Revolutionizing Kidney Transplantation: Connecting Machine Learning and Artificial Intelligence with Next-Generation Healthcare—From Algorithms to Allografts
Abstract
:1. Introduction
- It introduces AI and ML to enhance donor–recipient matching and address the organ shortage, improving kidney transplant success rates.
- It reviews predictive modeling applications that forecast postoperative complications, aiding in the reduction of organ rejection and the enhancement of patient care.
- It showcases AI advancements in post-transplant monitoring and rehabilitation, leading to personalized and efficient patient recovery.
- It discusses the challenges of integrating AI into healthcare, emphasizing ethical, privacy, and professional training considerations.
- It highlights the potential of AI and ML to revolutionize kidney transplantation through innovation and interdisciplinary collaboration.
2. The Next-Generation Healthcare Paradigm
3. Machine Learning and Artificial Intelligence in Healthcare
4. From Algorithms to Allografts: Embracing a Transformative Journey
4.1. Addressing the Organ Shortage
4.2. Predictive Modeling in Kidney Transplantation
4.2.1. Donor–Recipient Matching and Organ Allocation Strategies
4.2.2. Risk Assessment
Problem | Feature/Target | Population | ML AI Models | Results | Ref. |
---|---|---|---|---|---|
Rejection risk | early subclinical rejection | 987 transplants | Logistic regression prediction | AUC-ROC 0.72 | [77] |
Rejection risk | predictive model for 30-day graft rejection | 1255 transplant patients | XGBoost | AUC-ROC 0.72; accuracy 0.84; precision 0.90 | [78] |
Rejection risk | allograft rejection within 1 year | 22,687 Afro-American kidney transplant patients | Cluster analysis | odds ratios 1.41–1.76 | [85] |
Rejection risk | T-cell-mediated rejection | 15 transplant patients | Random forest | Accuracy 0.80 | [79] |
Rejection risk | day 90 day 180 wDay 360 | 1516 transplants | Gradient-Boosted Regression Trees | AUC-ROC, 0.83 | [83] |
Rejection infection | Severe Pneumocystis carinii | 88 patients | Random forest | AUC-ROC 0.92, F1-Score 0.80, accuracy 0.89, sensitivity 0.82, PPV 0.67, NPV 0.91 | [86] |
Infection | 3-year follow-up | 863 patients | Least Absolute Shrinkage and Selection Operator (LASSO) regression model | AUC-ROC 0.83, F score 0.76, sensitivity 0.76, specificity 0.88 | [87] |
Infection | pneumonia, posttransplant hospitalization | 519 patients | Random forest | AUC-ROC 0.91, sensitivity 0.67, specificity 0.97 | [80] |
Graft failure | -- | 378 transplant patients | Decision tree | AUC-ROC 0.95, accuracy 0.95, sensitivity 0.94, specificity 0.97, F1 score 0.95 | [88] |
Graft failure | graft failure within 3 years | 22,687 Afro-American kidney transplant patients | Cluster analysis | odds ratios 1.93–2.4 | [85] |
Graft failure/status | 1 year 5 years | 50,000 transplants | Support vector machine AdaBoost | AUC-ROC 0.82 (1 year), AUC-ROC 0.69 (5 years) | [89] |
Immediate graft function | predict immediate graft function | 859 transplant patients | XGBoost | AUC-ROC 0.78; sensitivity 0.64; specificity 0.78 | [82] |
Immediate graft function | delayed graft function | 157 transplants | Random forest~ artificial neural network | AUC-ROC 0.84, accuracy 0.84 | [81] |
Rehospitalization | 30-day rehospitalization | 2060 transplants | Frequency-inverse document frequency plus logistic regression | AUC-ROC 0.68 | [84] |
4.2.3. Predicting Long-Term Outcomes and Survival Analysis
Problem | Feature/Target | Population | ML AI Models | Results | Ref. |
---|---|---|---|---|---|
Long-term outcomes | 12-month transplantation biopsies | 789 transplant biopsies | Region-based Convolutional Neural Networks | AUC-ROC 0.81 (5 yr) | [93] |
Long-term outcomes | Graft failure/status | 50,000 transplants | AdaBoost | AUC-ROC 0.81 (17 yr) | [89] |
Long-term outcomes | Graft survival | 3117 transplants | Decision tree | AUC-ROC 0.97 (1 yr), 0.89 (2 yr), 0.79 (3 yr), 0.75 (4 yr), 0.71 (5 yr), 0.71 (6 yr), 0.67 (7 yr), 0.69 (8 yr), 0.67 (9 yr), 0.65 (10 yr) | [95] |
Patient survival | Mortality risk | 263 transplants | Logistic regression | AUC-ROC 0.69 | [94] |
