Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = zeolite nanosheets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2300 KiB  
Article
A Hierarchically Structured Ni-NOF@ZIF-L Heterojunction Using Van Der Waals Interactions for Electrocatalytic Reduction of CO2 to HCOOH
by Liqun Wu, Xiaojun He and Jian Zhou
Appl. Sci. 2025, 15(14), 8095; https://doi.org/10.3390/app15148095 - 21 Jul 2025
Viewed by 298
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion [...] Read more.
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion layer (GDL) remains a significant challenge. In this study, we successfully engineered a novel metal–organic framework (MOF) heterojunction through the controlled coating of zeolitic imidazolate framework (ZIF-L) on ultrathin nickel—metal–organic framework (Ni-MOF) nanosheets. This innovative architecture simultaneously integrates GDL functionality and exposes abundant solid–liquid–gas triple-phase boundaries. The resulting Ni-MOF@ZIF-L heterostructure demonstrates exceptional performance, achieving a formate Faradaic efficiency of 92.4% while suppressing the hydrogen evolution reaction (HER) to 6.7%. Through computational modeling of the optimized heterojunction configuration, we further elucidated its competitive adsorption behavior and electronic modulation effects. The experimental and theoretical results demonstrate an improvement in electrochemical CO2 reduction activity with suppressed hydrogen evolution for the heterojunction because of its hydrophobic interface, good electron transfer capability, and high CO2 adsorption at the catalyst interface. This work provides a new insight into the rational design of porous crystalline materials in electrocatalytic CO2RR. Full article
Show Figures

Figure 1

22 pages, 7142 KiB  
Article
Zeolitic Imidazolate Framework-67-Derived NiCoMn-Layered Double Hydroxides Nanosheets Dispersedly Grown on the Conductive Networks of Single-Walled Carbon Nanotubes for High-Performance Hybrid Supercapacitors
by Yingying Li, Qin Zhou and Yongfu Lian
Nanomaterials 2025, 15(7), 481; https://doi.org/10.3390/nano15070481 - 23 Mar 2025
Cited by 1 | Viewed by 716
Abstract
A supercapacitor’s energy storage capability is greatly dependent on electrode materials. Layered double hydroxides (LDHs) were extensively studied as battery-type electrodes because of their 2D structure and quick intercalation/deintercalation of electrolyte ions. However, the energy storage capability for pristine LDHs is limited by [...] Read more.
A supercapacitor’s energy storage capability is greatly dependent on electrode materials. Layered double hydroxides (LDHs) were extensively studied as battery-type electrodes because of their 2D structure and quick intercalation/deintercalation of electrolyte ions. However, the energy storage capability for pristine LDHs is limited by their large aggregation tendency and poor electrical conductivity. Herein, a novel NiCoMn-LDH/SWCNTs (single-walled carbon nanotubes) composite electrode material, with ultrathin NiCoMn-LDH nanosheets dispersedly grown among the highly conductive networks of SWCNTs, was prepared via a facile zeolitic imidazolate framework-67 (ZIF-67)-derived in situ etching and deposition procedure. The NiCoMn-LDH/SWCNTs electrode demonstrates a specific capacitance as large as 1704.3 F g−1 at 1 A g−1, which is ascribed to its exposure of more active sites than NiCoMn-LDH. Moreover, the assembled NiCoMn-LDH/SWCNTs//BGA (boron-doped graphene aerogel) hybrid supercapacitor exhibits a superior capacitance of 167.9 F g−1 at 1.0 A g−1, an excellent energy density of 45.7 Wh kg−1 with a power density of 700 W kg−1, and an outstanding cyclic stability with 82.3% incipient capacitance maintained when subjected to 5000 charge and discharge cycles at the current density of 10 A g−1, suggesting the significant potential of NiCoMn-LDH/SWCNTs as the electrode material applicable in supercapacitors. Full article
Show Figures

