Selective Hydrodeoxygenation of Guaiacol to Cyclohexane over Ru-Catalysts Based on MFI Nanosheets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
- 1. NaOH 0.69 g, TPAOH 5.9 g (1M), H2O—35.5 g, dissolve and mix thoroughly2. Fumed silica (SiO2) 6.9 g, add silica in portions under stirring3. Aged at 100 °C for 16 h
- 1. H2O—17.0 g, NaOH—0.75 g, C22-6-6Br2—1.6 g, dissolve and mix thoroughly2. H2O—17.6 g, Al2(SO4)3·18H2O—0.49 g, mixing until a clear solution was obtained. Then, the content of the Al-contained vessel was added to the vessel with surfactant3. +2 mL of seeding gel (A)4. The mixture was magnetically stirred for 1 h5. This solution was added with 6.3 g of TEOS6. Shake for one hour7. Aged at 100 °C for 16 h (in a Teflon-lined stainless steel autoclave)
2.2. Catalysts Preparation
2.3. Characterization
2.4. Hydrodeoxygenation Procedure
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dusselier, M.; Davis, M.E. Small-Pore Zeolites: Synthesis and Catalysis. Chem. Rev. 2018, 118, 5265–5329. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, L.; Yu, J. Applications of Zeolites in Sustainable Chemistry. Chem 2017, 3, 928–949. [Google Scholar] [CrossRef] [Green Version]
- Weitkamp, J. Zeolites and Catalysis. Solid State Ion. 2000, 131, 175–188. [Google Scholar] [CrossRef]
- Möller, K.; Bein, T. Pores Within Pores—How to Craft Ordered Hierarchical Zeolites. Science 2011, 333, 297–298. [Google Scholar] [CrossRef] [PubMed]
- Shirokopoyas, S.I.; Baranova, S.V.; Maksimov, A.L.; Kardashev, S.V.; Kulikov, A.B.; Naranov, E.R.; Vinokurov, V.A.; Lysensko, S.V.; Karakhanov, E.A. Hydrogenation of Aromatic Hydrocarbons in the Presence of Dibenzothiophene over Platinum-Palladium Catalysts Based on Al-SBA-15 Aluminosilicates. Pet. Chem. 2014, 54, 94–99. [Google Scholar] [CrossRef]
- Shavaleev, D.A.; Pavlov, M.L.; Basimova, R.A.; Sadovnikov, A.A.; Sudin, V.V.; Smirnova, E.M.; Demikhova, N.R.; Grigor’ev, Y.V.; Maksimov, A.L.; Naranov, E.R. Synthesis of Modified Catalyst for Liquid Phase Alkylation of Benzene with Ethylene. Pet. Chem. 2020, 60, 1073–1079. [Google Scholar] [CrossRef]
- Serrano, D.P.; Escola, J.M.; Pizarro, P. Synthesis Strategies in the Search for Hierarchical Zeolites. Chem. Soc. Rev. 2013, 42, 4004–4035. [Google Scholar] [CrossRef]
- Egeblad, K.; Christensen, C.H.; Kustova, M.; Christensen, C.H. Templating Mesoporous Zeolites. Chem. Mater. 2008, 20, 946–960. [Google Scholar] [CrossRef]
- Čejka, J.; Mintova, S. Perspectives of Micro/Mesoporous Composites in Catalysis. Catal. Rev. Sci. Eng. 2007, 49, 457–509. [Google Scholar] [CrossRef]
- Na, K.; Choi, M.; Park, W.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Pillared MFI Zeolite Nanosheets of a Single-Unit-Cell Thickness. J. Am. Chem. Soc. 2010, 132, 4169–4177. [Google Scholar] [CrossRef]
- Salakhum, S.; Yutthalekha, T.; Chareonpanich, M.; Limtrakul, J.; Wattanakit, C. Synthesis of Hierarchical Faujasite Nanosheets from Corn Cob Ash-Derived Nanosilica as Efficient Catalysts for Hydrogenation of Lignin-Derived Alkylphenols. Microporous Mesoporous Mater. 2018, 258, 141–150. [Google Scholar] [CrossRef]
- Naranov, E.R.; Sadovnikov, A.A.; Arapova, O.V.; Bugaev, A.L.; Usoltsev, O.A.; Gorbunov, D.N.; Russo, V.; Murzin, D.Y.; Maximov, A.L. Mechanistic Insights on Ru Nanoparticle in Situ Formation during Hydrodeoxygenation of Lignin-Derived Substances to Hydrocarbons. Catal. Sci. Technol. 2023, 13, 1571–1583. [Google Scholar] [CrossRef]