Patient survival | Eurotransplant Senior Program | 42 transplants | Cox regression analysis | Odds ratio 1.09 (1 yr),1.16 (3 yr), 1.17 (5 yr) | [96] |
4.2.4. Personalized Post-Transplant Management
5. Challenges and Future Directions
6. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abecassis, M.; Bartlett, S.T.; Collins, A.J.; Davis, C.L.; Delmonico, F.L.; Friedewald, J.J.; Hays, R.; Howard, A.; Jones, E.; Leichtman, A.B.; et al. Kidney Transplantation as Primary Therapy for End-Stage Renal Disease: A National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) Conference. Clin. J. Am. Soc. Nephrol. 2008, 3, 471–480. [Google Scholar] [CrossRef]
- Uwumiro, F.E.; Okpujie, V.O.; Oyesomi, A.; Madu, F.C.; Ilelaboye, A.; Shielu, M.L.; Otu, R.C.; Ogunkoya, G.D.; Ezennaya, L.S.; Bojerenu, M.M. Weekend Effect on Mortality, Access to Renal Replacement Therapy, and Other Outcomes Among Patients With End-Stage Renal Disease: A Retrospective Analysis of the Nationwide Inpatient Sample. Cureus 2023, 15, e34139. [Google Scholar] [CrossRef] [PubMed]
- Bastani, B. The Present and Future of Transplant Organ Shortage: Some Potential Remedies. J. Nephrol. 2020, 33, 277–288. [Google Scholar] [CrossRef]
- Lewis, A.; Koukoura, A.; Tsianos, G.-I.; Gargavanis, A.A.; Nielsen, A.A.; Vassiliadis, E. Organ Donation in the US and Europe: The Supply vs Demand Imbalance. Transplant. Rev. 2021, 35, 100585. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.U.; Hanna, A.; Mohamed, A.; Schlindwein, A.; Pley, C.; Bahner, I.; Mhaskar, R.; Pettigrew, G.J.; Jarmi, T. A Systematic Review of Opt-out Versus Opt-in Consent on Deceased Organ Donation and Transplantation (2006–2016). World J. Surg. 2019, 43, 3161–3171. [Google Scholar] [CrossRef] [PubMed]
- Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Kaushik, A.; Shinde, R.; Thipperudraswamy, S.P. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors 2022, 12, 562. [Google Scholar] [CrossRef] [PubMed]
- Tuli, S.; Tuli, S.; Wander, G.; Wander, P.; Gill, S.S.; Dustdar, S.; Sakellariou, R.; Rana, O. Next Generation Technologies for Smart Healthcare: Challenges, Vision, Model, Trends and Future Directions. Internet Technol. Lett. 2020, 3, e145. [Google Scholar] [CrossRef]
- Parwani, A.V. Next Generation Diagnostic Pathology: Use of Digital Pathology and Artificial Intelligence Tools to Augment a Pathological Diagnosis. Diagn. Pathol. 2019, 14, 138. [Google Scholar] [CrossRef]
- Lee, C.; Luo, Z.; Ngiam, K.Y.; Zhang, M.; Zheng, K.; Chen, G.; Ooi, B.C.; Yip, W.L.J. Big Healthcare Data Analytics: Challenges and Applications. In Handbook of Large-Scale Distributed Computing in Smart Healthcare; Springer: Berlin/Heidelberg, Germany, 2017; pp. 11–41. ISBN 9783319582801. [Google Scholar]
- Badrouchi, S.; Bacha, M.M.; Hedri, H.; Ben Abdallah, T.; Abderrahim, E. Toward Generalizing the Use of Artificial Intelligence in Nephrology and Kidney Transplantation. J. Nephrol. 2022, 36, 1087–1100. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Kaewput, W.; Kovvuru, K.; Hansrivijit, P.; Kanduri, S.R.; Bathini, T.; Chewcharat, A.; Leeaphorn, N.; Gonzalez-Suarez, M.L.; Cheungpasitporn, W. Promises of Big Data and Artificial Intelligence in Nephrology and Transplantation. J. Clin. Med. 2020, 9, 1107. [Google Scholar] [CrossRef]
- Pullen, L.C. Doctor AI. Am. J. Transplant. 2019, 19, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Peloso, A.; Moeckli, B.; Delaune, V.; Oldani, G.; Andres, A.; Compagnon, P. Artificial Intelligence: Present and Future Potential for Solid Organ Transplantation. Transpl. Int. 2022, 35, 10640. [Google Scholar] [CrossRef] [PubMed]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Johnson, K.B.; Wei, W.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Vigia, E.; Ramalhete, L.; Ribeiro, R.; Barros, I.; Chumbinho, B.; Filipe, E.; Pena, A.; Bicho, L.; Nobre, A.; Carrelha, S.; et al. Pancreas Rejection in the Artificial Intelligence Era: New Tool for Signal Patients at Risk. J. Pers. Med. 2023, 13, 1071. [Google Scholar] [CrossRef] [PubMed]