Graphical abstract

44 pages, 11801 KiB  
Review
Layer-by-Layer Nanoarchitectonics: A Method for Everything in Layered Structures
by Katsuhiko Ariga
Materials 2025, 18(3), 654; https://doi.org/10.3390/ma18030654 - 1 Feb 2025
Cited by 9 | Viewed by 1758
Abstract
The development of functional materials and the use of nanotechnology are ongoing projects. These fields are closely linked, but there is a need to combine them more actively. Nanoarchitectonics, a concept that comes after nanotechnology, is ready to do this. Among the related [...] Read more.
The development of functional materials and the use of nanotechnology are ongoing projects. These fields are closely linked, but there is a need to combine them more actively. Nanoarchitectonics, a concept that comes after nanotechnology, is ready to do this. Among the related research efforts, research into creating functional materials through the formation of thin layers on surfaces, molecular membranes, and multilayer structures of these materials have a lot of implications. Layered structures are especially important as a key part of nanoarchitectonics. The diversity of the components and materials used in layer-by-layer (LbL) assemblies is a notable feature. Examples of LbL assemblies introduced in this review article include quantum dots, nanoparticles, nanocrystals, nanowires, nanotubes, g-C3N4, graphene oxide, MXene, nanosheets, zeolites, nanoporous materials, sol–gel materials, layered double hydroxides, metal–organic frameworks, covalent organic frameworks, conducting polymers, dyes, DNAs, polysaccharides, nanocelluloses, peptides, proteins, lipid bilayers, photosystems, viruses, living cells, and tissues. These examples of LbL assembly show how useful and versatile it is. Finally, this review will consider future challenges in layer-by-layer nanoarchitectonics. Full article
Show Figures

Graphical abstract

12 pages, 4283 KiB  
Article
Controllable Synthesis of Titanium Silicon Molecular Zeolite Nanosheet with Short b-Axis Thickness and Application in Oxidative Desulfurization
by Tieqiang Ren, Yujia Wang, Lulu Wang, Lisheng Liang, Xianming Kong and Haiyan Wang
Nanomaterials 2024, 14(11), 953; https://doi.org/10.3390/nano14110953 - 29 May 2024
Cited by 4 | Viewed by 1423
Abstract
Titanium silicon molecular zeolite (TS-1) plays an important role in catalytic reactions due to its unique nanostructure. The straight channel on TS-1 was parallel to the orientation of the short b-axis and directly exposed to the aperture of the 10-member ring with a [...] Read more.
Titanium silicon molecular zeolite (TS-1) plays an important role in catalytic reactions due to its unique nanostructure. The straight channel on TS-1 was parallel to the orientation of the short b-axis and directly exposed to the aperture of the 10-member ring with a diameter of 0.54 nm × 0.56 nm. This structure could effectively reduce the diffuse restriction of bulk organic compounds during the oxidative desulfurization process. As a kind of cationic polymer electrolyte, polydimethyldiallyl ammonium chloride (PDDA) contains continuous [C8H16N+Cl] chain segments, in which the Cl could function as an effective structure-directing agent in the synthesis of nanomaterials. The chain of PDDA could adequately interact with the [0 1 0] plane in the preparation process of zeolite, and then the TS-1 nanosheet with short b-axis thickness (6 nm) could be obtained. The pore structure of the TS-1 nanosheet is controlled by regulating the content of PDDA. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 physical adsorption analysis, infrared absorption spectrum and ultraviolet–visible spectrum were used to determine the TS-1. The thinner nanosheets exhibit excellent catalytic performance in oxidative desulfurization of dibenzothiophene (DBT), in which the removal rate could remain at 100% after three recycles. Here, the TS-1 nanosheet with short b-axis thickness has a promising future in catalytic reactions. Full article
(This article belongs to the Topic Porous Materials for Energy and Environment Applications)
Show Figures

Figure 1

17 pages, 4145 KiB  
Article
MOF Template-Derived Carbon Shell-Embedded CoP Hierarchical Nanosheet as Bifunctional Catalyst for Overall Water Splitting
by Mei-Jun Liu, Fu-Hao Yang, Ji-Cheng Mei, Xu Guo, Hua-Yang Wang, Meng-Yao He, Yu-Ang Yao, Hai-Feng Zhang and Cheng-Bin Liu
Nanomaterials 2023, 13(17), 2421; https://doi.org/10.3390/nano13172421 - 25 Aug 2023
Cited by 3 | Viewed by 1657
Abstract
The design of earth-abundant and highly efficient bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions (HER/OER) is crucial for hydrogen production through overall water splitting. Herein, we report a novel nanostructure consisting of vertically oriented CoP hierarchical nanosheet arrays with in situ-assembled [...] Read more.
The design of earth-abundant and highly efficient bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions (HER/OER) is crucial for hydrogen production through overall water splitting. Herein, we report a novel nanostructure consisting of vertically oriented CoP hierarchical nanosheet arrays with in situ-assembled carbon skeletons on a Ti foil electrode. The novel Zeolitic Imidazolate Framework-67 (ZIF-67) template-derived hierarchical nanosheet architecture effectively improved electrical conductivity, facilitated electrolyte transport, and increased the exposure of the active sites. The obtained bifunctional hybrid exhibited a low overpotential of 72 mV at 10 mA cm−2 and a small Tafel slope of 65 mV dec−1 for HER, and an improved overpotential of 329 mV and a Tafel slope of 107 mV dec−1 for OER. Furthermore, the assembled C@CoP||C@CoP electrolyzer showed excellent overall water splitting performance (1.63 V) at a current density of 10 mA cm−2 and superior durability. This work provides a structure engineering strategy for metal–organic framework (MOF) template-derived hybrids with outstanding electrocatalytic performance. Full article
Show Figures