- Chen, L.; Ma, X.; Tang, F.; Li, Y.; Yu, Z.; Chen, X. Comparison of Catalytic Effect on Upgrading Bio-Oil Derived from Co-Pyrolysis of Water Hyacinth and Scrap Tire over Multilamellar MFI Nanosheets and HZSM-5. Bioresour. Technol. 2020, 312, 123592. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Park, S.H.; Jeon, J.K.; Ryoo, R.; Kim, W.; Suh, D.J.; Park, Y.K. Upgrading of Bio-Oil Derived from Biomass Constituents over Hierarchical Unilamellar Mesoporous MFI Nanosheets. Catal. Today 2014, 232, 119–126. [Google Scholar] [CrossRef]
- Varoon, K.; Zhang, X.; Elyassi, B.; Brewer, D.D.; Gettel, M.; Kumar, S.; Lee, J.A.; Maheshwari, S.; Mittal, A.; Sung, C.-Y.; et al. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane. Science 2011, 334, 72–75. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Chun, J.; Ryoo, R. MFI Zeolite Nanosheets with Post-Synthetic Ti Grafting for Catalytic Epoxidation of Bulky Olefins Using H2O2. Chem. Commun. 2015, 51, 13102–13105. [Google Scholar] [CrossRef]
- Na, K.; Park, W.; Seo, Y.; Ryoo, R. Disordered Assembly of MFI Zeolite Nanosheets with a Large Volume of Intersheet Mesopores. Chem. Mater. 2011, 23, 1273–1279. [Google Scholar] [CrossRef]
- Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Stable Single-Unit-Cell Nanosheets of Zeolite MFI as Active and Long-Lived Catalysts. Nature 2009, 461, 246–249. [Google Scholar] [CrossRef]
- Sadovnikov, A.A.; Arapova, O.V.; Russo, V.; Maximov, A.L.; Murzin, D.Y. Synergy of Acidity and Morphology of Micro-/Mesoporous Materials in the Solid-Acid Alkylation of Toluene with 1-Decene. Ind. Eng. Chem. Res. 2022, 61, 1994–2009. [Google Scholar] [CrossRef]
- Jo, C.; Cho, K.; Kim, J.; Ryoo, R. MFI Zeolite Nanosponges Possessing Uniform Mesopores Generated by Bulk Crystal Seeding in the Hierarchical Surfactant-Directed Synthesis. Chem. Commun. 2014, 50, 4175–4177. [Google Scholar] [CrossRef]
- Na, K.; Jo, C.; Kim, J.; Cho, K.; Jung, J.; Seo, Y.; Messinger, R.J.; Chmelka, B.F.; Ryoo, R. Directing Zeolite Structures into Hierarchically Nanoporous Architectures. Science 2011, 333, 328–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naranov, E.R.; Sadovnikov, A.A.; Vatsouro, I.M.; Maximov, A.L. The Mechanism of Promoter-Induced Zeolite Nanosheet Crystallization under Hydrothermal and Microwave Irradiation Conditions. Inorg. Chem. Front. 2020, 7, 1400–1410. [Google Scholar] [CrossRef]
- Naranov, E.R.; Sadovnikov, A.A.; Bugaev, A.L.; Shavaleev, D.A.; Maximov, A.L. A Stepwise Fabrication of MFI Nanosheets in Accelerated Mode. Catal. Today 2021, 378, 149–157. [Google Scholar] [CrossRef]
- Seo, Y.; Cho, K.; Jung, Y.; Ryoo, R. Characterization of the Surface Acidity of MFI Zeolite Nanosheets by 31 P NMR of Adsorbed Phosphine Oxides and Catalytic Cracking of Decalin. ACS Catal. 2013, 3, 713–720. [Google Scholar] [CrossRef]
- Kim, W.; Ryoo, R. Probing the Catalytic Function of External Acid Sites Located on the MFI Nanosheet for Conversion of Methanol to Hydrocarbons. Catal. Lett. 2014, 144, 1164–1169. [Google Scholar] [CrossRef]
- Kim, J.; Park, W.; Ryoo, R. Surfactant-Directed Zeolite Nanosheets: A High-Performance Catalyst for Gas-Phase Beckmann Rearrangement. ACS Catal. 2011, 1, 337–341. [Google Scholar] [CrossRef]