- Vigia, E.; Ramalhete, L.; Ribeiro, R.; Barros, I.; Chumbinho, B.; Filipe, E.; Bicho, L.; Nobre, A.; Carrelha, S.; Corado, S.; et al. Predicting Function Delay with a Machine Learning Model: Improve the Long-Term Survival of Pancreatic Grafts. Pancreat. Disord. Ther. 2022, 12, 231. [Google Scholar] [CrossRef]
- Díez-Sanmartín, C.; Sarasa Cabezuelo, A. Application of Artificial Intelligence Techniques to Predict Survival in Kidney Transplantation: A Review. J. Clin. Med. 2020, 9, 572. [Google Scholar] [CrossRef]
- Mudiayi, D.; Shojai, S.; Okpechi, I.; Christie, E.A.; Wen, K.; Kamaleldin, M.; Elsadig Osman, M.; Lunney, M.; Prasad, B.; Osman, M.A.; et al. Global Estimates of Capacity for Kidney Transplantation in World Countries and Regions. Transplantation 2022, 106, 1113–1122. [Google Scholar] [CrossRef]
- Davenport, T.; Kalakota, R. The Potential for Artificial Intelligence in Healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef]
- Alahi, M.E.E.; Sukkuea, A.; Tina, F.W.; Nag, A.; Kurdthongmee, W.; Suwannarat, K.; Mukhopadhyay, S.C. Integration of IoT-Enabled Technologies and Artificial Intelligence (AI) for Smart City Scenario: Recent Advancements and Future Trends. Sensors 2023, 23, 5206. [Google Scholar] [CrossRef] [PubMed]
- Hood, L.; Flores, M.A.; Brogaard, K.R.; Price, N.D. Systems Medicine and the Emergence of Proactive P4 Medicine. In Handbook of Systems Biology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 445–467. ISBN 9780123859440. [Google Scholar]
- Martínez-García, M.; Hernández-Lemus, E. Data Integration Challenges for Machine Learning in Precision Medicine. Front. Med. 2022, 8, 784455. [Google Scholar] [CrossRef]
- Ahmed, Z.; Mohamed, K.; Zeeshan, S.; Dong, X. Artificial Intelligence with Multi-Functional Machine Learning Platform Development for Better Healthcare and Precision Medicine. Database 2020, 2020, baaa010. [Google Scholar] [CrossRef]
- Peng, J.; Jury, E.C.; Dönnes, P.; Ciurtin, C. Machine Learning Techniques for Personalised Medicine Approaches in Immune-Mediated Chronic Inflammatory Diseases: Applications and Challenges. Front. Pharmacol. 2021, 12, 720694. [Google Scholar] [CrossRef]
- Fröhlich, H.; Balling, R.; Beerenwinkel, N.; Kohlbacher, O.; Kumar, S.; Lengauer, T.; Maathuis, M.H.; Moreau, Y.; Murphy, S.A.; Przytycka, T.M.; et al. From Hype to Reality: Data Science Enabling Personalized Medicine. BMC Med. 2018, 16, 150. [Google Scholar] [CrossRef]
- Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al. Applications of Machine Learning in Drug Discovery and Development. Nat. Rev. Drug Discov. 2019, 18, 463–477. [Google Scholar] [CrossRef]
- Kessler, R.C.; Bossarte, R.M.; Luedtke, A.; Zaslavsky, A.M.; Zubizarreta, J.R. Machine Learning Methods for Developing Precision Treatment Rules with Observational Data. Behav. Res. Ther. 2019, 120, 103412. [Google Scholar] [CrossRef]
- Goetz, L.H.; Schork, N.J. Personalized Medicine: Motivation, Challenges, and Progress. Fertil. Steril. 2018, 109, 952–963. [Google Scholar] [CrossRef]
- Stefanicka-Wojtas, D.; Kurpas, D. Personalised Medicine—Implementation to the Healthcare System in Europe (Focus Group Discussions). J. Pers. Med. 2023, 13, 380. [Google Scholar] [CrossRef] [PubMed]
- Raghavendran, H.R.B.; Kumaramanickavel, G.; Iwata, T. Editorial: Personalized Medicine—Where Do We Stand Regarding Bench to Bedside Translation? Front. Med. 2023, 10, 1243896. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, A.D.; Huurman, V.A.L.; Hierck, B.P.; Reinders, M.E.J. Introducing the Innovative Technique of 360° Virtual Reality in Kidney Transplant Education. Transpl. Immunol. 2018, 49, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Raynaud, M.; Aubert, O.; Divard, G.; Reese, P.P.; Kamar, N.; Yoo, D.; Chin, C.-S.; Bailly, É.; Buchler, M.; Ladrière, M.; et al. Dynamic Prediction of Renal Survival among Deeply Phenotyped Kidney Transplant Recipients Using Artificial Intelligence: An Observational, International, Multicohort Study. Lancet Digit. Health 2021, 3, e795–e805. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Hansrivijit, P.; Leeaphorn, N.; Acharya, P.; Torres-Ortiz, A.; Kaewput, W.; Kovvuru, K.; Kanduri, S.; Bathini, T.; Cheungpasitporn, W. Recent Advances and Clinical Outcomes of Kidney Transplantation. J. Clin. Med. 2020, 9, 1193. [Google Scholar] [CrossRef] [PubMed]