Figure 1

10 pages, 5217 KiB  
Article
Selective Hydrodeoxygenation of Guaiacol to Cyclohexane over Ru-Catalysts Based on MFI Nanosheets
by Dmitry Tsaplin, Alexey Sadovnikov, Dzhamalutdin Ramazanov, Dmitry Gorbunov, Valeriya Ryleeva, Anton Maximov, Kaige Wang and Evgeny Naranov
Micro 2023, 3(2), 610-619; https://doi.org/10.3390/micro3020042 - 20 Jun 2023
Cited by 3 | Viewed by 1778
Abstract
Bio-oils derived from the pyrolysis of lignin-based biomass often contain a variety of oxygenated compounds, which can compromise their usefulness as a fuel. To improve the quality of bio-oil, catalytic hydrodeoxygenation (HDO) is a crucial step that removes oxygen from the oil in [...] Read more.
Bio-oils derived from the pyrolysis of lignin-based biomass often contain a variety of oxygenated compounds, which can compromise their usefulness as a fuel. To improve the quality of bio-oil, catalytic hydrodeoxygenation (HDO) is a crucial step that removes oxygen from the oil in the form of water. In this study, we showed that MFI nanosheets are excellent supports for Ru-catalysts. We synthesized highly crystalline MFI nanosheets using a simple hydrothermal seeding procedure; the final material was obtained in 56 h of crystallization. We investigated the activity of Ru supported on different materials. Our findings indicated that Ru supported on hierarchical MFI demonstrated excellent activity in HDO of guaiacol. Our results demonstrated that Ru/ZNS-56 achieved nearly 100% selectivity towards cyclohexane under mild conditions (200 °C, 50 bar H2, 1 h). Full article
Show Figures

Figure 1

15 pages, 4026 KiB  
Article
Composites of Layered Double Hydroxides and ANA-Type Zeolite Synthesized from Hazardous Secondary Aluminum Dross for Cationic Dye Wastewater Treatment
by Bin Zhu, Lina Wang, Guo Li and Qiang Jin
Processes 2023, 11(4), 1002; https://doi.org/10.3390/pr11041002 - 26 Mar 2023
Cited by 4 | Viewed by 2185
Abstract
This work first transformed hazardous aluminum waste into low-cost MgAl−layered double hydroxide@ANA zeolite (LDHs@ANA) composite for dye wastewater adsorption, which was meaningful for waste recovery and pollution control. Based on this strategy, the Al(OH)3 extracted from secondary aluminum dross (a hazardous waste [...] Read more.
This work first transformed hazardous aluminum waste into low-cost MgAl−layered double hydroxide@ANA zeolite (LDHs@ANA) composite for dye wastewater adsorption, which was meaningful for waste recovery and pollution control. Based on this strategy, the Al(OH)3 extracted from secondary aluminum dross (a hazardous waste in the aluminum industry) was used as an aluminum source to synthesize LDHs@ANA composite, which had more excellent adsorption capacity to methylene blue than MgAl−LDHs and ANA alone. The composite consisted of spherical ANA particles uniformly covered with LDH nanosheets, which effectively avoided a large amount of aggregation between nanosheets and increased specific surface areas and pore volumes. The kinetic results indicated that the adsorption process conformed to the pseudo-second-order kinetic model, and the adsorption site was the main factor affecting the adsorption process. The equilibrium studies showed the adsorption process was exothermic, and the Langmuir model best fitted for the adsorption process, with a maximum adsorption capacity reaching 65.27 mg/g. Meanwhile, the effects of pH, adsorbent concentration, initial methylene blue concentration, and adsorption time on the LDHs@ANA were analyzed. Overall, this work provides a fresh concept for the preparation of low-cost adsorbents from aluminum waste. Full article
(This article belongs to the Special Issue Control, Removal and Optimization of Environmental Contaminants)
Show Figures