- Verheyen, E.; Jo, C.; Kurttepeli, M.; Vanbutsele, G.; Gobechiya, E.; Korányi, T.I.; Bals, S.; Van Tendeloo, G.; Ryoo, R.; Kirschhock, C.E.A.; et al. Molecular Shape-Selectivity of MFI Zeolite Nanosheets in n-Decane Isomerization and Hydrocracking. J. Catal. 2013, 300, 70–80. [Google Scholar] [CrossRef]
- Xiu, S.; Shahbazi, A. Bio-Oil Production and Upgrading Research: A Review. Renew. Sustain. Energy Rev. 2012, 16, 4406–4414. [Google Scholar] [CrossRef]
- Robinson, A.M.; Hensley, J.E.; Will Medlin, J. Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review. ACS Catal. 2016, 6, 5026–5043. [Google Scholar] [CrossRef]
- Huang, R.; Kwon, O.; Lin, C.; Gorte, R.J. The Effects of SMSI on M-Cresol Hydrodeoxygenation over Pt/Nb2O5 and Pt/TiO2. J. Catal. 2021, 398, 102–108. [Google Scholar] [CrossRef]
- Wang, C.; Mironenko, A.V.; Raizada, A.; Chen, T.; Mao, X.; Padmanabhan, A.; Vlachos, D.G.; Gorte, R.J.; Vohs, J.M. Mechanistic Study of the Direct Hydrodeoxygenation of m -Cresol over WOx-Decorated Pt/C Catalysts. ACS Catal. 2018, 8, 7749–7759. [Google Scholar] [CrossRef]
- Aho, A.; Roggan, S.; Simakova, O.A.; Salmi, T.; Murzin, D.Y. Structure Sensitivity in Catalytic Hydrogenation of Glucose over Ruthenium. Catal. Today 2015, 241, 195–199. [Google Scholar] [CrossRef]
- Tan, Q.; Wang, G.; Nie, L.; Dinse, A.; Buda, C.; Shabaker, J.; Resasco, D.E. Different Product Distributions and Mechanistic Aspects of the Hydrodeoxygenation of M-Cresol over Platinum and Ruthenium Catalysts. ACS Catal. 2015, 5, 6271–6283. [Google Scholar] [CrossRef]
- Liu, J.; Bai, P.; Zhao, X.S. Ruthenium Nanoparticles Embedded in Mesoporous Carbon Microfibers: Preparation, Characterization and Catalytic Properties in the Hydrogenation of d-Glucose. Phys. Chem. Chem. Phys. 2011, 13, 3758–3763. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, A.; Biswas, B.; Kumar, J.; Yenumala, S.R.; Bhaskar, T. Hydrodeoxygenation of M-Cresol over Ru Based Catalysts: Influence of Catalyst Support on m-Cresol Conversion and Methylcyclohexane Selectivity. Renew. Energy 2020, 151, 687–697. [Google Scholar] [CrossRef]
- Wang, H.; Male, J.; Wang, Y. Recent Advances in Hydrotreating of Pyrolysis Bio-Oil and Its Oxygen-Containing Model Compounds. ACS Catal. 2013, 3, 1047–1070. [Google Scholar] [CrossRef]
- Luo, W.; Cao, W.; Bruijnincx, P.C.A.; Lin, L.; Wang, A.; Zhang, T. Zeolite-Supported Metal Catalysts for Selective Hydrodeoxygenation of Biomass-Derived Platform Molecules. Green Chem. 2019, 21, 3744–3768. [Google Scholar] [CrossRef]
- Roldugina, E.A.; Naranov, E.R.; Maximov, A.L.; Karakhanov, E.A. Hydrodeoxygenation of Guaiacol as a Model Compound of Bio-Oil in Methanol over Mesoporous Noble Metal Catalysts. Appl. Catal. A Gen. 2018, 553, 24–35. [Google Scholar] [CrossRef]
- Roldugina, E.A.; Glotov, A.P.; Isakov, A.L.; Maksimov, A.L.; Vinokurov, V.A.; Karakhanov, E.A. Ruthenium Catalysts on ZSM-5/MCM-41 Micro-Mesoporous Support for Hydrodeoxygenation of Guaiacol in the Presence of Water. Russ. J. Appl. Chem. 2019, 92, 1170–1178. [Google Scholar] [CrossRef]