- Peloso, A.; Naesens, M.; Thaunat, O. The Dawn of a New Era in Kidney Transplantation: Promises and Limitations of Artificial Intelligence for Precision Diagnostics. Transpl. Int. 2023, 36, 12010. [Google Scholar] [CrossRef] [PubMed]
- Díez-Sanmartín, C.; Sarasa-Cabezuelo, A.; Andrés Belmonte, A. The Impact of Artificial Intelligence and Big Data on End-Stage Kidney Disease Treatments. Expert Syst. Appl. 2021, 180, 115076. [Google Scholar] [CrossRef]
- Junaid, S.B.; Imam, A.A.; Balogun, A.O.; De Silva, L.C.; Surakat, Y.A.; Kumar, G.; Abdulkarim, M.; Shuaibu, A.N.; Garba, A.; Sahalu, Y.; et al. Recent Advancements in Emerging Technologies for Healthcare Management Systems: A Survey. Healthcare 2022, 10, 1940. [Google Scholar] [CrossRef] [PubMed]
- Bohr, A.; Memarzadeh, K. The Rise of Artificial Intelligence in Healthcare Applications. In Artificial Intelligence in Healthcare; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–60. ISBN 9780128184387. [Google Scholar]
- Badidi, E. Edge AI for Early Detection of Chronic Diseases and the Spread of Infectious Diseases: Opportunities, Challenges, and Future Directions. Future Internet 2023, 15, 370. [Google Scholar] [CrossRef]
- Schork, N.J. Artificial Intelligence and Personalized Medicine. In Precision Medicine in Cancer Therapy; Springer: Berlin/Heidelberg, Germany, 2019; pp. 265–283. ISBN 9783030163914. [Google Scholar]
- van der Schaar, M.; Alaa, A.M.; Floto, A.; Gimson, A.; Scholtes, S.; Wood, A.; McKinney, E.; Jarrett, D.; Lio, P.; Ercole, A. How Artificial Intelligence and Machine Learning Can Help Healthcare Systems Respond to COVID-19. Mach. Learn. 2021, 110, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.M.; Ahsan, M.J. Machine Learning in Drug Discovery: A Review. Artif. Intell. Rev. 2022, 55, 1947–1999. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.H.; Au, E.; Krishnan, A.; Wong, G. Assessment of Kidney Transplant Suitability for Patients with Prior Cancers: Is It Time for a Rethink? Transpl. Int. 2019, 32, 1223–1240. [Google Scholar] [CrossRef]
- Abouna, G.M. Organ Shortage Crisis: Problems and Possible Solutions. Transplant. Proc. 2008, 40, 34–38. [Google Scholar] [CrossRef]
- Levitt, M. Could the Organ Shortage Ever Be Met? Life Sci. Soc. Policy 2015, 11, 6. [Google Scholar] [CrossRef]
- Li, M.T.; Hillyer, G.C.; Husain, S.A.; Mohan, S. Cultural Barriers to Organ Donation among Chinese and Korean Individuals in the United States: A Systematic Review. Transpl. Int. 2019, 32, 1001–1018. [Google Scholar] [CrossRef] [PubMed]
- Demırkiran, O.; Bozbay, S.; Elmaagac, M.; Agkoç, M. Religious and Cultural Aspects of Organ Donation in the Turkish Population. Transplant. Proc. 2019, 51, 2158–2162. [Google Scholar] [CrossRef] [PubMed]
- Tore Altun, G.; Corman Dincer, P.; Birtan, D.; Arslantas, R.; Kasap Yakin, D.; Ozdemir, I.; Arslantas, M.K. Reasons Why Organs From Deceased Donors Were Not Accepted for Transplantation. Transplant. Proc. 2019, 51, 2202–2204. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab Elhamahmi, D.; Chaly, T.; Wei, G.; Hall, I.E. Kidney Discard Rates in the United States During American Transplant Congress Meetings. Transplant. Direct 2019, 5, e412. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, M.; Cressman, S.; Edwards, L.; Shechter, S.; Doyle-Waters, M.M.; Keown, P.; Sapir-Pichhadze, R.; Bryan, S. A Systematic Review of Kidney Transplantation Decision Modelling Studies. Appl. Health Econ. Health Policy 2023, 21, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Boadu, P.; McLaughlin, L.; Al-Haboubi, M.; Bostock, J.; Noyes, J.; O’Neill, S.; Mays, N. A Machine-Learning Approach to Estimating Public Intentions to Become a Living Kidney Donor in England: Evidence from Repeated Cross-Sectional Survey Data. Front. Public Health 2023, 10, 1052338. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.E.; Tutun, S. Understanding and Predicting Organ Donation Outcomes Using Network-Based Predictive Analytics. Procedia Comput. Sci. 2021, 185, 185–192. [Google Scholar] [CrossRef]