Figure 1

18 pages, 7822 KiB  
Article
A Study on the Synthesis and Proton Transport Behavior of Multilayered ZSM-5 Zeolite Nanosheet Membranes Laminated on Polymer Substrates
by Zishu Cao, Landysh Iskhakova, Xinhui Sun and Junhang Dong
Membranes 2023, 13(3), 305; https://doi.org/10.3390/membranes13030305 - 6 Mar 2023
Cited by 1 | Viewed by 2294
Abstract
Single crystalline ZSM-5 ZNs with thicknesses around 6 nm were obtained by secondary growth of silicalite nanoparticles using diquaternary bis-1,5(tripropyl ammonium) pentamethylene diiodide (dC5) as a structure-directing agent (SDA). The dC5 could be effectively removed from the ZN pores by [...] Read more.
Single crystalline ZSM-5 ZNs with thicknesses around 6 nm were obtained by secondary growth of silicalite nanoparticles using diquaternary bis-1,5(tripropyl ammonium) pentamethylene diiodide (dC5) as a structure-directing agent (SDA). The dC5 could be effectively removed from the ZN pores by either high-temperature calcination or UV irradiation in air at room temperature but not by the piranha solution treatment. Ultrathin ZN-laminated membranes (ZNLMs) were fabricated by sandwiching a UV-activated multilayered ZN film between two recast Nafion® layers (ZNLM-Nafion) and by filtration coating from a suspension of thermally activated ZNs on a nonionic porous PVDF (ZNLM-PVDF). The ZNLMs on both supports demonstrated the ability of highly proton-selective ion conduction with low resistances in aqueous electrolyte solutions. The ZNLM-PVDF with PVDF binder was structurally stable, and it achieved a comparably low ASR but much higher proton selectivity compared with a Nafion membrane of same overall thickness. However, detachment between the ZNLM and Nafion layers occurred when the ZNLM-Nafion operated in aqueous electrolyte solutions. Results of this study show the potential for developing ZNLMs as efficient proton-conducting membranes without using expensive ionic polymer matrices. However, the development of polymer-supported ZNLMs is hindered by the current inefficiency in preparing well-dispersed suspensions of open-pore ZNs. Future development of efficient methods for synthesizing open-pore ZNs in dispersed states is key to realizing high-performance ZNLMs on polymers. Full article
(This article belongs to the Special Issue Recent Progress in Synthesis and Application of Zeolite Membrane)
Show Figures

Figure 1

12 pages, 3056 KiB  
Article
Preparation of 2D ZIF-L and Its Antibacterial and Antifouling Properties
by Jingyu Li, Yang Zhang, Haichao Zhao and Guoxin Sui
Nanomaterials 2023, 13(1), 202; https://doi.org/10.3390/nano13010202 - 2 Jan 2023
Cited by 9 | Viewed by 3748
Abstract
The excessively leached metal ions from traditional metallic antimicrobial nanoparticles are harmful to biological and human tissues. Metal-organic frameworks (MOFs) coordinating bioactive metal ions to organic bridging ligands can potentially address this issue, avoiding the excessive leaching of metal ions and simultaneously exhibiting [...] Read more.
The excessively leached metal ions from traditional metallic antimicrobial nanoparticles are harmful to biological and human tissues. Metal-organic frameworks (MOFs) coordinating bioactive metal ions to organic bridging ligands can potentially address this issue, avoiding the excessive leaching of metal ions and simultaneously exhibiting high effective antibacterial activities. Here, we report the preparation of a 2-dimensional leaves-like zeolitic imidazolate framework (ZIF-L) for potential antibacterial and anti-algae applications. The ZIF-L nanosheet exhibits complete inactivation of Escherichia coli (phosphate buffer saline: 4 h) and Bacillus subtilis (seawater: 0.5 h). The ZIF-L/epoxy composite has excellent antibacterial effect, poisoning effect and anti-adhesion effect on a variety of marine algae. It is worth noting that the removal rate (Escherichia coli) for ZIF/epoxy composite can be reached to 90.20% by only adding ZIF-L (0.25 wt%). This work will inspire researchers to develop more metal-organic frameworks materials for applications in the antibacterial and anti-algae fields. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

