F2 Laser-Induced Micro-Reticulated Structural Changes of Amorphous Carbon Thin Films
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Samples Obtaining
2.2. Characterization
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoon, H.; Liu, P.; Park, Y.; Choi, G.; Choi, P.-P.; Sohn, H. Pulsed laser-assisted additive manufacturing of Ti-6Al-4V for in-situ grain refinement. Sci. Rep. 2022, 12, 22247. [Google Scholar] [CrossRef]
- Chakraborty, S.; Park, H.-Y.; Ahn, S.I. Copper laser patterning on a flexible substrate using a cost-effective 3D printer. Sci. Rep. 2022, 12, 21149. [Google Scholar] [CrossRef]
- Ródenas, A.; Gu, M.; Corrielli, G.; Paiè, P.; John, S.; Kar, A.K.; Osellame, R. Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photonics 2019, 13, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Wang, T.; Chen, P.; Zhou, C.; Ma, J.; Wei, D.; Wang, H.; Niu, B.; Fang, X.; Wu, D.; et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature 2022, 609, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Suttmann, O.; Obata, K.; Nakajima, Y.; Hohnholz, A.; Koch, J.; Terakawa, M.; Overmeyer, L. UV laser photo-polymerization of elastic 2D/3D structures using photo-curable PDMS (Polydimethylsiloxane). J. Laser Micro. Nanoeng. 2017, 12, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Zazo, R.; Solis, J.; Sanchez-Gil, J.A.; Ariza, R.; Serna, R.; Siegel, J. Deep UV laser induced periodic surface structures on silicon formed by self-organization of nanoparticles. Appl. Surf. Sci. 2020, 520, 146307. [Google Scholar] [CrossRef]
- Meinertz, J.; Fricke-Begemann, T.; Ihlemann, J. Micron and sub-micron gratings on glass by UV laser ablation. Physica. Procedia. 2013, 41, 708–712. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, K.; Yoshida, T.; Okoshi, M. Near-superhydrophobic silicone microcapsule arrays encapsulating ionic liquid electrolytes for micro-power storage assuming use in seawater. Sci. Rep. 2022, 12, 18264. [Google Scholar] [CrossRef]
- Takao, H.; Okoshi, M.; Inoue, N. Fabrication of SiO2-humps on silicone rubber using F2 laser. Jpn. J. Appl. Phys. 2002, 41, L1088–L1089. [Google Scholar] [CrossRef]
- Okoshi, M.; Kimura, T.; Takao, H.; Inoue, N.; Yamashita, T. Photochemical modification of silicone films using F2 laser for selective chemical etching. Jpn. J. Appl. Phys. 2004, 43, 3438–3442. [Google Scholar] [CrossRef]
- Okoshi, M.; Li, J.; Herman, P.R. 157-nm F2-laser writing of silica optical waveguides in silicone rubber. Opt. Lett. 2005, 30, 2730–2732. [Google Scholar] [CrossRef]
- Nojiri, H.; Okoshi, M. Surface texturing effect on crack suppression of SiO2 film formed by F2 laser-induced photochemical surface modification of silicone on polycarbonate under heat resistance test. Jpn. J. Appl. Phys. 2017, 56, 085502. [Google Scholar] [CrossRef]
- Okoshi, M.; Awaihara, Y.; Yamashita, T.; Inoue, N. F2 laser induced surface modification of iron thin films to obtain corrosion resistance. Jpn. J. Appl. Phys. 2014, 53, 022702. [Google Scholar] [CrossRef]
- Okoshi, M.; Awaihara, Y.; Yamashita, T.; Inoue, N. Fabrication of hydrophobic and corrosion resistant iron thin film by interference exposure using 157 nm F2 laser. Mater. Lett. 2015, 139, 300–302. [Google Scholar] [CrossRef]
- Okoshi, M.; Iwai, K.; Nojiri, H.; Inoue, N. F2 laser induced modification of aluminum thin films into transparent aluminum oxide. Jpn. J. Appl. Phys. 2012, 51, 122701. [Google Scholar] [CrossRef]
- Losero, E.; Jagannath, S.; Pezzoli, M.; Goblot, V.; Babashah, H.; Lashuel, H.A.; Galland, C.; Quack, N. Neuronal growth on high-aspect-ratio diamond nanopillar arrays for biosensing applications. Sci. Rep. 2023, 13, 5909. [Google Scholar] [CrossRef] [PubMed]