- Tutun, S.; Harfouche, A.; Albizri, A.; Johnson, M.E.; He, H. A Responsible AI Framework for Mitigating the Ramifications of the Organ Donation Crisis. Inf. Syst. Front. 2023, 25, 2301–2316. [Google Scholar] [CrossRef]
- Sauthier, N.; Bouchakri, R.; Carrier, F.M.; Sauthier, M.; Mullie, L.-A.; Cardinal, H.; Fortin, M.-C.; Lahrichi, N.; Chassé, M. Automated Screening of Potential Organ Donors Using a Temporal Machine Learning Model. Sci. Rep. 2023, 13, 8459. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Miao, J.; Jadlowiec, C.C.; Mao, S.A.; Mao, M.A.; Leeaphorn, N.; Kaewput, W.; Pattharanitima, P.; Tangpanithandee, S.; Krisanapan, P.; et al. Differences between Kidney Transplant Recipients from Deceased Donors with Diabetes Mellitus as Identified by Machine Learning Consensus Clustering. J. Pers. Med. 2023, 13, 1094. [Google Scholar] [CrossRef]
- Wies, C.; Miltenberger, R.; Grieser, G.; Jahn-Eimermacher, A. Exploring the Variable Importance in Random Forests under Correlations: A General Concept Applied to Donor Organ Quality in Post-Transplant Survival. BMC Med. Res. Methodol. 2023, 23, 209. [Google Scholar] [CrossRef]
- Pettit, R.W.; Marlatt, B.B.; Miles, T.J.; Uzgoren, S.; Corr, S.J.; Shetty, A.; Havelka, J.; Rana, A. The Utility of Machine Learning for Predicting Donor Discard in Abdominal Transplantation. Clin. Transplant. 2023, 37, e14951. [Google Scholar] [CrossRef]
- Barah, M.; Mehrotra, S. Predicting Kidney Discard Using Machine Learning. Transplantation 2021, 105, 2054–2071. [Google Scholar] [CrossRef] [PubMed]
- Price, M.B.; Yan, G.; Joshi, M.; Zhang, T.; Hickner, B.T.; O’Mahony, C.; Goss, J.; Galván, N.T.N.; Cotton, R.T.; Rana, A. Prediction of Kidney Allograft Discard Before Procurement: The Kidney Discard Risk Index. Exp. Clin. Transplant. 2021, 19, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Marrero, W.J.; Lavieri, M.S.; Guikema, S.D.; Hutton, D.W.; Parikh, N.D. A Machine Learning Approach for the Prediction of Overall Deceased Donor Organ Yield. Surgery 2021, 170, 1561–1567. [Google Scholar] [CrossRef] [PubMed]
- Salaün, A.; Knight, S.; Wingfield, L.; Zhu, T. Interpretable Machine Learning in Kidney Offering: Multiple Outcome Prediction for Accepted Offers. medRxiv, 2023; preprint. [Google Scholar] [CrossRef]
- Papalexopoulos, T.P.; Bertsimas, D.; Cohen, I.G.; Goff, R.R.; Stewart, D.E.; Trichakis, N. Ethics-by-Design: Efficient, Fair and Inclusive Resource Allocation Using Machine Learning. J. Law Biosci. 2022, 9, lsac012. [Google Scholar] [CrossRef]
- Yeung, M.Y.; Coates, P.T.; Li, P.K.-T. Kidney Organ Allocation System: How to Be Fair. Semin. Nephrol. 2022, 42, 151274. [Google Scholar] [CrossRef]
- Caulfield, T.; Murdoch, B.; Sapir-Pichhadze, R.; Keown, P. Policy Challenges for Organ Allocation in an Era of “Precision Medicine”. Can. J. Kidney Health Dis. 2020, 7, 205435812091265. [Google Scholar] [CrossRef]
- Scientific Registry of Transplant Recipients Scientific Registry of Transplant Recipients (SRTR). Available online: https://www.srtr.org/ (accessed on 28 December 2023).
- Paquette, F.-X.; Ghassemi, A.; Bukhtiyarova, O.; Cisse, M.; Gagnon, N.; Della Vecchia, A.; Rabearivelo, H.A.; Loudiyi, Y. Machine Learning Support for Decision-Making in Kidney Transplantation: Step-by-Step Development of a Technological Solution. JMIR Med. Inform. 2022, 10, e34554. [Google Scholar] [CrossRef] [PubMed]
- Dasariraju, S.; Gragert, L.; Wager, G.L.; McCullough, K.; Brown, N.K.; Kamoun, M.; Urbanowicz, R.J. HLA Amino Acid Mismatch-Based Risk Stratification of Kidney Allograft Failure Using a Novel Machine Learning Algorithm. J. Biomed. Inform. 2023, 142, 104374. [Google Scholar] [CrossRef] [PubMed]
- Massie, A.B.; Leanza, J.; Fahmy, L.M.; Chow, E.K.H.; Desai, N.M.; Luo, X.; King, E.A.; Bowring, M.G.; Segev, D.L. A Risk Index for Living Donor Kidney Transplantation. Am. J. Transplant. 2016, 16, 2077–2084. [Google Scholar] [CrossRef] [PubMed]
