, A.; Mejuto, J.C.; Simal-Gandara, J.C. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 2020, 134, 109256. [Google Scholar] [CrossRef]
- Iizumi, T.; Shiogama, H.; Imada, Y.; Hanasaki, N.; Takikawa, H.; Nishimori, M. Crop production losses associated with anthropogenic climate change for 1981–2010 compared with preindustrial levels. Int. J. Climatol. 2018, 38, 5405–5417. [Google Scholar] [CrossRef] [Green Version]
- Bisbis, M.B.; Gruda, N.; Blanke, M. Potential impacts of climate change on vegetable production and product quality—A review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture. In Women in Agriculture: Closing the Gender Gap for Development; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; 160p. [Google Scholar]
- Nellemann, C.; MacDevette, M.; Manders, T.; Eickhout, B.; Svihus, B.; Prins, A.G.; Kaltenborn, B.P. The Environmental Food Crisis: The Environment’s Role in Averting Future Food Crises: A UNEP Rapid Response Assessment; UNEP/Earthprint: Stevenage, UK, 2009; 104p. [Google Scholar]
- Hochman, Z.; Gobbett, D.L.; Horan, H. Climate trends account for stalled wheat yields in Australia since 1990. Glob. Chang. Biol. 2017, 23, 2071–2081. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Ge, Q.; Dai, J.; Qin, Y.; Dai, L.; Zou, X.; Chen, J. Modelling the impacts of climate change and crop management on phenological trends of spring and winter wheat in China. Agric. For. Meteorol. 2018, 248, 518–526. [Google Scholar] [CrossRef]
- Jha, B.; Tripathi, A. How susceptible is India's food basket to climate change? Soc. Chang. 2017, 47, 11–27. [Google Scholar] [CrossRef]
- Klein, A.M.; Vaissiere, J.H.; Cane, I.; Steffan-Dewenter, S.A.; Cunningham, C.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B-Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Winfree, R. Global change, biodiversity, and ecosystem services: What can we learn from studies of pollination? Basic Appl. Ecol. 2013, 14, 453–460. [Google Scholar] [CrossRef]
- Ketiem, P.; Makeni, P.M.; Maranga, E.K.; Omondi, P.A. Integration of climate change information into drylands crop production practices for enhanced food security: A case study of Lower Tana Basin in Kenya. African J. Agric. Res. 2017, 12, 1763–1771. [Google Scholar] [CrossRef] [Green Version]
- Saxena, A.K.; Fuentes, X.C.; Herbas, R.G.; Humphries, D.L. Indigenous food systems and climate change: Impacts of climatic shifts on the production and processing of native and traditional crops in the Bolivian Andes. Front. Public Health 2016, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Yang, S.; Lian, Y.; Zheng, D.; Wen, M.; Tu, G.; Shen, B.; Gao, Z.; Wang, D. Time-frequency characteristics of regional climate over Northeast China and their relationships with atmospheric circulation patterns. J. Clim. 2010, 23, 4956–4972. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L.; Quiroga, S.; Moneo, M. A regional comparison of the effects of climate change on agricultural crops in Europe. Clim. Chang. 2012, 112, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Angulo, C.; Rötter, R.; Lock, R.; Enders, A.; Fronzek, S.; Ewert, F. Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agric. For. Meteorol. 2013, 170, 32–46. [Google Scholar] [CrossRef]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Rivera-Ferre, M.G.; López-i-Gelats, F.; Howden, M.; Smith, P.; Morton, J.F.; Herrero, M. Re-framing the climate change debate in the livestock sector: Mitigation and adaptation options. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 869–892. [Google Scholar] [CrossRef]
- López-i-Gelats, F.; Fraser, E.D.G.; Morton, J.F.; Rivera-Ferre, M.G. What drives the vulnerability of pastoralists to global environmental change? A qualitative meta-analysis. Glob. Environ. Chang. 2016, 39, 258–274. [Google Scholar] [CrossRef]
- Njiru, B.N. Climate Change, Resource Competition, and Conflict amongst Pastoral Communities in Kenya; Springer: Berlin, Heidelberg, 2012; pp. 513–527. [Google Scholar]