15 pages, 5416 KiB  
Article
A 0D/2D Heterojunction Composite of Polymeric Carbon Nitride and ZIF-8-Derived ZnO for Photocatalytic Organic Pollutant Degradation
by Vandana P. Viswanathan, Vaishak T. Balakrishnan, Nayarassery N. Adarsh, Binsy Varghese V and Suresh Mathew
Crystals 2023, 13(1), 47; https://doi.org/10.3390/cryst13010047 - 27 Dec 2022
Cited by 3 | Viewed by 3098
Abstract
Solar photocatalytic technology based on semiconducting materials has gained the attention of the scientific community to solve the energy crisis and environmental remediation. Zeolitic imidazolate frameworks (ZIFs) are a subfamily of metal–organic frameworks (MOFs) with the isomorphic topologies of zeolites and coordinative compositions [...] Read more.
Solar photocatalytic technology based on semiconducting materials has gained the attention of the scientific community to solve the energy crisis and environmental remediation. Zeolitic imidazolate frameworks (ZIFs) are a subfamily of metal–organic frameworks (MOFs) with the isomorphic topologies of zeolites and coordinative compositions of MOFs. Owing to high specific surface areas, tunable channels and high thermal stabilities, zeolitic imidazolate frameworks (ZIFs) have been used in catalytic applications. In this paper, ZIF-8 was used as a matrix to synthesize 0D/2D heterojunction photocatalysts, viz., ZnO/C3N4-x% (x = 2.5, 5 and 10), for the photocatalytic degradation study of rhodamine B (RhB). The synthesized composite materials were characterized using FTIR, PXRD, UVDRS, PL, TEM, and BET analyses. TEM images showed the nearby contacts between ZnO and C3N4 in the hybrid and the uniform distribution of ZnO on the surface of the C3N4 nanosheet, thus increasing the development of 0D/2D heterojunction. The hybrid system ZnO/C3N4-5% (ZCN-5) showed good photocatalytic activity for the degradation of RhB under sunlight. A possible mechanism for the improved photocatalytic activity of the ZnO/C3N4 composite is also suggested. This exploratory study demonstrates the effective separation and migration of photo-induced electron–hole pairs between the 2D C3N4 sheet and 0D ZnO for the improved performance of heterojunction photocatalysts. Full article
Show Figures

Figure 1

10 pages, 4325 KiB  
Communication
Preparation and Antibacterial Activity of Nano Copper Oxide- Loaded Zeolite 10X
by Yang Ma and Jin Hou
Int. J. Mol. Sci. 2022, 23(15), 8421; https://doi.org/10.3390/ijms23158421 - 29 Jul 2022
Cited by 11 | Viewed by 2463
Abstract
Copper oxide nanosheet-loaded zeolite 10X nanocomposites (CuO-zeolite NCs) were successfully prepared by modifying zeolite 10X with CuSO4 aqueous solution. The formation of copper oxide nanosheets on the surface of zeolite 10X was observed by SEM. The thickness of CuO nanosheets was about [...] Read more.
Copper oxide nanosheet-loaded zeolite 10X nanocomposites (CuO-zeolite NCs) were successfully prepared by modifying zeolite 10X with CuSO4 aqueous solution. The formation of copper oxide nanosheets on the surface of zeolite 10X was observed by SEM. The thickness of CuO nanosheets was about 30–40 nm, and the width ranged from 200 nm to 300 nm. The XRD patterns showed that the new diffraction peaks of copper oxide appeared at 35.6° and 38.8°. According to the XPS results, the Cu 2p3/2 and Cu 2p1/2 peaks in CuO-zeolite NC were centered at 934.1 eV and 953.8 eV, which could be attributed to Cu(II). The EDS analysis revealed that the energy spectra of calcium gradually decreased as the copper ion concentration increased during the preparation of CuO-zeolite NCs. Meanwhile, the energy spectra of copper increased gradually, and the highest content of copper in CuO-zeolite NCs reached 22.35 wt.%. The BET surface areas of zeolite 10X and CuO-zeolite NCs were 587 and 363 m2/g, respectively, based on the N2 adsorption–desorption experiment. The antibacterial activities of CuO-zeolite NC were evaluated using Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The antibacterial activities were related to both copper ion content in CuO-zeolite NCs and the particle size of copper oxide. The results showed that nano CuO-loaded zeolite 10X inhibited the activity of E. coli and S. aureus. CuO-zeolite NCs are expected to be further used in antifouling coating. Full article
(This article belongs to the Special Issue Nanoparticles: From Synthesis to Applications)
Show Figures