- Vittoraki, A.G.; Fylaktou, A.; Tarassi, K.; Tsinaris, Z.; Siorenta, A.; Petasis, G.C.; Gerogiannis, D.; Lehmann, C.; Carmagnat, M.; Doxiadis, I.; et al. Hidden Patterns of Anti-HLA Class I Alloreactivity Revealed through Machine Learning. Front. Immunol. 2021, 12, 670956. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.H.; Ho, J.; Kosmoliaptsis, V.; Sapir-Pichhadze, R. Editorial: Future Challenges and Directions in Determining Allo-Immunity in Kidney Transplantation. Front. Immunol. 2022, 13, 1013711. [Google Scholar] [CrossRef]
- Han, H.S.; Lubetzky, M.L. Immune Monitoring of Allograft Status in Kidney Transplant Recipients. Front. Nephrol. 2023, 3, 1293907. [Google Scholar] [CrossRef]
- von Moos, S.; Akalin, E.; Mas, V.; Mueller, T.F. Assessment of Organ Quality in Kidney Transplantation by Molecular Analysis and Why It May Not Have Been Achieved, Yet. Front. Immunol. 2020, 11, 833. [Google Scholar] [CrossRef]
- Chastain, D.B.; Spradlin, M.; Ahmad, H.; Henao-Martínez, A.F. Unintended Consequences: Risk of Opportunistic Infections Associated With Long-Term Glucocorticoid Therapies in Adults. Clin. Infect. Dis. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Pinto-Ramirez, J.; Garcia-Lopez, A.; Salcedo-Herrera, S.; Patino-Jaramillo, N.; Garcia-Lopez, J.; Barbosa-Salinas, J.; Riveros-Enriquez, S.; Hernandez-Herrera, G.; Giron-Luque, F. Risk Factors for Graft Loss and Death among Kidney Transplant Recipients: A Competing Risk Analysis. PLoS ONE 2022, 17, e0269990. [Google Scholar] [CrossRef]
- Betjes, M.G.H.; Roelen, D.L.; van Agteren, M.; Kal-van Gestel, J. Causes of Kidney Graft Failure in a Cohort of Recipients With a Very Long-Time Follow-Up After Transplantation. Front. Med. 2022, 9, 842419. [Google Scholar] [CrossRef]
- Senanayake, S.; Kularatna, S.; Healy, H.; Graves, N.; Baboolal, K.; Sypek, M.P.; Barnett, A. Development and Validation of a Risk Index to Predict Kidney Graft Survival: The Kidney Transplant Risk Index. BMC Med. Res. Methodol. 2021, 21, 127. [Google Scholar] [CrossRef]
- Jo, S.J.; Park, J.B.; Lee, K.W. Prediction of Very Early Subclinical Rejection with Machine Learning in Kidney Transplantation. Sci. Rep. 2023, 13, 22387. [Google Scholar] [CrossRef]
- Minato, A.C.D.S.; Hannun, P.G.C.; Barbosa, A.M.P.; da Rocha, N.C.; Machado-Rugolo, J.; de Almeida Cardoso, M.M.; de Andrade, L.G.M. Machine Learning Model to Predict Graft Rejection After Kidney Transplantation. Transplant. Proc. 2023, 55, 2058–2062. [Google Scholar] [CrossRef]
- Fang, F.; Liu, P.; Song, L.; Wagner, P.; Bartlett, D.; Ma, L.; Li, X.; Rahimian, M.A.; Tseng, G.; Randhawa, P.; et al. Diagnosis of T-Cell-Mediated Kidney Rejection by Biopsy-Based Proteomic Biomarkers and Machine Learning. Front. Immunol. 2023, 14, 1090373. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Tang, Z.; Hu, X.; Lu, S.; Miao, B.; Hong, S.; Bai, H.; Sun, C.; Qiu, J.; Liang, H.; et al. Machine Learning for the Prediction of Severe Pneumonia during Posttransplant Hospitalization in Recipients of a Deceased-Donor Kidney Transplant. Ann. Transl. Med. 2020, 8, 82. [Google Scholar] [CrossRef] [PubMed]
- Konieczny, A.; Stojanowski, J.; Rydzyńska, K.; Kusztal, M.; Krajewska, M. Artificial Intelligence—A Tool for Risk Assessment of Delayed-Graft Function in Kidney Transplant. J. Clin. Med. 2021, 10, 5244. [Google Scholar] [CrossRef] [PubMed]
- Quinino, R.M.; Agena, F.; Modelli de Andrade, L.G.; Furtado, M.; Chiavegatto Filho, A.D.P.; David-Neto, E. A Machine Learning Prediction Model for Immediate Graft Function After Deceased Donor Kidney Transplantation. Transplantation 2023, 107, 1380–1389. [Google Scholar] [CrossRef] [PubMed]
- Roller, R.; Mayrdorfer, M.; Duettmann, W.; Naik, M.G.; Schmidt, D.; Halleck, F.; Hummel, P.; Burchardt, A.; Möller, S.; Dabrock, P.; et al. Evaluation of a Clinical Decision Support System for Detection of Patients at Risk after Kidney Transplantation. Front. Public Health 2022, 10, 979448. [Google Scholar] [CrossRef] [PubMed]