- Egeru, A. Climate risk management information, sources and responses in a pastoral region in East Africa. Clim. Risk Manag. 2016, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- McGahey, D.; Davies, J.; Hagelberg, N.; Ouedraogo, R. Pastoralism and the Green Economy: A Natural Nexus?—Status, Challenges and Policy Implications; IUCN and UNEP: Nairobi, Kenya, 2014; pp. 1–72. [Google Scholar]
- Stehfest, E.; Van Zeist, W.; Valin, H.; Havlik, P.; Popp, A.; Kyle, P.; Tabeau, A.; Mason-D’Croz, D.; Hasegawa, T.; Bodirsky, B.; et al. Key determinants of global land-use futures. Nat. Commun. 2019, 10, 2166. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, T.; Fujimori, S.; Havlík, P.; Valin, H.; Leon Bodirsky, B.; Doelman, J.; Fellmann, T.; Kyle, P.; Koopman, J.; Lotze-Campen, H.; et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Chang. 2018, 8, 699–703. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.; van Meijl, H.; Willenbockel, D.; Valin, H.; Fujimori, S.; Masui, T.; Sands, R.; Wise, M.; Calvin, K.; Havlik, P.; et al. Comparing supply-side specifications in models of global agriculture and the food system. Agric. Econ. 2014, 45, 21–35. [Google Scholar] [CrossRef]
- Nelson, G.; Bogard, J.; Lividini, K.; Arsenault, J.; Riley, M.; Sulser, T.; Mason-D’Croz, D.; Power, B.; Gustafson, D.; Herrero, M.; et al. Income growth and climate change effects on global nutrition security to mid-century. Nat. Sustain. 2018, 1, 773–781. [Google Scholar] [CrossRef]
- Islam, M.D.; Islam, S.; Fatema, K.; Khanum, R. Rural women participation in farm and off-farm activities and household income in Bangladesh. Heliyon 2022, 8, 10618. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Magalhaes, E.; Valmonte-Santos, R.A.; Mason-D’Croz, D. Returns to Investment in Reducing Postharvest Food Losses and Increasing Agricultural Productivity Growth: Post-2015 Consensus; Copenhagen Consensus Center: Lowell, MA, USA, 2015; 46p. [Google Scholar]
- Dasgupta, P.; Morton, J.F.; Dodman, D.; Karapinar, B.; Meza, F.; Rivera-Ferre, M.G.; Toure-Sarr, A.; Vincent, K.E. Rural Areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 613–657. [Google Scholar]
- Paterson, R.R.M.; Lima, N. How will climate change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef] [Green Version]
- Moses, J.A.; Jayas, D.S.; Alagusundaram, K. Climate change and its implications on stored food grains. Agric. Res. 2015, 4, 21–30. [Google Scholar] [CrossRef]
- Balzergue, P.; Bond, H.; Brownson, K.; Caissy, K.; Guy, E.; Lecoq, F.; Marrin, D.; Mc-Laughlin, P.; Peyre-Costa, T.; Soo, T.; et al. Developing a Global Compendium on Water Quality Guidelines. Rep. Int. Water Resour. Assoc. (IWRA) 2018, 1–79. Available online: https://www.iwra.org/waterquality/ (accessed on 20 March 2023).
- Rajkumar, M.; Prasad, M.N.V.; Swaminathan, S.; Freitas, H. Climate change driven plant-metal-microbe interactions. Environ. Int. 2013, 53, 74–86. [Google Scholar] [CrossRef]
- Zhu, C.; Kobayashi, K.; Loladze, I.; Zhu, J.; Jiang, Q.; Xu, X.; Liu, G.; Seneweera, S.; Ebi, K.L.; Drewnowski, A.; et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 2018, 4, eaaq1012. [Google Scholar] [CrossRef] [Green Version]
- Ishigooka, Y.S.; Fukui, T.; Hasegawa, T.; Kuwagata, M.; Nishimori, K.M. Large-scale evaluation of the effects of adaptation to climate change by shifting transplanting date on rice production and quality in Japan. J. Agric. Meteorol. 2017, 73, 156–173. [Google Scholar] [CrossRef] [Green Version]
- Ashby, S.; Kleve, S.; McKechnie, R.; Palermo, C. Measurement of the dimensions of food insecurity in developed countries: A systematic literature review. Public Health Nutr. 2016, 19, 2887–2896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hötte, K.; Jung, S. Knowledge for a warmer world: A patent analysis of climate change adaptation technologies. Technol. Forecast. Soc. Chang. 2022, 183, 121879. [Google Scholar] [CrossRef]