- Stoddart, A. Fullerenes make connections. Nat. Synth. 2023, 2, 78. [Google Scholar] [CrossRef]
- Tian, H.; Ma, Y.; Li, Z.; Cheng, M.; Ning, S.; Chen, J.; Zhou, W.; Liu, L.; Wang, E.; Pei, J.; et al. Disorder-tuned conductivity in amorphous monolayer carbon. Nature 2023, 615, 56–61. [Google Scholar] [CrossRef]
- Ban, M.; Chen, J. Fabrication of plane-type axon guidance substrates by applying diamond-like carbon thin film deposition. Sci. Rep. 2023, 13, 8489. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, X.; Wang, C.; Lu, Y.; Hao, J. High temperature tribology behavior of silicon and nitrogen doped hydrogenated diamond-like carbon (DLC) coatings. Tribol. Int. 2022, 175, 107845. [Google Scholar] [CrossRef]
- Jang, Y.-J.; Kim, J.-I.; Lee, W.-Y.; Kim, J. Friction properties of thick tetrahedral amorphous carbon coating with different surface defects under dry contact conditions. Appl. Surf. Sci. 2023, 550, 149332. [Google Scholar] [CrossRef]
- Lai, C.Q.; Lim, G.Y.; Tai, K.J.; Lim, K.J.D.; Yu, L.; Kanaujia, P.K.; Seetoh, P.I. Exceptional energy absorption characteristics and compressive resilience of functional carbon foams scalably and sustainably derived from additively manufactured kraft paper. Addit. Manuf. 2022, 58, 102992. [Google Scholar] [CrossRef]
- Yoshikawa, M. Raman spectra of diamondlike amorphous carbon films. Mater. Sci. Forum. 1990, 52–53, 365–386. [Google Scholar]
- Streletskiy, O.A.; Zavidovskiy, I.A.; Balabanyan, V.Y.; Tsiskarashvili, A.V. Antibacterial properties of modified a-C and ta-C coatings: The effects of the sp2/sp3 ratio, oxidation, nitridation, and silver incorporation. Appl. Phys. A 2022, 128, 929. [Google Scholar] [CrossRef]
- Nemanich, R.J.; Solin, S.A. First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 1979, 20, 392–401. [Google Scholar] [CrossRef]
- Zickler, G.A.; Smarsly, B.; Gierlinger, N.; Peterlik, H.; Paris, O. A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon 2006, 44, 3239–3246. [Google Scholar] [CrossRef]
- Mallet-Ladeira, P.; Puech, P.; Toulouse, C.; Cazayous, M.; Ratel-Ramond, N.; Weisbecker, P.; Vignoles, G.L.; Monthioux, M. A Raman study to obtain crystallite size of carbon materials: A better alternative to the Tuinstra–Koenig law. Carbon 2014, 80, 629–639. [Google Scholar] [CrossRef]
- Zkria, A.; Haque, A.; Egiza, M.; Abubakr, E.; Murasawa, K.; Yoshitake, T.; Narayan, J. Laser-induced structure transition of diamond-like carbon coated on cemented carbide and formation of reduced graphene oxide. MRS Commun. 2019, 9, 910–915. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Karabutov, A.A.; Kudryashova, M.A.; Beketov, V.I.; Zorov, N.B. Laser-induced phase transitions of carbon. Mendeleev. Commun. 1998, 8, 29–30. [Google Scholar] [CrossRef]
- Nojiri, H.; Okoshi, M. Crack suppression of silica glass formed by zoned F2 laser-induced photochemical surface modification of hard silicone thin film coating on polycarbonate. Jpn. J. Appl. Phys. 2016, 55, 122701. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okoshi, M. F2 Laser-Induced Micro-Reticulated Structural Changes of Amorphous Carbon Thin Films. Micro 2023, 3, 602-609. https://doi.org/10.3390/micro3020041
Okoshi M. F2 Laser-Induced Micro-Reticulated Structural Changes of Amorphous Carbon Thin Films. Micro. 2023; 3(2):602-609. https://doi.org/10.3390/micro3020041
Chicago/Turabian StyleOkoshi, Masayuki. 2023. "F2 Laser-Induced Micro-Reticulated Structural Changes of Amorphous Carbon Thin Films" Micro 3, no. 2: 602-609. https://doi.org/10.3390/micro3020041
APA StyleOkoshi, M. (2023). F2 Laser-Induced Micro-Reticulated Structural Changes of Amorphous Carbon Thin Films. Micro, 3(2), 602-609. https://doi.org/10.3390/micro3020041