- Arenson, M.; Hogan, J.; Xu, L.; Lynch, R.; Lee, Y.-T.H.; Choi, J.D.; Sun, J.; Adams, A.; Patzer, R.E. Predicting Kidney Transplant Recipient Cohorts’ 30-Day Rehospitalization Using Clinical Notes and Electronic Health Care Record Data. Kidney Int. Rep. 2023, 8, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Vaitla, P.; Jadlowiec, C.C.; Leeaphorn, N.; Mao, S.A.; Mao, M.A.; Pattharanitima, P.; Bruminhent, J.; Khoury, N.J.; Garovic, V.D.; et al. Use of Machine Learning Consensus Clustering to Identify Distinct Subtypes of Black Kidney Transplant Recipients and Associated Outcomes. JAMA Surg. 2022, 157, e221286. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qiu, T.; Hu, H.; Kong, C.; Zhang, Y.; Wang, T.; Zhou, J.; Zou, J. Machine Learning Models for Prediction of Severe Pneumocystis Carinii Pneumonia after Kidney Transplantation: A Single-Center Retrospective Study. Diagnostics 2023, 13, 2735. [Google Scholar] [CrossRef]
- Chen, R.-Y.; Zhang, S.; Zhuang, S.-Y.; Li, D.-W.; Zhang, M.; Zhu, C.; Yu, Y.-T.; Yuan, X.-D. A Simple Nomogram for Predicting Infectious Diseases in Adult Kidney Transplantation Recipients. Front. Public Health 2022, 10, 944137. [Google Scholar] [CrossRef]
- Moghadam, P.; Ahmadi, A. A Machine Learning Framework to Predict Kidney Graft Failure with Class Imbalance Using Red Deer Algorithm. Expert Syst. Appl. 2022, 210, 118515. [Google Scholar] [CrossRef]
- Naqvi, S.A.A.; Tennankore, K.; Vinson, A.; Roy, P.C.; Abidi, S.S.R. Predicting Kidney Graft Survival Using Machine Learning Methods: Prediction Model Development and Feature Significance Analysis Study. J. Med. Internet Res. 2021, 23, e26843. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, C.; Bhattacharya, M.; Pal, S.; Lee, S. From Machine Learning to Deep Learning: Advances of the Recent Data-Driven Paradigm Shift in Medicine and Healthcare. Curr. Res. Biotechnol. 2024, 7, 100164. [Google Scholar] [CrossRef]
- Nankivell, B.J.; Kuypers, D.R. Diagnosis and Prevention of Chronic Kidney Allograft Loss. Lancet 2011, 378, 1428–1437. [Google Scholar] [CrossRef] [PubMed]
- Ravindhran, B.; Chandak, P.; Schafer, N.; Kundalia, K.; Hwang, W.; Antoniadis, S.; Haroon, U.; Zakri, R.H. Machine Learning Models in Predicting Graft Survival in Kidney Transplantation: Meta-Analysis. BJS Open 2023, 7, zrad011. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Salem, F.; Menon, M.C.; Keung, K.; Xi, C.; Hultin, S.; Haroon Al Rasheed, M.R.; Li, L.; Su, F.; Sun, Z.; et al. Deep Learning Identified Pathological Abnormalities Predictive of Graft Loss in Kidney Transplant Biopsies. Kidney Int. 2022, 101, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Chen, Y.; Ding, H.; Lan, T.; Zhang, F.; Zhong, J.; Liao, G. A Statistical Prediction Model for Survival After Kidney Transplantation from Deceased Donors. Med. Sci. Monit. 2021, 27, e933559. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.D.; Noh, J.; Lee, H.; Kim, D.K.; Lim, C.S.; Kim, Y.H.; Lee, J.P.; Kim, G.; Kim, Y.S. A Machine Learning Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study. Sci. Rep. 2017, 7, 8904. [Google Scholar] [CrossRef]
- Beetz, N.L.; Geisel, D.; Shnayien, S.; Auer, T.A.; Globke, B.; Öllinger, R.; Trippel, T.D.; Schachtner, T.; Fehrenbach, U. Effects of Artificial Intelligence-Derived Body Composition on Kidney Graft and Patient Survival in the Eurotransplant Senior Program. Biomedicines 2022, 10, 554. [Google Scholar] [CrossRef]
- Zhang, Q.; Tian, X.; Chen, G.; Yu, Z.; Zhang, X.; Lu, J.; Zhang, J.; Wang, P.; Hao, X.; Huang, Y.; et al. A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques. Front. Med. 2022, 9, 813117. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, K.; Shah, S. Developing Supervised Machine Learning Algorithms to Evaluate the Therapeutic Effect and Laboratory-Related Adverse Events of Cyclosporine and Tacrolimus in Renal Transplants. Int. J. Clin. Pharm. 2023, 45, 659–668. [Google Scholar] [CrossRef]
- Zhu, X.; Peng, B.; Yi, Q.; Liu, J.; Yan, J. Prediction Model of Immunosuppressive Medication Non-Adherence for Renal Transplant Patients Based on Machine Learning Technology. Front. Med. 2022, 9, 796424. [Google Scholar] [CrossRef]
- Chung, E.Y.M.; Blazek, K.; Teixeira-Pinto, A.; Sharma, A.; Kim, S.; Lin, Y.; Keung, K.; Bose, B.; Kairaitis, L.; McCarthy, H.; et al. Predictive Models for Recurrent Membranous Nephropathy After Kidney Transplantation. Transplant. Direct 2022, 8, e1357. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/phlp/publications/topic/hipaa.html (accessed on 28 December 2023).