Graphical abstract

16 pages, 4493 KiB  
Article
Cooperative Effect of ZIF-67-Derived Hollow NiCo-LDH and MoS2 on Enhancing the Flame Retardancy of Thermoplastic Polyurethane
by Yi Qian, Wenyuan Su, Long Li, Rongmin Zhao, Haoyan Fu, Jiayin Li, Peidong Zhang, Qingjie Guo and Jingjing Ma
Polymers 2022, 14(11), 2204; https://doi.org/10.3390/polym14112204 - 29 May 2022
Cited by 20 | Viewed by 3310
Abstract
In this work, a novel three-dimensional (3D) hollow nickel-cobalt layered double hydroxide (NiCo-LDH) was synthesized using zeolitic imidazole framework-67 (ZIF-67) as a template, and then utilized to functionalize molybdenum disulfide (NiCo-LDH/MoS2) via electrostatic force. Flame retardant thermoplastic polyurethane (TPU) composites were [...] Read more.
In this work, a novel three-dimensional (3D) hollow nickel-cobalt layered double hydroxide (NiCo-LDH) was synthesized using zeolitic imidazole framework-67 (ZIF-67) as a template, and then utilized to functionalize molybdenum disulfide (NiCo-LDH/MoS2) via electrostatic force. Flame retardant thermoplastic polyurethane (TPU) composites were prepared by the melt blending method. Compared to pure TPU, NiCo-LDH/MoS2 filled TPU composite was endowed with a decrease of 30.9% and 55.7% of the peak heat release rate (PHRR) and the peak smoke production rate (PSPR), respectively. Furthermore, the addition of NiCo-LDH/MoS2 can significantly improve the thermal stability and char yield of the TPU composite. The catalytic carbonization effect and dilution effect of NiCo-LDH, and the barrier effect of MoS2 nanosheets enable TPU composites with excellent flame retardancy and toxic gas suppression ability. Full article
(This article belongs to the Special Issue Layered Materials-Polymer Based Fire Retardant Composites)
Show Figures

Graphical abstract

13 pages, 4326 KiB  
Article
In Situ Construction of ZIF-67-Derived Hybrid Tricobalt Tetraoxide@Carbon for Supercapacitor
by Hao Gong, Shiguang Bie, Jian Zhang, Xianbin Ke, Xiaoxing Wang, Jianquan Liang, Nian Wu, Qichang Zhang, Chuanxian Luo and Yanmin Jia
Nanomaterials 2022, 12(9), 1571; https://doi.org/10.3390/nano12091571 - 6 May 2022
Cited by 34 | Viewed by 4342
Abstract
The Co3O4 electrode is a very promising material owing to its ultrahigh capacitance. Nevertheless, the electrochemical performance of Co3O4-based supercapacitors is practically confined by the limited active sites and poor conductivity of Co3O4 [...] Read more.
The Co3O4 electrode is a very promising material owing to its ultrahigh capacitance. Nevertheless, the electrochemical performance of Co3O4-based supercapacitors is practically confined by the limited active sites and poor conductivity of Co3O4. Herein, we provide a facile synthetic strategy of tightly anchoring Co3O4 nanosheets to a carbon fiber conductive cloth (Co3O4@C) using the zeolitic imidazolate framework-67 (ZIF-67) sacrificial template via in situ impregnation and the pyrolysis method. Benefiting from the enhancement of conductivity and the increase in active sites, the binder-free porous Co3O4@C supercapacitor electrodes possess typical pseudocapacitance characteristics, with an acceptable specific capacitance of ~251 F/g at 1 A/g and long-term cycling stability (90% after cycling 5000 times at 3 A/g). Moreover, the asymmetric and flexible supercapacitor composed of Co3O4@C and activated carbon is further assembled, and it can drive the red LED for 6 min. Full article
(This article belongs to the Special Issue Nanostructure-Based Energy Electrocatalysis)
Show Figures