- Duraczyńska, D.; Michalik-Zym, A.; Napruszewska, B.D.; Dula, R.; Socha, R.P.; Lityńska-Dobrzyńska, L.; Gaweł, A.; Bahranowski, K.; Serwicka, E.M. Efficient and Versatile Ru/SBA-15 Catalysts for Liquid-Phase Hydrogenation of the C=C and C=O Bonds under Mild Conditions. ChemistrySelect 2016, 1, 2148–2155. [Google Scholar] [CrossRef]
- Naranov, E.R.; Maximov, A.L. Selective Conversion of Aromatics into Cis-Isomers of Naphthenes Using Ru Catalysts Based on the Supports of Different Nature. Catal. Today 2019, 329, 94–101. [Google Scholar] [CrossRef]
- Mortensen, P.M.; Grunwaldt, J.D.; Jensen, P.A.; Jensen, A.D. Screening of Catalysts for Hydrodeoxygenation of Phenol as a Model Compound for Bio-Oil. ACS Catal. 2013, 3, 1774–1785. [Google Scholar] [CrossRef]
- Jiang, G.; Hu, Y.; Xu, G.; Mu, X.; Liu, H. Controlled Hydrodeoxygenation of Phenolic Components in Pyrolysis Bio-Oil to Arenes. ACS Sustain. Chem. Eng. 2018, 6, 5772–5783. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Liu, C.; Ma, W.; Yan, B.; Zhang, J. Hydrodeoxygenation of Lignin-Derived Bio-Oil Using Molecular Sieves Supported Metal Catalysts: A Critical Review. Renew. Sustain. Energy Rev. 2017, 71, 296–308. [Google Scholar] [CrossRef]
- Salakhum, S.; Saenluang, K.; Wattanakit, C. Stability of Monometallic Pt and Ru Supported on Hierarchical HZSM-5 Nanosheets for Hydrodeoxygenation of Lignin-Derived Compounds in the Aqueous Phase. Sustain. Energy Fuels 2020, 4, 1126–1134. [Google Scholar] [CrossRef]
- Tamura, M.; Shimizu, K.; Satsuma, A. Comprehensive IR Study on Acid/Base Properties of Metal Oxides. Appl. Catal. A Gen. 2012, 433, 135–145. [Google Scholar] [CrossRef]
Samples | Si/Al a | SBET b (m2/g) | Vtotal c (cm3/g) | Smicro d (m2/g) | Smeso e (m2/g) | Residual Na, wt. % a |
---|---|---|---|---|---|---|
ZSM-5 (CBV 3024E) | 16 | 413 | 0.28 | 337 | 76 | 0 |
ZNS-12 | 20 | 754 | 0.69 | 30 | 724 | 1.5 |
ZNS-24 | 21 | 614 | 0.57 | 65 | 549 | 1.2 |
ZNS-56 | 21 | 470 | 0.25 | 160 | 310 | 0 |
Sample | BAS | LAS | BAS/LAS |
---|---|---|---|
ZSM-5 (CBV 3024E) | 256 | 44 | 5.82 |
ZNS-12 | 24 | 156 | 0.15 |
ZNS-24 | 31 | 145 | 0.21 |
ZNS-56 | 201 | 32 | 6.28 |
Ru/ZSM-5 (CBV 3024E) | 250 | 35 | 7.14 |
Ru/ZNS-12 | 22 | 145 | 0.15 |
Ru/ZNS-24 | 31 | 134 | 0.23 |
Ru/ZNS-56 | 200 | 30 | 6.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsaplin, D.; Sadovnikov, A.; Ramazanov, D.; Gorbunov, D.; Ryleeva, V.; Maximov, A.; Wang, K.; Naranov, E. Selective Hydrodeoxygenation of Guaiacol to Cyclohexane over Ru-Catalysts Based on MFI Nanosheets. Micro 2023, 3, 610-619. https://doi.org/10.3390/micro3020042
Tsaplin D, Sadovnikov A, Ramazanov D, Gorbunov D, Ryleeva V, Maximov A, Wang K, Naranov E. Selective Hydrodeoxygenation of Guaiacol to Cyclohexane over Ru-Catalysts Based on MFI Nanosheets. Micro. 2023; 3(2):610-619. https://doi.org/10.3390/micro3020042
Chicago/Turabian StyleTsaplin, Dmitry, Alexey Sadovnikov, Dzhamalutdin Ramazanov, Dmitry Gorbunov, Valeriya Ryleeva, Anton Maximov, Kaige Wang, and Evgeny Naranov. 2023. "Selective Hydrodeoxygenation of Guaiacol to Cyclohexane over Ru-Catalysts Based on MFI Nanosheets" Micro 3, no. 2: 610-619. https://doi.org/10.3390/micro3020042
APA StyleTsaplin, D., Sadovnikov, A., Ramazanov, D., Gorbunov, D., Ryleeva, V., Maximov, A., Wang, K., & Naranov, E. (2023). Selective Hydrodeoxygenation of Guaiacol to Cyclohexane over Ru-Catalysts Based on MFI Nanosheets. Micro, 3(2), 610-619. https://doi.org/10.3390/micro3020042