- Starke, G.; De Clercq, E.; Elger, B.S. Towards a Pragmatist Dealing with Algorithmic Bias in Medical Machine Learning. Med. Health Care Philos. 2021, 24, 341–349. [Google Scholar] [CrossRef] [PubMed]
Problem | Organ Type | Population | ML AI Models | Results | Ref. |
---|---|---|---|---|---|
Donor identification | Donor | Potential organ donors (n = 80) Not potential organ donors (n = 564) | Neural networks | AUC-ROC 0.97, sensitivity 0.84, specificity 0.93 | [54] |
Optimizing the consent rate | Donor | Consent (n = 1461) No consent (n = 2811) | Networked Logistic Regression | Accuracy 99.912, precision 0.999, recall 0.999, F-Measure 0.999 | [52] |
Donor organ quality | Kidney | Kidney transplants (n ≈ 60,000) | Random forest | VIMP 0.0087 | [56] |
Donor discard | Liver | Organ used (n = 167,676) Organ discarded (n = 56,422) | XGBoost | AUC-ROC 0.93, AUC-PR 0.87, and F1 statistic 0.76 | [57] |
Kidney | Organ used (n = 184,746) Organ discarded (n = 41,965) | AUC-ROC 0.95, AUC-PR 0.88, and F1 statistic of 0.79 | |||
Kidney discard | Kidney | Organ used (n = 61,313) Organ discarded (n = 12,510) | Random forest | AUC-ROC 0.90 and balanced accuracy 0.78 | [58] |
Kidney discard | Kidney | Organ used (n = 79,039) Organ discarded (n = 23,207) | Logistic regression | C statistic 0.89 | [59] |
Optimizing organ yield | Donor | Donors (n = 89,520) | Tree-based gradient boosting | MAE 0.73, MSE 0.87 | [60] |
Decision to accept | Kidney | Accepted kidney transplants (n = 36,653) | Neural networks | AUC-ROC 0.81, F1-score 0.66 | [61] |
Problem | Feature/Target | Population | ML AI Models | Results | Ref. |
---|---|---|---|---|---|
Allocation | Organ donors, recipients, transplant outcomes | 180,141 transplants | Neural network | C-index 0.66 | [66] |
Matching | HLA amino acid mismatch-based risk stratification | 166,574 transplants | FIBERS algorithm | hazard ratio 1.09 to 1.11 | [67] |
Living donor risk index | Donor | 69,994 deceased donors 36,025 living donor recipients | Cox regression | Index tool | [68] |
Alloreativity | Single antigen beads profile | 660 non-transplants 406 transplants | Principal component analysis | -- | [69] |
Problem | Feature/Target | Population | ML AI Models | Results | Ref. |
---|---|---|---|---|---|
Immunosuppression therapy | Non-adherence | 1191 patients | Support vector machine | AUC-ROC 0.75, sensitivity 0.59, specificity 0.73 | [99] |
Immunosuppression therapy | Tacrolimus daily dose | 584 patients | TabNet | R2 0.824, MAE 0.468, MSE 0.558 | [97] |
Immunosuppression therapy | optimize tacrolimus and cyclosporine | 120 patients | Generalized linear model, support vector machine, artificial neural network | MAE 1.3, 1.3, 1.7 MAEs 93.2, 79.1, 73.7 | [98] |
Recurrence | Recurrent membranous nephropathy | 195 patients | Penalized Cox regression | AUC-ROC 0.91 | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramalhete, L.; Almeida, P.; Ferreira, R.; Abade, O.; Teixeira, C.; Araújo, R. Revolutionizing Kidney Transplantation: Connecting Machine Learning and Artificial Intelligence with Next-Generation Healthcare—From Algorithms to Allografts. BioMedInformatics 2024, 4, 673-689. https://doi.org/10.3390/biomedinformatics4010037
Ramalhete L, Almeida P, Ferreira R, Abade O, Teixeira C, Araújo R. Revolutionizing Kidney Transplantation: Connecting Machine Learning and Artificial Intelligence with Next-Generation Healthcare—From Algorithms to Allografts. BioMedInformatics. 2024; 4(1):673-689. https://doi.org/10.3390/biomedinformatics4010037
Chicago/Turabian StyleRamalhete, Luís, Paula Almeida, Raquel Ferreira, Olga Abade, Cristiana Teixeira, and Rúben Araújo. 2024. "Revolutionizing Kidney Transplantation: Connecting Machine Learning and Artificial Intelligence with Next-Generation Healthcare—From Algorithms to Allografts" BioMedInformatics 4, no. 1: 673-689. https://doi.org/10.3390/biomedinformatics4010037
APA StyleRamalhete, L., Almeida, P., Ferreira, R., Abade, O., Teixeira, C., & Araújo, R. (2024). Revolutionizing Kidney Transplantation: Connecting Machine Learning and Artificial Intelligence with Next-Generation Healthcare—From Algorithms to Allografts. BioMedInformatics, 4(1), 673-689. https://doi.org/10.3390/biomedinformatics4010037