Figure 1

18 pages, 51040 KiB  
Article
Facile Synthesis of Nanosheet-Stacked Hierarchical ZSM-5 Zeolite for Efficient Catalytic Cracking of n-Octane to Produce Light Olefins
by Peng Wang, Xia Xiao, Yutong Pan, Zhen Zhao, Guiyuan Jiang, Zhongdong Zhang, Fanfang Meng, Yuming Li, Xiaoqiang Fan, Lian Kong and Zean Xie
Catalysts 2022, 12(3), 351; https://doi.org/10.3390/catal12030351 - 21 Mar 2022
Cited by 19 | Viewed by 4156
Abstract
The development of an effective strategy for synthesizing two-dimensional MFI zeolites has attracted more and more attention. Herein, nanosheet-stacked hierarchical ZSM-5 zeolite was obtained by a seed-assisted hydrothermal synthesis route using a small amount of [C18H37-N+(CH3 [...] Read more.
The development of an effective strategy for synthesizing two-dimensional MFI zeolites has attracted more and more attention. Herein, nanosheet-stacked hierarchical ZSM-5 zeolite was obtained by a seed-assisted hydrothermal synthesis route using a small amount of [C18H37-N+(CH3)2-C6H12-N+(CH3)2-C6H12]Br2 (C18-6-6Br2) as a zeolite structure-directing agent and triethylamine (TEA) as a zeolite growth modifier. By varying the molar ratio of C18-6-6Br2/TEA from 2.5/0 to 2.5/40, the morphologies and textural properties of the resultant HZ5-2.5/x catalysts were finely modulated. By increasing x from 5 to 40, the morphology of the HZ5-2.5/x changed from unilamellar assembly with narrow a–c plane to intertwined nanosheets with wide a–c plane and multilamellar nanosheets with house-of-cards morphology. The thickness of these nanosheets was almost 8–10 nm. In addition, selectivity to light olefins reached 70.7% for the HZ5-2.5/10 catalyst, which was 6.6% higher than that for CZSM-5 (64.1%). Furthermore, the MFI zeolite nanosheets exhibited better anticoking stability within the 60 h reaction time compared to conventional ZSM-5 zeolite, which could be attributed to the short diffusion path and hierarchical porosity. This work will provide valuable insights into the rational design of novel zeolite catalysts for the efficient cracking of hydrocarbons. Full article
Show Figures

Graphical abstract

12 pages, 1662 KiB  
Article
Carbon Nanotubes Interconnected NiCo Layered Double Hydroxide Rhombic Dodecahedral Nanocages for Efficient Oxygen Evolution Reaction
by Meng Li, Yujie Huang, Jiaqi Lin, Meize Li, Mengqi Jiang, Linfei Ding, Dongmei Sun, Kai Huang and Yawen Tang
Nanomaterials 2022, 12(6), 1015; https://doi.org/10.3390/nano12061015 - 20 Mar 2022
Cited by 10 | Viewed by 3389
Abstract
Proper control of a 3d transition metal-based catalyst with advanced structures toward oxygen evolution reaction (OER) with a more feasible synthesis strategy is of great significance for sustainable energy-related devices. Herein, carbon nanotube interconnected NiCo layered double hydroxide rhombic dodecahedral nanocages (NiCo-LDH [...] Read more.
Proper control of a 3d transition metal-based catalyst with advanced structures toward oxygen evolution reaction (OER) with a more feasible synthesis strategy is of great significance for sustainable energy-related devices. Herein, carbon nanotube interconnected NiCo layered double hydroxide rhombic dodecahedral nanocages (NiCo-LDH RDC@CNTs) were developed here with the assistance of a feasible zeolitic imidazolate framework (ZIF) self-sacrificing template strategy as a highly efficient OER electrocatalyst. Profited by the well-fined rhombic dodecahedral nanocage architecture, CNTs’ interconnected characteristic and structural feature of the vertically aligned nanosheets, the as-synthesized NiCo-LDH RDC@CNTs integrated large exposed active surface areas, enhanced electron transfer capacity and multidimensional mass diffusion channels, and thereby collaboratively afforded the remarkable electrocatalytic performance of the OER. Specifically, the designed NiCo-LDH RDC@CNTs exhibited a distinguished OER activity, which only required a low overpotential of 255 mV to reach a current density of 10 mA cm−2 for the OER. For the stability, no obvious current attenuation was detected, even after continuous operation for more than 27 h. We certainly believe that the current extraordinary OER activity combined with the robust stability of NiCo-LDH RDC@CNTs enables it to be a great candidate electrocatalyst for economical and sustainable energy-related devices. Full article
(This article belongs to the Special Issue Electrocatalysts for Fuel Cell Reactions in Alkaline Media)
Show Figures

Graphical abstract

Back to TopTop