- Balan, I.M.; Popescu, A.C.; Iancu, T.; Popescu, G.; Tulcan, C. Food Safety Versus Food Security in a World of Famine. J. Adv. Res. Soc. Sci. Humanit. 2020, 5, 20–30. [Google Scholar] [CrossRef]
- Chen, H.D.; Weiss, J.C.; Shahidi, F. Nanotechnology in nutraceuticals and functional foods. Food Technol. J. 2006, 60, 30–36. [Google Scholar]
- Gouvea, R.; Kapelianis, D.; Li, S.; Terra, B. Innovation, ICT & food security. Glob. Food Secur. 2022, 35, 100653. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS-Wagening. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Ahmad, L.; Nabi, F. Agriculture 5.0. Artificial Intelligence, IoT and Machine Learning; Taylor & Francis Group: Abingdon, UK; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Rogerson, M.; Parry, G.C. Blockchain: Case studies in food supply chain visibility. Supply Chain Manag. 2020, 25, 601–614. [Google Scholar] [CrossRef]
- Kalantari, F.; Tahir, O.M.; Joni, R.A.; Fatemi, E. Opportunities and Challenges in Sustainability of Vertical Farming: A Review. J. Landsc. Ecol. 2018, 11, 35–60. [Google Scholar] [CrossRef] [Green Version]
- Barrett, S. Dikes versus windmills: Climate treaties and adaptation. Clim. Chang. Econ. 2020, 11, 2040005. [Google Scholar] [CrossRef]
- Reyer, C.P.; Rigaud, K.K.; Fernandes, E.; Hare, W.; Serdeczny, O.; Schellnhuber, H.J. Turn Down the Heat: Regional Climate Change Impacts on Development; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- IPCC. Summary for policymakers. In Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Poloczanska, K., Tignor, M., Alegria, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022; in press. [Google Scholar]
- Barnett, J.; O’Neill, S. Maladaptation. Glob. Environ. Chang. 2010, 20, 211–213. [Google Scholar] [CrossRef]
- Levin, K.; Steer, A. Fighting Climate Change with Innovation. Financ. Dev. 2021, 23–25. Available online: https://www.imf.org/en/Publications/fandd/issues/2021/09/bezos-earth-fund-climate-change-innovation-levin (accessed on 22 March 2023).
- Born, L.; Bucher, A.; Hansen, J.; Prager, S.; Rose, A.; Zebiak, S. Data, Information, and Governance of Digital Climate-Informed Advisory Services; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Wageningen, The Netherlands, 2021. [Google Scholar]
- Redman, S.; Greenhalgh, T.; Adedokun, L.; Staniszewska, S.; Denegri, S. Co-production of Knowledge Collection Steering Committee. Co-production of knowledge: The future. BMJ 2021, 372, n434. [Google Scholar] [CrossRef] [PubMed]
- De Man, A.P.; Duysters, G. Collaboration and innovation: A review of the effects of mergers, acquisitions and alliances on innovation. Technovation 2005, 25, 1377–1387. [Google Scholar] [CrossRef]
- Clapp, J.; Moseley, W.G.; Burlingame, B.; Termine, P. The case for a six-dimensional food security framework. Food Policy 2022, 106, 102164. [Google Scholar] [CrossRef]
- HLPE. Food Security and Nutrition: Building a Global Narrative Towards 2030. 2020. Available online: http://www.fao.org/3/ca9731en/ca9731en.pdf (accessed on 20 March 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán-Sandoval, D.; Uleri, F.; Durán-Romero, G.; López, A.M. Food, Climate Change, and the Challenge of Innovation. Encyclopedia 2023, 3, 839-852. https://doi.org/10.3390/encyclopedia3030060
Durán-Sandoval D, Uleri F, Durán-Romero G, López AM. Food, Climate Change, and the Challenge of Innovation. Encyclopedia. 2023; 3(3):839-852. https://doi.org/10.3390/encyclopedia3030060
Chicago/Turabian StyleDurán-Sandoval, Daniel, Francesca Uleri, Gemma Durán-Romero, and Ana M. López. 2023. "Food, Climate Change, and the Challenge of Innovation" Encyclopedia 3, no. 3: 839-852. https://doi.org/10.3390/encyclopedia3030060
APA StyleDurán-Sandoval, D., Uleri, F., Durán-Romero, G., & López, A. M. (2023). Food, Climate Change, and the Challenge of Innovation. Encyclopedia, 3(3), 839-852. https://doi.org/10.3390/encyclopedia3030060